A. V. Gerbessiotis

CS 101-008
May 2011
Spring 2011
Exam 2(333 Points)

Name:

ID Number: \qquad
\square
Grade: 1: ... 2: ... 3: ... 4: .. 5: ... 6: ... 7: ... 8: ... 9: ... 10: ... Total:

Solve ALL the problems in the space provided Read the Problems CAREFULLY!

There are 7 (SEVEN) pages; This is Page 1 and Page 7 is SCRATCH page
You can carefully tear Page 7 off and work on it; Do not return it then.
Read and Sign the statement below at the end of the exam
Unsigned exams will be marked with grade 0 (zero).
STATEMENT
On my honor, I pledge that I have not violated the provision of the NJIT Student Honor Code.

Sign below at the end of the exam

In the exam, the following matrices will be used. Do not get puzzled if a reference to matrix $X, Y Z, R, S$, T or W arises! If you are asked to evaluate a MATLAB expression, and you think the result is undefined you could write UNDEFINED instead of giving an answer. For example five $==5$ is UNDEFINED since variable five has not been defined.

$$
\begin{gathered}
X=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], Y=\left[\begin{array}{lll}
2 & 0 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1 \\
2 & 2 & 2
\end{array}\right], Z=\left[\begin{array}{ccc}
2 & 2 & 2 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], S=\left[\begin{array}{lllll}
1 ; & 1 ; & 1
\end{array}\right], R=\left[\begin{array}{llll}
1 & 2 & 2
\end{array}\right], \\
T=\left[{ }^{\prime} \text { Computer' } \quad \text { 'Science*' }\right], \quad W=\left[{ }^{\prime} \text { COMPUTER' } \quad ; \quad{ }^{\prime} \text { 'SCIENCES' }\right],
\end{gathered}
$$

Problem 1. (63 POINTS)
Give short answers to the following questions. If you think an answer does not exist, you can write UNDEFINED next to it.
(1) (5pt) How many bytes in 1 KiB ?
(2) (5pt) How many bytes is a MATLAB char?
(3) (5pt) How many bytes is a MATLAB double?
(4) (5pt) Write decimal (base-10) 52 as an unsigned 8-bit binary number.
(5) (5pt) What is the value of $X(1,2)$?
(6) (5pt) What is the value of $X(2,1)$?
(7) (5pt) What is the value of $T(2)$?
(8) (5pt) Unsigned 0×12 is what unsigned integer base-10?
(9) (5pt) What is the value of $W(1,:)$?
(10) (5pt) What is the value of $W(2,8)$?
(11) (5pt) What is the value of $X(7)$?
(12) (5pt) What is the value of $W(3)$?
(13) (3pt) How much is $i * i$ in MATLAB?

Problem 2. (30 POINTS)
What are the values of $p 2 a, p 2 b, p 2 c, p 2 d$?
(a) $p 2 a=2^{\wedge} 1^{\wedge} 2+2^{\wedge} 2^{\wedge} 1$
(b) $p 2 b=-5-\sim 5+5$
(c) $p 2 c=1==3-2==1$
(d) $p 2 d=0>=0>=0$

Problem 3. (30 POINTS)
What are the values of $p 3 a, p 3 b, p 3 c, p 3 d$? What are their dimensions? Which of the four is/are scalar?
(example) $z=\operatorname{ones}(2) \quad$ Answer $z=\left[\begin{array}{lll}1 & 1 ; 1 & 1\end{array}\right], z$ is a 2×2 matrix.
(a) $p 3 a=1: 3: 7$
(b) $p 3 b=X(2: e n d, 1: e n d)$
(c) $p 3 c=\operatorname{size}(W)$
(d) $p 3 d=$ length (R)

Problem 4. (30 points)
With reference to the following MATLAB code, answer the following questions.

```
function s=exam2p4(n)
    if (n==0)
        s='0';
    elseif(n==1)
        s='1';
    else
        s=[exam2p4(mod}(n,2)), exam2p4(floor(n/2))]
    end
end
```

(a) What is the effect of $\mathrm{p} 4 \mathrm{a}=$ exam2p4(2)? What is the value of $p 4 a$ returned?
(b) What is the effect of $\mathrm{p} 4 \mathrm{~b}=$ exam2p4(7)? What is the value of $p 4 b$ returned?
(c) What is the effect of $\mathrm{p} 4 \mathrm{c}=$ exam2p4(10)? What is the value of $p 4 c$ returned?
(d) What does function exam2p4 compute for an input that is a non-negative integer? Explain.

Problem 5. (30 Points)
(a) How many types of functions have we encountered in MATLAB? List them also.
(b) List three types of variables available in MATLAB .

Problem 6. (30 POINTS)
(a) We would like to print the numbers from 1 to 10 one such number per line. Give a method that does so using a for loop.
(b) We would like to print the numbers from 1 to 10 one such number per line. Give a method that does so using a while loop.
(c) We would like to print the numbers from 1 to 10 one such number per line. Give a method that does so WITHOUT using a for or a while loop.
(d) Is selection sort stable? Does it sort in-place?
(e) Is odd-even transposition sort stable? Does it sort in-place?

Problem 7. (30 POINTS)
How efficient is the following function inefficient? Comment on it. Then, give a transformation that can make it faster by an order of magnitude or so. Show your transformed code next to the original on the far right below, where we decided to call the new function efficient

```
%Original
function y=inefficient(n)
    for jj=1:n %
        x(jj) = jj - 3; %
    end %
    y=x; %
end % end
```

Problem 8. (30 Points)
You are given below the listings of M-file exam2p8.m. We then issue the two calls [c d] = exam2p8(40,10) and $[\mathrm{ab}]=\operatorname{exam} 2 \mathrm{p} 8(20,10)$ shown below. What are the values of c, d, a, b ?

```
function [c d]= exam2p8(a,b)
    c= a+b;
    d= a*b;
    temp=c;
    c=d;
    d=temp;
end
>> [c d]= exam2p8(40, 10);
>> c
    c =
>> d
    d =
>> [a b]= exam2p8(20, 10);
>> a
    a =
>> b
    b =
```

Problem 9. (30 points)
Implement function aven (n) that computes and returns the average of the first n integers $1,2, \ldots, n$, i.e. the sum $(1+2+\ldots+n) / n$. Thus a call to aven(10); will print
The average from 1 to 10 is $=5.500000$
and the call aven(100); will print
The average from 1 to 100 is $=50.500000$.
It is imperative that you not only implement the function that computes correctly the average, but you also include in the function's body, code that prints the relevant information as shown in the examples above. (You can use for that an fprintf or a disp function.)

Problem 10. (30 POINTS)
You are given below the listing of M-file exam2p10.m.
(a) Identify and classify all functions in this file. Do the same for all variables.
(b) What is the value returned for f for $\mathrm{f}=$ exam2p10(1).

```
    % exam2p10
function y= exam2p10(z)
    function z= fun1 (x)
            z= 2*x;
    end
    function z= fun2 (x)
        persistent zorro;
            z= 2*x;
    end
    y= fun1(z)+ fun3(z);
    return;
end
function z=fun3(x)
    function z=fun1(x);
            z= 10*x;
        end
    z= 10*fun1(x);
end
```

This	is line 1
$\%$	line 2
$\%$	line 3
$\%$	line 4
$\%$	line 5
$\%$	line 6
$\%$	line 7
$\%$	line 8
$\%$	line 9
$\%$	line 10
$\%$	line 11
$\%$	line 12
$\%$	line 13
$\%$	line 14
$\%$	line 15
$\%$	line 16
$\%$	line 17
$\%$	line 18
$\%$	line 19

End of Page 6/Turn Page

$$
\begin{gathered}
X=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], Y=\left[\begin{array}{lll}
2 & 0 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1 \\
2 & 2 & 2
\end{array}\right], Z=\left[\begin{array}{lll}
2 & 2 & 2 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], S=\left[\begin{array}{lllll}
1 ; & 1 ; & 1
\end{array}\right], R=\left[\begin{array}{llll}
1 & 2 & 2 &], \\
& \\
& =\left[{ }^{\prime} \text { Computer }{ }^{\prime} \quad \text { 'Science*' }\right], \quad W=\left[{ }^{\prime} \text { COMPUTER' } \quad ; \quad{ }^{\prime}\right. \text { SCIENCES' }
\end{array}\right],
\end{gathered}
$$

Intentionally left blank otherwise with copies of front-page matrices
End of Exam 2/ You may tear off this page carefully

