New Jersey's Science \&

Name: \qquad

ID Number: \qquad
\square
Grade: 1: ... 2: ... 3: ... 4: ... 5: ... 6: ... 7: ... 8: ... Total:

Solve ALL the problems in the space provided
 Read the Problems CAREFULLY!

There are 6 (SIX) Pages This page included

In the exam, the following matrices MAY be used. Do not get puzzled if a reference to matrix X, Y or Z or etc arises! No problem modifies X, Y, Z, R, S in a way that missing that problem would change the answer of any other problem of the exam.

If you are asked to evaluate a MATLAB expression, and you think the result would generate an ERROR because a variable is undefined you could write ERROR instead of giving an answer. For example five $=\mathbf{5}$ generates an ERROR since variable five is never defined anywhere in the exam.

$$
X=\left[\begin{array}{llll}
2 & 1 & 2 & 1 \\
2 & 3 & 3 & 2 \\
3 & 4 & 4 & 3
\end{array}\right], Y=\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], Z=\left[\begin{array}{llll}
1 & 2 & 1 & 2
\end{array}\right], R=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], S=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] .
$$

Problem 1. (48 POINTS)
Give short answers to the following questions.
(1) How many bytes in 1 KiB ?
(2) What is an 1 Kb ?
(3) How many bytes is a MATLAB double?
(4) How many bytes is a MATLAB uint16?
(5) How many bytes is a MATLAB logical?
(6) What is the range of values for int8 in MATLAB? (give number of values,lowest and highest value in the range.)
(7) What is array element $Y($ end -1 , end -1$)$?
(8) What is array element $X(e n d-3)$?
(9) Represent decimal (i.e. base-10) integer 49 in hexadecimal.
(10) How many bits in a byte nowadays?
(11) How much is $j * j$ in MATLAB?
(12) Represent decimal (i.e. base-10) integer 49 in binary.

Problem 2. (30 POINTS)
What is the value, Size (i.e geometry/shape), number of Bytes, and the Class (i.e. data type) of variables p2a, p2b, p2c, p2d,p2e,p2f, as needed for the MATLAB program below.

```
>> clear
>> p2a = 5 < 5 < 5;
>> p2a
>> whos p2a %p2a= ........... Size ... x ... Bytes ...... Class .........
>> p2b = int8(5 < 5);
>> p2b
>> whos p2b %p2b= ........... Size ... x ... Bytes ...... Class ..........
>> p2c = 5 == 5 + 5;
>> p2c
>> whos p2c %p2c= ........... Size ... x ... Bytes ...... Class .........
>> p2d = int32(5 * 5 - 10/ 5);
>> p2d
>> whos p2d %p2d= ........... Size ... x ... Bytes ...... Class .........
>> p2e = 11:-2:1;
>> p2e
>> whos p2e %p2e= ............ Size ... x ... Bytes ...... Class .........
>> p2f = transpose(R)*R;
>> p2f
>> whos p2f %p2f= ............ Size ... x ... Bytes ...... Class .........
```

This is the end of page 2 containing Problems 1 and 2. Turn page.

Problem 3. (60 POINTS)
Evaluate the following MATLAB expressions.

```
(example) z=ones(2) Answer z=[lllll}
>> clear;
>> p3a = 2:3:10
>> p3a
>> p3b = size(X);
>> p3b
>> p3c =length(X);
>> p3c
>> p3d = 2*eye(3)+ones(3)+1;
>> p3d
>> p3e = sum(X);
>> p3e
>> p3f = diag(X);
>> p3f
>> p3g = X(end, 2:end);
>> p3g
>> p3h = Y .* transpose(Y);
>> p3h
>> p3i = diag(diag(X));
>> p3i
>> p3j = sum(X(:));
>> p3j
>> p3k = transpose(S) * S:
>> p3k
>> p3l = S *R ;
>> p31
>> p3m = S* transpose(S);
>> p3m
>> p3n = 2:-1:2;
>> p3n
>> p30 = length('1234');
p3o
```

Problem 4. (16 POINTS)
For $\mathbf{p} \mathbf{3 k}, \mathbf{p} 3 \mathbf{m}$ of Problem 3 provide the following information.
>> p3k;
>> whos p3k
>> p3m;
>> whos p3m

Size	Bytes	Class
Size	Bytes	Class

This is the end of page 3 containing Problems 3 and 4. Turn page.

Problem 5. (24 Points)
(a) List the elements of Y in column-major order/filin/form.
(b) List the elements of Y in row-major order/filin/form.

Problem 6. (24 POINTS)
(a) Write MATLAB code that copies matrix X into matrix B.

Write MATLAB code that uses the colon operator and extracts/prints
(b) the second column of B,
(c) the second row of B, and
(d) deletes from B its second row
(e) prints X in column major form in the form of a column,
(f) that defines row vector $[4,9,16,25,36, \ldots, 256]$ in as short a way as possible (fewer than 15 characters).
(a)
(b) \qquad
(c) \qquad
(d) \qquad
(e) \qquad
(f) \qquad

Problem 7. (24 points)
What is the value of p7a, p7b, p7c,p7d,p7e,p7f after the execution of the following code?

```
>> p7a=10;
>> p7b=20;
>> p7c=0;
>> p7c=p7a;
>> p7a=p7b;
>> p7b=p7c;
>> p7a % p7a}
>> p7b
>> p7c
% p7b = ..................
% p7c = .................
>> p7d=10;p7e=5; p7f=5;
>> p7d= p7d+p7e+p7f;
>> p7e= p7d+p7f;
>> p7f= p7d+p7e+p7f;
>> p7d % p7d =
>> p7e
>> p7f
%p7d= . . . . . . . . . . . . .
```

This is the end of page 4 containing Problems 5, 6 and 7. Turn page.

Problem 8. (24 points)
The following code resides in a file named compute.m. Apparently it attempts to compute $e=\exp$ (1.0) using the approximation

$$
e=1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}
$$

implied by the Taylor expansion of $\exp (x)$ for $x=1$. However the code is incomplete. The code uses function cumprod(). This computes the cumulative products of the elements of say vector x. Thus if $x=\left[\begin{array}{ccc}2 & 3 & 4\end{array}\right]$, then $\operatorname{cumprod}(x)=\left[\begin{array}{lll}2 & 6 & 24\end{array}\right]$. We ask you to fill the incomplete lines (Lines 5 and 6) to turn this into a correct MATLAB M-file for this computation/approximation of e. Line 7 prints the approximation of e to the desired precision/order.

```
% Compute e approximation to order n
n = input('Order of approximation ' );
a = [1 1:n] ;
a = cumprod(a) ;
b = ;
c = ;
```

disp(c) ; \quad Line 7
Comment Line 1

This is the end of page 5 containing Problem 8. Turn page.

$$
X=\left[\begin{array}{llll}
2 & 1 & 2 & 1 \\
2 & 3 & 3 & 2 \\
3 & 4 & 4 & 3
\end{array}\right], Y=\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], Z=\left[\begin{array}{llll}
1 & 2 & 1 & 2
\end{array}\right], R=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], S=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
$$

This is the last page (Page 6) of the exam.
Intentionally left blank. Copies of front-page matrices included
You may tear-off this last page and use it as scratch paper; do not turn IT in

