A. V. Gerbessiotis

Name: \qquad

ID Number: \qquad
\square
Grade: 1: ... 2: ... 3: ... 4: ... 5: ... 6: ... 7: ... 8: ... Total:

Solve ALL the problems in the space provided
 Read the Problems CAREFULLY!

There are 6 (SIX) Pages This page included

In the exam, the following matrices MAY be used. Do not get puzzled if a reference to matrix X, Y or Z or etc arises! No problem modifies X, Y, Z, R, S in a way that missing that problem would change the answer of any other problem of the exam.

If you are asked to evaluate a MATLAB expression, and you think the result would generate an ERROR because a variable is undefined you could write ERROR instead of giving an answer. For example five $==5$ generates an ERROR since variable five is never defined anywhere in the exam.

$$
X=\left[\begin{array}{llll}
1 & 4 & 4 & 1 \\
2 & 8 & 8 & 2 \\
3 & 6 & 6 & 3
\end{array}\right], Y=\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 1
\end{array}\right], Z=\left[\begin{array}{llll}
1 & 2 & 1 & 2
\end{array}\right], R=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], S=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right],
$$

Problem 1. (50 points)
Give short answers to the following questions.
(1) How many bytes in 1MB disk-space?
(2) What is a 1 KiB ?
(3) How many bytes is a MATLAB double?
(4) How many bytes is a MATLAB char ?
(5) How many bytes is a MATLAB logical?
(6) What is the range of values for an 8-bit signed integer such as int8 in MATLAB? (give number of values,lowest and highest value in the range.)
(7) What is matrix element $X(e n d-2)$?
(8) What is array element $X(e n d, e n d)$?
(9) What is array element $Y($ end -2$)$?
(10) Represent decimal (i.e. base-10) integer 20 in hexadecimal.

Problem 2. (35 Points)
(a) For variable A, give its, value, size (shape), number of Bytes and Class (i.e. data type) as needed for the MATLAB program below.

```
>> A = 5 < 5 < 5;
>> A
>> whos A % A = ............ Size ... x ... Bytes ...... Class
>> A = 2^1^2
>> A
>> whos A % A = ............ Size ... x ... Bytes ...... Class
>> A = true == false + true;
>> A
>> whos A % A = ............ Size ... x ... Bytes ...... Class
>> A = int16(5 < 5 + 5);
>> A
>> whos A % A = ............ Size ... x ... Bytes ...... Class
>> A = 13:-3:1;
>> A
>> whos A % A = ............ Size ... x ... Bytes ...... Class
```

(b) Do so for A below.

```
>> clear A;
>> A(4)= 14;
>> A
>> whos A % A = ............ Size ... x ... Bytes ...... Class
>> A(4,4)= 24;
>> A
>> whos A % A = ............ Size ... x ... Bytes ...... Class
```

This is the end of page 2 containing Problems 1 and 2. Turn page.

Problem 3. (30 Points)
What is the the result of the following MATLAB operations?
(a) (5 points) q3a $=R * \operatorname{transpose}(\mathrm{R})$;
(b) (5 points) $\mathrm{q} 3 \mathrm{~b}=\mathrm{S} * \mathrm{R}$;
(c) (5 points) q3c $=\mathrm{S} *$ transpose(S);
(a)
(b)
(c)
q3a $=$
q3b $=$
q3c $=$
(d) (15 points) Also provide the following information for variables q3a, q3b,q3c.

```
>> q3a;
>> q3b;
>> whos q3b
>> q3c;
>> whos q3c
```

>> whos q3a Size ... x ... Bytes Class

Problem 4. (50 points)
Evaluate the following MATLAB expressions. What are the values of $q 4 a, q 4 b, q 4 c, q 4 d, q 4 e$?


```
>> q4b = 5< 5< 1; ; q4b = ............
>> q4c = NaN == NaN; q4c = ............
>> q4d = 5 & 5 ; q4d = ............
>> q4e = 5 + 5 & 5< 5 ; quenc.
```

Problem 5. (35 POINTS)
(a) List the elements of Y in column-major filin/form.
(b) List the elements of Y in row-major filin/form.

This is the end of page 3 containing Problems 3,4, and 5. Turn page.

Problem 6. (40 Points)
(a) What is the range of values (smallest, largest possible) for q6a that is defined as follows.

```
>> q6a = round(2*rand() + 3); % Smallest possible value for q6a = ......
%
% Largest possible value for q6a = ......
```

(b) What is the value of variable q6b defined as follows.

(c) What is the value of variable q6c defined as follows.

```
>> q6c = 1:3:10 % q6c =
```

(d) What is the value of variable q6d defined as follows.

```
>> q6aux = 1:5;
>> q6d = (-1) .^ q6aux % q6d =
```

(e) What is the value of variable q6e defined as follows.

```
>> q6aux = 1:5;
>> q6e = q6aux .^ 2 % q6e =
```

(f) What is the value of variable q6f defined as follows.
>> q6f = 1:3:10 == $3 \quad \% \quad q 6 f=$ \qquad
(g) What is the value of variable q 6 g defined as follows.
>> q6g = X(: , 1:1:2)
\% q6g =
(h) What is the value of variable q6h defined as follows.

```
>> q6h = X ;
>> q6h (:, 2:end) = []
```

```
% q6h =
```

\qquad

Problem 7. (60 POINTS)
(a) What is the value of $\mathrm{q} 7 \mathrm{a}, \mathrm{q} 7 \mathrm{~b}, \mathrm{q} 7 \mathrm{c}$ after the sequence of the six MATLAB statements? Write down the values in the corresponding space below.

```
>> q7a = 2;
>> q7b = 10;
>> q7c = q7a + q7b;
>> q7a = 2 * q7a;
>> q7b = q7b / 2;
>> q7c = q7a + q7b + q7c ;
>> q7a %q7a = .................
>> q7b % q7b = .................
>> q7c % q7c = ..................
```

(b) What are the values of q 7 d , q 7 f at the end of the MATLAB program below (as indicated)?

```
>> q7d = 10 ;
>> q7f = 20;
>> q7 = 0;
>> q7 = q7d; q7d = q7f ; q7f = q7;
>> q7d % q7d = ...............
>> q7f % q7f = ..............
```

(b) What are the values of $\mathrm{q} 7 \mathrm{~g}, \mathrm{q} 7 \mathrm{~h}$ at the end of the MATLAB program below (as indicated)?

```
>> q7g = 10 ;
>> q7h = q7g + q7g;
>> q7h = q7g + q7h;
```

>> q7g $\%$ q7g $=\ldots \ldots \ldots \ldots .$.
>> q7h \% q7h =.................

Problem 8. (33 Points)
The following code resides in a file named compute.m. Apparently it attempts to compute $e=\exp$ (1.0) using the approximation

$$
e=1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}
$$

implied by the Taylor expansion of $\exp (x)$ for $x=1$. However the code is incomplete. The code uses function cumprod(). This computes the cumulative products of the elements of say vector x. Thus if $x=\left[\begin{array}{ccc}2 & 3 & 4\end{array}\right]$, then $\operatorname{cumprod}(x)=\left[\begin{array}{ccc}2 & 6 & 24\end{array}\right]$. We ask you to fill the incomplete lines (Lines 5 and 6) to turn this into a correct MATLAB M-file for this computation/approximation of e. Line 7 prints the approximation of e to the desired precision/order.

```
% Compute e approximation to order n
n = input('Order of approximation ' );
a = [1 1:n ] ;
b = cumprod(a) ;
b = ;
c = ;
```

disp(c) ; \% Line 7

This is the end of page 6 containing Problems 7 and 8. Turn page.

$$
X=\left[\begin{array}{llll}
1 & 4 & 4 & 1 \\
2 & 8 & 8 & 2 \\
3 & 6 & 6 & 3
\end{array}\right], Y=\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 1
\end{array}\right], Z=\left[\begin{array}{llll}
1 & 2 & 1 & 2
\end{array}\right], R=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], S=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
$$

This is the last page (Page 6) of the exam.
Intentionally left blank. Copies of front-page matrices included
You may tear-off this last page and use it as scratch paper; do not turn IT in

