
A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 1 Handout 3

CONTENTS this page CONTENTS

SECTION 01 Page 01 Sets and Sequences

SECTION 02 Page 02 Exponentials (Powers)

SECTION 03 Page 03 Floor Ceiling functions

SECTION 04 Page 04 Logarithms

SECTION 05 Page 05 Bit and Byte

SECTION 06 Page 07 Frequence and Time

SECTION 07 Page 08 Numbers

SECTION 08 Page 09 Parameters and Arguments

SECTION 09 Page 10 Denary number system

SECTION 10 Page 12 Table of radix digits

SECTION 11 Page 13 Binary number system

SECTION 12 Page 15 Octal number system

SECTION 13 Page 16 Hecadecimal number system

SECTION 14 Page 17 Reading numbers

SECTION 15 Page 18 Conversions

SECTION 16 Page 20 Number of bit of a denary

SECTION 17 Page 21 Operator, Operation, Operand

SECTION 18 Page 22 Multiplication / Division by 2**k

SECTION 19 Page 23 Pages and paging mathematics

SECTION 20 Page 26 HDD

SECTION 21 Page 31 ASCII, UNICODE, UTF-8, UTF-16

SECTION 22 Page 34 Signed Integers

SECTION 23 Page 39 Fixed-point reals

SECTION 24 Page 40 Floating-point reals

SECTION 25 Page 45 Computer Architecture Models

SECTION 26 Page 47 Memory hierarchies

SECTION 27 Page 50 Constant, Variable, Data Types

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 1 Handout 3

1 Sets and Sequences

Definition 1.1 (Set). A set is a collection of elements in no particular order.

Note 1.1 (Curly braces for a set). For a set we use curly braces { and } to denote it. In a set the order
of its elements does not mater. Thus set {10,30,20} is equal to {10,20,30}: both represent the same set
containing elements 10,20, and 30 and thus {10,30,20}= {10,20,30}.

Definition 1.2 (Sequence). A sequence is a collection of elements ordered in a specific way.

Note 1.2 (Angular brackes for a sequence). For a sequence we use angular brackets 〈 and 〉 to denote it. In
a sequence the order of its elements matters. Thus by using angular bracket notation sequence 〈10,30,20〉
represents a sequence where the first element is a 10, the second a 30 and the third a 20. This sequence is
different from sequence 〈10,20,30〉. The two are different because for example the second element of the
former is a 30, and the second element of the latter is a 20. Thus those two sequences differ in their second
element position. (They also differ in their third element position anyway.) Thus 〈10,30,20〉 6= 〈10,20,30〉.

Note 1.3 (Set vs Sequence). Sets include unique elements; sequences not necessarily. The {10,10,20} is
incorrect as in a set each element appears only once. The correct way to write this set is {10,20}. For a
sequence repetition is allowed thus 〈10,10,10〉 is OK.

Note 1.4 (Set/Sequence with many elements). Sets or sequences with too many elements to write down:
three periods (. . .). Thus {1,2, . . . ,n} would be a way to write all positive integers from 1 to n inclusive. The
three period symbol . . . is also known as ellipsis (or in plural form, ellipses).

Some auxiliaries when we describe sets, or set membership.

Definition 1.3 (colon symbol : and pipe symbol |). The colon symbol : stands for such that. The pipe
symbol | also stands for such that or alternatively for where.

Definition 1.4 (universal quantifier ∀). The ∀ symbol is also known as the universal quantifier. It reads as
for all.

Definition 1.5 (existential quantifier ∃). The ∃ symbol is also called the existential quantifier. It reads as
there exists in singular or in plural as there exist.

Definition 1.6 (set membership). Symbol ∈ is the belongs to set membership symbol.

Definition 1.7 (implication). X⇒Y is also known as implication and can be stated otherwise as “X implies
Y ”. Y is then necessary for X, and X is sufficient for Y .

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 2 Handout 3

2 Exponentials (Powers)

Definition 2.1 (Power of x). The expression xy denotes x^y or x ∗∗y or pow(x,y) denotes the product of y
numbers, each one equal to x.

Therefore pow(2,0) = 1, pow(2,10) = 1024 and pow(2,20)≈ 106.

Definition 2.2 (Powers of 2). The expression 2n means the multiplication of n twos.

Therefore, 22 = 2 ·2 is a 4, 28 = 2 ·2 ·2 ·2 ·2 ·2 ·2 ·2 is 256, and 210 = 1024. Moreover, 21 = 2 and 20 = 1.
Several times one might write 2 ∗ ∗n or 2ˆn for 2n (ˆ is the hat/caret symbol usually co-located with the
numeric-6 keyboard key).

Power Value
20 1
21 2
24 16
28 256
210 1024
216 65536
220 1048576
230 1073741824
240 1099511627776
250 1125899906842624

Figure 1: Powers of two

Prefix Name Multiplier
d deca 101 = 10
h hecto 102 = 100
k kilo 103 = 1000
M mega 106

G giga 109

T tera 1012

P peta 1015

E exa 1018

d deci 10−1

c centi 10−2

m milli 10−3

µ micro 10−6

n nano 10−9

p pico 10−12

f femto 10−15

Figure 2: SI system prefixes

Prefix Name Multiplier
Ki kibi or kilobinary 210

Mi mebi or megabinary 220

Gi gibi or gigabinary 230

Ti tebi or terabinary 240

Pi pebi or petabinary 250

Figure 3: SI binary prefixes

Definition 2.3 (Properties of powers).

• (Multiplication.) 2n ·2m = 2n 2m = 2n+m. (Dot · optional.)

• (Division.) 2n/2m = 2n−m. (The symbol / is the slash symbol)

• (Exponentiation.) (2n)m = 2m·n.

Exercise 2.1 (Approximations for 210 and 220 and 230). Since 210 = 1024 ≈ 1000 = 103, we have that
220 =

(
210
)2 ≈ 10002 = 106, and likewise, 230 =

(
210
)3 ≈ 10003 = 109.

The last number, a one followed by nine zeroes, we call it a billion in American English; in (British) English
a billion is a million millions (aka trillion). If one writes 109 or 1012 no confusion is possible; therefore
avoid saying ”billion” or might hear a joke about millions, billions and trillions.

Note 2.1. A kilo uses a lower case k. A capital case K stands for Kelvin, as in degrees Kelvin.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 3 Handout 3

3 Floor and Ceiling functions

Definition 3.1 (Floor). The function floor(x) also denoted as bxc, is the largest integer that is less than or
equal to x.

Thus the floor(3.5) is a 3 and the floor(-3.5) is a -4. Likewise the ceiling function can be defined.

Definition 3.2 (Ceiling). The function ceiling(x) also denoted as dxe, is the smallest integer that is greater
than or equal to x.

Thus the ceiling(3.5) is a 4 and the ceiling(-3.5) is a -3.

Moreover floor(3)=ceiling(3)=3.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 4 Handout 3

4 Logarithms base two (and e, and 10)

Definition 4.1 (Logarithm base two of n is lg(n)). The logarithm base two of n is formally denoted by
y = lg(n) or if we drop the parentheses, y = lgn, and is defined as the power y that we need to raise integer
2 to get n.

That is, y = lg(n) ⇐⇒ 2y = 2lg(n) = n.

From now on we will be using the informal form y = lgn without parentheses instead of y = lg(n). Another
way to write both is y= log2 n or y= log2 (n). The two writings: lgk n=(lgn)k are equivalent. We sometimes
write lg lgn to denote lg(lg(n)) and the nesting can go on. Note that lg(k) n with a parenthesized exponent
means something else (it is the iterated logarithm function).

Definition 4.2 (Other Logarithms). The other logarithms: log10(x) or log10 x and ln(x) or lnx or loge n,
are to the base 10 or to the base e = 2.7172 . . . of the Neperian logarithms respectively. If one writes logn,
then the writing may be ambiguous. Note that if we tilt towards calculus we use x as in lg(x) but if we
tilt towards computing or discrete mathematics we use n as in lg(n) for the indeterminate’s i.e. variable’s
name.

Expression Value Explanation
lg(n) y since 2y = 2lgn = n (by definition)
lg(1) 0 since 20 = 1
lg(2) 1 since 21 = 2
lg(256) 8 since 28 = 256
lg(1024) 10 since 210 = 1024
lg(1048576) 20 since 220 = 1048576
lg(1073741824) 30 and so on

Figure 4: Logarithms: Base two

Exercise 4.1. lg2 is one since 21 = 2. lg(256) is 8 since 28 = 256. lg(1) is 0 since 20 = 1.

Theorem 4.1 (Properties of Logarithms.). In general, 2lg(n) = n and thus,

i. (Multiplication.) lg(n ·m) = lgn+ lgm.

ii. (Division.) lg(n/m) = lgn− lgm.

iii. (Exponentiation.) lg(nm) = m · lgn.

iv. (Change of base.) nlgm = mlgn. Moreover lga = loga
log2 (whatever the base of the latter logs).

Exercise 4.2. Since 220 = 210 ·210 we have that lg(220) = lg(210 ·210) = lg(210)+ lg(210) = 10+10 = 20.
Likewise lg(230) = 30. Drawing from the exercise of the previous page, lg(1,000)≈ 10 , lg(1,000,000)≈
20 and lg(1,000,000,000)≈ 30.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 5 Handout 3

5 Bits and bytes

Note 5.1 (Joke: ’Bits and bytes’ capitalization). The capitalization in the section header is English grammar
imposed and intended as an unintentional joke! Read through the end of this page in order to get it!

Definition 5.1 (Bit). The word bit is an acronym derived from binary digit and it is the minimal amount
of digital information. The correct notation for a bit is a fully spelled lower-case bit.

A bit can exist in one of two states: 1 and 0, or High and Low, or Up and Down, or True and False, or T and
F, or t and f. A lower-case b should never denote a bit! Several publications mistakenly do so, however!
If we want to write down in English 9 binary digits we write down 9bit; a transfer rate can be 9.2bit/s. The
notation 9b should be considered nonsense.

Definition 5.2 (Byte). A byte is the minimal amount of binary information that can be stored into the
memory of a computer and it is denoted by a capital case B. Nowadaya, 1B is equal to 8bit.

Definition 5.3 (Word). Word is a fixed size piece of data handled by a microprocessor. The number of bit or
sometimes equivalently the number of bytes in a word is an important characteristic of the microprocessor’s
architecture.

Etymologically, a byte is the smallest amount of data a computer could bite out of its memory! We cannot
store in memory a single bit; we must utilize a byte thus wasting 7 binary digits. Nowadays, 1B is equivalent
to 8bit. Sometimes a byte is also called an octet. A 32-bit architecture has word size 32 bit.

Definition 5.4 (Memory size). Memory size is usually expressed in bytes or its multiples.

We never talk of 8,000bit memory, we prefer to write 1,000B rather than 1,000byte, or 1,000Byte.

Prefix Name Multiplier
1KiB 1kibibyte 210B
1MiB 1mebibyte 220B
1GiB 1gibibyte 230B
1TiB 1tebibyte 240B
1PiB 1pebibyte 250B

Figure 5: SI aggregates of a byte

Name Multiplier
1 short 2B = 16bit
1 word 4B = 32bit
1 double word 8B = 64bit

Figure 6: Other aggregates of a byte

Definition 5.5 (Confusing Notation: How many bytes in 1kB or 1MB or 1GB of RAM or Disk?). In SI,
1kB implies 1,000B; likewise 1MB is 1,000,000B and 1GB is 1,000,000,000B. When we refer to memory (eg.
RAM i.e. Random Access Memory or main memory), companies such as Microsoft or Intel mean that 1kB is
1,024B, that 1MB is 1,048,576B and 1GB is 230B. To add to this confusion, hard disk drive manufacturers
in warranties, define a 1kB, 1MB, and 1GB as in SI (1000B, 106B and 109B respectively).

Exercise 5.1 (When is 500GB equal to 453GB for the correct 453GiB?). A hard-disk drive (say, Seagate)
with 500GB on its packaging, will offer you a theoretical 500,000,000,000B. However this is unformatted
capacity; the real capacity after formatting would be 2-3% less, say 487,460,958,208B. Yet an operating
system such as Microsoft Windows 7 will report this latter number as 453GB. Microsoft would divide the
487,460,958,208 number with 1024*1024*1024 which is 453.93GiB i.e Microsoft’s 453GB.

Conclusion: Stick to KiB, MiB, GiB, TiB and avoid kB,MB,GB, etc.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 6 Handout 3

Most-significant and Least-significant. Avoid those two terms. Prefer instead the use of leftmost and
rightmost bit, or in general leftmost and rightmost digit if the 0 or 1 are octal digits, or hexadecimal digits,
or digits of other bases (radix). The reason for that is that sometimes the left-most digits indicates a sign (0
means positive and 1 means negative) and thus most-significant digit might be the second from the left not
the leftmost digits.

Leading zeroes and Trailing zeroes. Adding leading zeroes does not change the ’value’ i.e. the ’magnitude’
of a number. Trailing zeroes is another matter.

n-bit binary number. Sometimes we need to represent binary numbers in fixed-width. The width is the
number of bit in their binary representation. For an n-bit binary representation, leading zeroes might need
to be added. Thus binary 1000, an 8 in denary, as 8-bit binary number would be written 00001000.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 7 Handout 3

6 Frequency and the Time domain

Definition 6.1 (Time unit). The unit of time is the second and it is denoted by 1s or also 1sec but the latter
is not SI compliant.

Definition 6.2 (Time). Time would refer to the period (time) of an event.

Submultiples are 1ms,1µs,1ns,1ps which are 10−3,10−6,10−9,10−12 respectively of a second, and are
pronounced millisecond, microsecond, nanosecond, and picosecond respectively. Note that a millisecond
has two ells.

Definition 6.3 (Frequency). Frequency is the number of times an event occurs in the unit of time.

Definition 6.4 (Frequency unit). The unit of frequency is cycles per second or cycles/s or just Hz. The
symbol for the unit of frequency is the Hertz, i.e. 1Hz = 1cycle/s.

Then 1kHz, 1MHz, 1GHz, and 1THz are 1000, 106,109,1012 cycles/s or Hz. Note that in all cases the H of
a Hertz is CAPITAL CASE, never lower-case. (The z is lower case everywhere.)

Definition 6.5 (Time vs Frequency). The relationship between time (t) and frequency (f) is inversely pro-
portional. Thus for a given event with period t and frequency f , we have

f · t = 1.

5Hz, means that there are 5 cycles in a second and thus the period of a cycle is one-fifth of a second. Thus
f=5Hz implies t=1/5s=0.2s.

Microprocessor frequency (also known as ’ clock speed’ or ’rating’). Computer or microprocessor
(i.e. CPU) frequency denotes the number of CPU instruction cycles per second. Thus if the frequency is f ,
f is the number of (typical) instructions that can execute in a second. Since t ∗ f = 1, t is colloquially the
period of one CPU instruction cycle i.e. the time it take for a (typical) instruction to complete.

Thus an Intel 80486DX microprocessor of the early 1990s rated at 25MHz, used to execute 25,000,000
instructions per second. One instruction had a period or execution time of roughly 1/25,000,000 = 40ns.

A moderm CPU rated at 2GHz allows instructions to be completed in 1/2,000,000,000 = 0.5ns.
And note that in the 1990s and also in the 2010s retrieving one byte of main memory still takes 60-100ns.
We use in parenthesis the qualifier typical instruction because some instructions such as MOVE X, Y, Z

that moves Z byte have execution time dependent on Z.

Definition 6.6 (A nanosecond is (roughly) one foot!). In one nanosecond, light (in vacuum) can travel a
distance that is approximately 1 foot. Thus 1 foot is approximately ’’1nanosecond’’.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 8 Handout 3

7 Numbers

Definition 7.1 (Integer numbers). An integer number is a number that takes integer values. It can be
positive, negative or zero.

Definition 7.2 (Magnitude of an integer number). The magnitude of an integer number is its absolute value.

Definition 7.3 (Representation of an integer number). Traditionally, an integer number is denoted by pre-
ceding its magnitude with a sign symbol For a positive integer number the sign symbol is an explicit +;
a lack of a symbol also indicates a positive number, unless it is a zero. For a negative integer number we
always precede its magnitude with a negative sign −.

Definition 7.4 (Non-negative integer numbers). A non-negative integer number can be positive or zero.
There is no need for a sign to present a non-negative integer number. Sometime we refer to such numbers as
unsigned integers.

Definition 7.5 (Natural (integer) numbers). A natural (integer) number is an integer number that is
a positive integer number. However this definition varies and it might also mean a non-negative integer
number.

Most numbers listed below would be natural numbers (one way or the other). When we start talking
about negative numbers this will be made very clear (and the discussion will be brief).

Exercise 7.1. Integer 13 is a positive integer and so is +13. Integer −13 is a negative integer. Integer 0 is
neither positive nor negative. Ordinarily, there should be no sign preceding a 0.

Definition 7.6 (Integer Numbers: Signed Integer Numbers). In general, a (signed) integer number can
be positive, negative or zero.

Definition 7.7 (Real Numbers: Floating-point Numbers). A real number that includes integer digits,
possibly a decimal point, and decimal digits is called a floating-point number.

Thus 12.1 or 12.10 or 1.21 ·101 all represent the same real number.

Definition 7.8 (Exponential notation). A real number can be expressed in exponential notation in the form
a×10b or equivalently as aEb or aeb.

Thus 5.1×103 is 5.1e3 or 5.1E3.

Definition 7.9 (Magnitude of a real number). The magnitude of a real number is its absolute value.

Exercise 7.2 (Magnitude vs value). For a negative number such as −5 its magnitude is 5 and its value is
−5. Thus the ’we always place a negative sign − before its magnitude’ above makes sense.

Definition 7.10 (Integer vs Real ideterminate names). In functions defined hereafter we will shall more often
use n instead of x. Indeterminate n implies a non-negative or positive integer. Indeterminate x implies a real
number. We describe a discrete math universe of non-negative integers.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 9 Handout 3

8 Parameters and Arguments

Definition 8.1 (Unknown, Variable, Indeterminate, Value, Operand). For f (x) or log(x), the x inside the
parentheses is what is traditionally known as an unknown. Compu-speak we might call it a ”variable” but
we have not yet defined a variable formally. In Math we also call it an indeterminate. We called it before a
value and we might call it later in this section an operand.

Definition 8.2 (Parameter of a function). The indeterminate or indeterminates of a function, the ’uknown(s)’,
the ’variable(s)’ is also know as the parameter of the function. It is used to describe the function.

Exercise 8.1. For function f (x) = x∗ x, x is the parameter of function f .

Definition 8.3 (Variable vs Constant). The value of a variable can vary. The value of a constant never varies
but remains constant.

Exercise 8.2. Thus x= 13 might indicate a variable x whose value is set to 13. Some programming language
use the operator := instead of = for an assignment operation. The 3.14, an abbreviation of π is a constant.
So is 0.

Definition 8.4 (Argument of a function). The argument of a function is the variable or constant value
assigned to its parameter(s) prior or during function invocation.

Exercise 8.3. In f (2), 2 is an argument, is the value assigned to x, the parameter of the function. Moreover,
a y = 2; f (y) has y as an argument: the value of y becomes the value of parameter x.

Some programming language use the operator := instead of = for an assignment operation. The 3.14,
an abbreviation of π is a constant. So is 0.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 10 Handout 3

9 Number systems: Denary

When one writes down number 13, implicit in its writing is that the number is an integer number base-10.
For integer numbers base-10 we utilize ten digits to describe them (i.e. write them down). These ten digits
are 0-9. The base is formally known as the radix. Integer numbers or numbers in general can be written
down in a variety of radixes (the plural of radix). The most prevalent radix is radix-10 i.e. base-10.

In the dicussion to follow, we only cover non-negative integers. Therefore for non-negative integer
number a, its value a and magnitude |a| will be used interchangeably.

Definition 9.1 (Radix-10 or Base-10: denary notation). A number a in radix-10 is expressed in denary
notation by utilizing the ten digits 0 through 9 to represent its magnitude (value). One can explicitly indicate
the radix by writing the radix in the form of a subscript next to the number.

The den of denary is a corruption of ten i.e. 10 and it means base-10 or radix-10!
Convert and Evaluate. We might use the terms convert and evaluate to request that the radix is given
explicitly in the former case and to indicate that no explicit description of a radix is needed in the latter case
(because the radix is provided in the context of the evaluation).

Definition 9.2 (Radix-10: Reading a radix-10 integer). Integer 78 can be read seven eight radix-10 or
seventy eight. Both imply that 78 is denary i.e. a radix-10 integer. We might make it more explicit the
writing of 78 by writing 7810 instead.

Note 9.1 (Radix-10: MSB and LSB). Since the number involved is non-negative, the left-most non-zero
digit is the most-significant digit (msd), and the right-most digit is the least-significant digit (lsd).

Note 9.2 (Caution!). Avoid the use of the term decimal to refer to a radix-10 or base-10 integer expressed
in denary notation. The term decimal implies a decimal point i.e. we imply a real number expressed in
denary notation such as 13.0 or 13.31!

Definition 9.3 (Denary natural numbers in fixed-width). An n-digit radix-10 natural integer number a is
denoted as n-digit sequenc den(a,0) = rdx(a,10,0) = an−1an−2 . . .a0, where ai ∈ {0, . . . ,9} for all 0≤ i < n
and an−1 6= 0. The most-significant digit is an−1 and the least-significant digit is a0. The magnitude of the
number is

|a|=
i=n−1

∑
i=0

ai ·10i.

The value of a is its magnitude i.e. a = |a|. The definition can easily extend to integer numbers: for
a = san−1an−2 . . .a0 as before, s is + or empty to indicate a positive integer, empty for zero, or − to indicate
a negative integer, and the value of a is a = (−1) · |a| if the sign of a is a negative one i.e. −1, or its
magnitude a = |a| otherwise. We also say b(a,10) = n.

Definition 9.4 (rdx(a,10,n), den(a,n)). Function rdx(a,10,n) converts the first argument, value a, into base
10, the second argument, using n denary digits, with leading zeroes as needed. Function den(a,n) =
rdx(a,10,n). If last argument is 0, it imposes the use of the minimal number of digits.

Definition 9.5 (l(a), b(a,10)). Function l(a) is the number of digits in the string-view of a, and b(a,10) is the
number of digits in the representation of a in radix-10.

For a = 67, then rdx(a,10,0)=67, rdx(a,10,3)=067 and l(a)=b(a,10)=2 but l(rdx(a,10,5))=5.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 11 Handout 3

Exercise 9.1 (Units of radix-10 integer). For x = xn−1xn−2 . . .x0, xi ∈ {0, . . . ,9} for all 0≤ i < n, the digit xi

indicates the number of times the corresponding multiplier 10i is going to be used to derive the magnitude
of the radix-10 integer.

For the example above x0 is the number of units, x1 is the number of tens, x2 is the number of hundreds,
x3 is the number of thousands, etc, contributing to the magnitude of x.

Method 9.1 (Converting an n-digit denary into radix-10). An n-digit radix-10 natural integer number x is
denoted as den(x,n) = rdx(x,10,n) = xn−1xn−2 . . .x0, where xi ∈ {0, . . . ,9} for all 0≤ i < n. The magnitude
of the number is

|x|=
i=n−1

∑
i=0

xi ·10i.

The value of x is its magnitude i.e. x = |x|.

Note that in the input x in Method 9.1 may have leading zeroes.

Exercise 9.2 (Restating Radix-10 into Radix-10 by way of an example). For x = 12345610, we have, 6 units,
5 tens, 4 hundreds, 3 thousands, and so on. To derive its magnitude, we write all powers of 10 right to left
from most to least significant digit over the number, multiply the corresponding digit and power and add up
the results.

105 104 103 102 101 100 generate powers
· + · + · + · + · + ·
1 2 3 4 5 6 = digits
1 ·105 + 2 ·104 + 3 ·103 + 4 ·102 + 5 ·101 + 6 ·100 = pairwise product
100,000 + 20,000 + 3,000 + 400 + 50 + 6 = 123,456 add up results

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 12 Handout 3

10 Table of some integers in Octal, Binary n =, Hexadecimal notation

Base or Radix # digits digits

Binary 2 2 0 , 1

Octal 8 8 0 .. 7

Denary 10 10 0 .. 9

Hexadecimal 16 16 0 .. 9 , a .. f ; alternative: 0 .. 9 , A .. F

Fact 10.1 (Table of integers). A table of some integers in binary, octal, hexadecimal and denary is shown
below.

Binary Denary Hexadecimal Octal Binary(4-bit) Shorthand

0 0 0 0 0000 0o17 for octal 17

1 1 1 1 0001 0xff for hexadecimal FF lower-case

10 2 2 2 0010 0xFF for hexadecimal FF upper-ace

11 3 3 3 0011

100 4 4 4 0100 Sometimes

101 5 5 5 0101 017 indicates 0o17

110 6 6 6 0110

111 7 7 7 0111

1000 8 8 10 1000

1001 9 9 11 1001

1010 10 A 12 1010

1011 11 B 13 1011

1100 12 C 14 1100

1101 13 D 15 1101

1110 14 E 16 1110

1111 15 F 17 1111

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 13 Handout 3

11 Binary number system

Definition 11.1 (Radix-2: Binary notation). A (natural) number a is written in radix-2, that is in binary
notation, by utilizing the two binary digits 0 and 1, known as bit, to represent its magnitude (value). One can
explicitly indicate the radix by writing the radix in the form of a subscript next to the number or preceding
the binary representation with a 0b.

Definition 11.2 (Binary natural numbers in fixed-width). An n-bit radix-2 natural integer number a is de-
noted as the n-bit sequence bin(a,0) = rdx(a,2,0) = an−1an−2 . . .a0, where ai ∈ {0,1} for all 0≤ i < n and
an−1 6= 0. The most-significant bit is an−1 and the least-significant bit is a0. The magnitude of the number is

|a|=
i=n−1

∑
i=0

ai ·2i.

The value of a is its magnitude i.e. a = |a|. We also say b(a) = b(a,2) = n.

Definition 11.3 (rdx(a,2,n), bin(a,n)). Function rdx(a,2,n) converts the first argument, value a, into base 2,
the second argument, using n binary digits, with leading zeroes as needed. Function bin(a,n)= rdx(a,10,n).
If last argument is 0, it imposes the use of the minimal number of digits.

Definition 11.4 (l(a), b(a)=b(a,2)). Function l(a) is the number of bits in the string-view of a, and b(a)=b(a,2)
is the number of bit in the representation of a in radix-10.

For a = 3, then rdx(a,2,0)=11, rdx(a,2,3)=011 and b(a)=b(a,2)=2 but l(rdx(a,2,3))=3.
Conversion vs Representation. The representation does not use leading zeroes. The conversion might
introduce leading zeroes.

Method 11.1 (Converting an n-bit binary into radix-10). An n-bit radix-2 natural integer number x is de-
noted as bin(x,n) = rdx(x,2,n) = xn−1xn−2 . . .x0, where xi ∈ {0,1} for all 0≤ i < n. The magnitude of the
number is

|x|=
i=n−1

∑
i=0

xi ·2i.

The value of x is its magnitude i.e. x = |x|.

Note that in the input x in Method 11.1 may have leading zeroes.

Exercise 11.1 (Restating Radix- 2 into Radix-10 by way of an example). For x = 1010112, To derive its
magnitude, we write all powers of 2 right to left from most to least significant digit over the number, multiply
the corresponding digit and power and add up the results.

25 24 23 22 21 20 generate powers
· + · + · + · + · + ·
1 0 1 0 1 1 = digits
1 ·25 + 0 ·24 + 1 ·23 + 0 ·22 + 1 ·21 + 1 ·20 = pairwise product
32 + 0 + 8 + 0 + 2 + 1 = 43. add up results

Thus |x|= x = 43.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 14 Handout 3

The previous discussion of binary numbers used either a fixed width representation implied by bin(.,n)
or rdx(.,2,n) or minimal width representation, where the functions are called with last argument equal to
zero as in, bin(.,0) or rdx(.,2,0).

Exercise 11.2 (Fixed-width vs Minimal-width).

0,1 represented in binary with 1 bit as 0,1

0,1,2,3 represented in binary with 2 bits as 00,01,10,11

0,1,2,3,4,5,6,7 represented in binary with 3 bits as 000,001,010,011,100,101,110,111

0−15 represented in binary with 4 bits as 0000−1111

. . .

0 . . .2m−1 represented in binary with m bits as 00 . . .0︸ ︷︷ ︸
m bits

−1 . . .1︸ ︷︷ ︸
m bits

Exercise 11.3 (m bits for a natural number). What is the range of natural numbers that can be represented
with m bits? What is the smallest and largest natural number? How many natural numbers in total. The
answer is 2m as shown above with the smallest being 0 i.e. m zeroes and the largest 2m−1 i.e. m ones.

Exercise 11.4 (m ones). The value a of m-bit bin(a,0) = 1 . . .1︸ ︷︷ ︸
m ones

is a = 2m−1.

Exercise 11.5 (One followed by m−1 zeroes). The value a of m-bit bin(a,0) = 1 0 . . .0︸ ︷︷ ︸
m−1 zeroes

is a = 2m−1.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 15 Handout 3

12 Octal number system

Definition 12.1 (Radix-8: Octal notation). A (natural) number a is written in radix-8, that is in octal
notation, by utilizing the digits {0,1,2,3,4,5,6,7}, to represent its magnitude (value). One can explicitly
indicate the radix by writing the radix in the form of a subscript next to the number or preceding the octal
representation with a 0o.

Definition 12.2 (Octal numbers in fixed-width). An n-digit radix-8 natural integer number a is denoted as
the n-digit sequence oct(a,0) = rdx(a,8,0) = an−1an−2 . . .a0, where ai ∈ {0, . . . ,7} for all 0 ≤ i < n and
an−1 6= 0. The most-significant digit is an−1 and the least-significant digit is a0. The magnitude of the number
is

|a|=
i=n−1

∑
i=0

ai ·8i.

The value of a is its magnitude i.e. a = |a|. We also say b(a,8) = n.

Definition 12.3 (rdx(a,8,n), oct(a,n)). Function rdx(a,8,n) converts the first argument, value a, into base 8,
the second argument, using n octal digits, with leading zeroes as needed. Function oct(a,n) = rdx(a,8,n).
If last argument is 0, it imposes the use of the minimal number of digits.

Definition 12.4 (l(a), b(a,8)). Function l(a) is the number of bits in the string-view of a, and b(a)=b(a,8) is
the number of bit in the representation of a in radix-8.

For a = 10, then rdx(a,8,0)=12, rdx(a,8,3)=012 and b(a,8)=2 but l(rdx(a,8,3))=3.
Conversion vs Representation. The representation does not use leading zeroes. The conversion might
introduce leading zeroes.

Method 12.1 (Converting an n-digit octal into radix-10). An n-bit radix-8 natural integer number x is
denoted as oct(x,n) = rdx(x,8,n) = xn−1xn−2 . . .x0, where xi ∈ {0,1} for all 0 ≤ i < n. The magnitude of
the number is

|x|=
i=n−1

∑
i=0

xi ·8i.

The value of x is its magnitude i.e. x = |x|.

Note that in the input x in Method 12.1 may have leading zeroes.

Exercise 12.1 (Restating Radix- 8 into Radix-10 by way of an example). For x = 1000118, To derive its
magnitude, we write all powers of 8 right to left from most to least significant digit over the number, multiply
the corresponding digit and power and add up the results.

85 84 83 82 81 80 generate powers
· + · + · + · + · + ·
1 0 0 0 1 1 = digits
1 ·85 + 0 + 0 + 0 + 1 ·81 + 1 ·80 = pairwise product
32768 + 0 + 0 + 0 + 8 + 1 = 32777. add up results

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 16 Handout 3

13 Hexadecimal number system

Definition 13.1 (Radix-16: Hexadecimal notation). A (natural) number a is written in radix-16, that is in
hexadecimal notation, by utilizing the digits {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e, f},
or {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, to represent its magnitude (value). One can explicitly indicate
the radix by writing the radix in the form of a subscript next to the number or preceding the hexadecimal
representation with a 0x for the lower case alternative of 0X for the capital case alternative. An a or A is
interpreted as ordinal 10, a b or B as an 11, a c or C as a 12, a d or D as a 13, an e or E as a 14, and an f
or F as a 15.

Definition 13.2 (Hexadecimal numbers in fixed-width). An n-digit radix-16 natural integer number a is de-
noted as the n-digit sequence hex(a,0) = rdx(a,16,0) = an−1an−2 . . .a0, where ai ∈ {0, . . . ,9,a,b,c,d,e, f}
for all 0 ≤ i < n and an−1 6= 0. The most-significant digit is an−1 and the least-significant digit is a0. The
magnitude of the number is

|a|=
i=n−1

∑
i=0

ai ·16i.

The value of a is its magnitude i.e. a = |a|. We also say b(a,8) = n. An a is interpreted as ordinal 10, a b as
an 11, a c as a 12, a d as a 13, an e as a 14, and an f as a 15.

Definition 13.3 (rdx(a,16,n), hex(a,n), HEX(a,n)). Function rdx(a,16,n) converts the first argument, value
a, into base 16, the second argument, using n hexadecimal lower-case digits, with leading zeroes as needed.
Function hex(a,n) = rdx(a,16,n). If last argument is 0, it imposes the use of the minimal number of digits.
A HEX(a,n) used only capital-case digits.

Definition 13.4 (l(a), b(a,16)). Function l(a) is the number of bits in the string-view of a, and b(a)=b(a,8)
is the number of bit in the representation of a in radix-8.

For a = 20, then rdx(a,16,0)=14, rdx(a,16,3)=014 and b(a,16)=2 but l(rdx(a,16,3))=3.
Conversion vs Representation. The representation does not use leading zeroes. The conversion might
introduce leading zeroes.

Method 13.1 (Converting an n-digit hexadecimal into radix-10). An n-bit radix-16 natural integer number
x is denoted as oct(x,n) = rdx(x,8,n) = xn−1xn−2 . . .x0, where xi ∈ {0,1} for all 0≤ i < n. The magnitude
of the number is

|x|=
i=n−1

∑
i=0

xi ·16i.

The value of x is its magnitude i.e. x = |x|.

Note that in the input x in Method 13.1 may have leading zeroes.

Exercise 13.1 (Restating Radix- 16 into Radix-10 by way of an example). For x = 10001116, To derive
its magnitude, we write all powers of 16 right to left from most to least significant digit over the number,
multiply the corresponding digit and power and add up the results.

165 164 163 162 161 160 generate powers
· + · + · + · + · + ·
1 0 0 0 1 1 = digits
1 ·165 + 0 + 0 + 0 + 1 ·161 + 1 ·160 = pairwise product
1048576 + 0 + 0 + 0 + 8 + 1 = 1048585. add up results

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 17 Handout 3

14 Reading numbers

Definition 14.1 (Radix-10: Reading a radix-10 integer). Integer 78 can be read seven eight radix-10 or
seventy eight or denary seventy eight. Both imply that 78 is denary i.e. a radix-10 integer. We might make
it more explicit the writing of 78 by writing 7810 instead.

The seventy is short for seven tens and can indicate only one base, base-10 i.e. radix-10.

Definition 14.2 (Radix-2: Reading a radix-2 integer). Integer 11 can be read one one radix-2 or binary
one one . If one reads it as an eleven it is in radix-10. Of course a 0b11 implies radix-2.

Definition 14.3 (Radix-8: Reading a radix-8 integer). Integer 11 can be read one one radix-8 or octal one
one . Of course a 0o11 implies radix-8. In some textbooks one might use a 011 form: a leading zero implies
in that context an octal number!

Definition 14.4 (Radix-16: Reading a radix-16 integer). Integer 11 can be read one one radix-16 or hex
one one , or hexadecimal one one . Of course a 0x11 or 0X11 implies radix-16. By default lower case
letters are used, that’s why rdx(a,16,n) is equivalent to hex(a,n) not HEX(a,n).

Definition 14.5 (Writing). Without standardization in notation, a 101 could indicate 10110 or 1012 or 1018
or 10116.
10110 is 101 in denary which is one hunder and one.
1012 is 1 ·22 +0 ·21 +1 ·20 = 5 i.e. five in denary.
1018 is 1 ·82 +0 ·81 +1 ·80 = 65 i.e. sixty-five in denary.
10116 is 1 ·162 +0 ·161 +1 ·160 = 257 i.e. two-hundred fifty seven in denary.
Of course 1012 or 1018 or 10116. can be written 0b101, 0o101 and 0x101 or 0X101.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 18 Handout 3

15 Conversions

15.1 Radix-b into Radix-10

Fact 15.1 (Radix-b to Radix-10t). We can convert a radix-b into radix-10 either left-to-right or right-to-
left. The example below is left-to-right for b = 2.

Algorithm Base-b-to-Base-10 The example shown is for binary to decimal conversion

Algorithm Base-2-to-Base-10 RES*b + t -> RES > shows bit that is being read

that is the t value

RES=0; b=2; 0 - 0 1 0 1 0 1 1

repeat until all bits are read 0*b + 1 -> 1 >1 0 1 0 1 1

read_next_bit t; %shown next to . 1*b + 0 -> 2 1 >0 1 0 1 1

RES = RES * b +t; % RES next to = 2*b + 1 -> 5 1 0 >1 0 1 1

5*b + 0 -> 10 1 0 1 >0 1 1

10*b + 1 -> 21 1 0 1 0 >1 1

21*2 + 1 -> 43 1 0 1 0 1 >1

15.2 Radix-2 into Radix-16

Fact 15.2 (Radix-2 to Radix-16: Groups of 4 bit). For natural number a for which bin(a) is available, its
hexadecimal notation can be derived easily by grouping bits into groups of four right to left and converting
the four-bit binary into the corresponding hexadecimal digit using the Table of Fact 10.1. (The leftmost
group might have its binary digits padded with leading zeroes to have three bits.)

’1111’1111 : Group into groups of 4 as needed: Step 1

15 15 : Quadruplets into denary : Step 2

f f : Denary into hexadecimal : Step 3

0xff or OXFF : Output using A-F : Step 4

15.3 Radix-2 into Radix-8

Fact 15.3 (Radix-2 to Radix-8: Groups of 3 bit). For natural number a for which bin(a) is available, its
octal notation can be derived easily by grouping bits into groups of three right to left and converting the
three-bit binary into the corresponding octal digit using the Table of Fact 10.1. (The leftmost group might
have its binary digits padded with leading zeroes to have four bits.)

’ 11’111’111 : Group into groups of 3 as needed: Step 1

’011’111’111 : Add leading zeroes left group : Step 2

3 7 7 : Convert triplets into octal : Step 3

0o377 : Output : Step 4

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 19 Handout 3

15.4 Radix-10 into Radix-2 left-2-right

Input : Decimal integer a.
Output: Binary representation of bin(a,0) of a. (Left to right.)

Step 1. Starting with 1, compute by doubling 20,21, . . . ,2m the largest 2m ≤ a.
Step 2. temp=n; P = 2m;
Step 3. form leftmost to rightmost power,
Step 4. If temp < P output ’0’ , set P = P/2.
Step 5. If temp ≥ P output ’1’ , set temp=temp-P; P = P/2.

15.5 Radix-10 into Radix-2 right-2-left

Input : Decimal integer a.
Output: Binary representation of bin(a) of a. (Right to left.)

Step 1. Set X = a. Bit sequence will be generated right-to-left, least-to-most significant bit.
Step 2. If X is odd, generate a 1 and set X = (X−1)/2. Goto step 4.
Step 3. If X is even, generate a 0, set X = X/2. Go to Step 4;
Step 4. If X is 0 exit.
Step 5. If X is not 0 goto Step 2.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 20 Handout 3

16 NUMBER OF BIT b(a) FOR DENARY NUMBER

Fact 16.1 (Number of bit for unsigned integer a > 0). The number of bits m without leading zeroes in bin(a)
of a natural number a is given by m = blgac+1 = dlg(a+1)e.

Thus for 1 we need 1 bit, for 2 i.e. 102 we need two, for 4 ie. 1002 we need three and for 7 i.e 1112 we
also need three.

Proof. From Example 11.4 and Example 11.5 we have that any natural number a such that 2m−1 ≤ a ≤
2m−1 needs m bits for its representation bin(a). Natural numbers a < 2m−1 need m−1 or fewer bits; they
can become m-bit by using leading zeroes as shown in Example 11.2.

The range of a with leading bit one 2m−1 ≤ a ≤ 2m− 1 can be rewritten as 2m−1 ≤ a < 2m. Taking
logarithms base two we have m−1≤ lga < m.

2m−1 ≤ a ≤2m−1

2m−1 ≤ a <2m

m−1≤ lg(a) <m.

m−1≤ blg(a)c ≤ lg(a) <m.

Since blg(a)c ≤ lg(a) and by the last inequality above less than m, we have that consecutive integers m−1
and m are the only two integers surrounding lg(a). If blg(a)c ≤ lg(a) cannot be m it should be m− 1 i.e.
m−1 = blgac implying m = blgac+1.

Similarly,

2m−1 ≤ a ≤2m−1

2m−1 +1≤ (a+1) ≤2m

2m−1 < (a+1) ≤2m

m−1 < lg(a+1) ≤m.

m−1 < lg(a+1)≤ dlg(a+1)e ≤m.

Since dlg(a+1)e> m−1 and dlg(a+1)e ≤m, there can be only one possibility that dlg(a+1)e= m.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 21 Handout 3

17 Operator, Operation, Operand

Definition 17.1 (Operator and Operation, Operand(s)). An operator in mathematics and also in computing
is a symbol that indicates an operation. The object of the operator and its operation is known as the
operand. An operation denoted by an operator (and thus a function) can have one or more operands and
is then known as a unary operator/operation (one operand), binary operator/operation (two operands),
ternary operator/operation (three operands).

Thus operator is a symbol, the operation is the mathematical or comuting function implied by the
symbol (operator) and the object of the operation or operator is/are the operand(s).

Definition 17.2 (Unary operators and operations). A unary operator is a symbol that indicates a unary
operation. The parameter involved or the argument during evaluation is known as the operand.

When a unary operator is used, it precedes (or surrounds) its operand. Thus NOT (x), or ¬x, or ∼ x or ¬x
denote the negation of x. Any one of the trigonometric functions such as sin is a unary operator. In sin(x),
the sin is a unary operator, the x is the operand and sin(x) is the unary opeation that involves the application
of the sine trigonometric function on operand x. Other unary operators is the absolute value function |.| and
the positive sign + and negative sign − operator.

Besides unary operators we also have binary operators that denote a binary operation.

Definition 17.3 (Binary operator its operation and operands). A binary operator is a symbol that indicates a
binary operation i.e. the application of a mathematical or computing function on two values, its operands.
One is referred to as ’left operand’ and the other as ’right operand”.

The +, the plus-symbol, is the (additive) binary operator that indicates the operation known as addition.
In 5+3, the operator is the plus (+), the operation is addition. Because addition is a binary operation, two
operands need to be present: the left operand is the 5 and the right operand is the 3. The exponentiation
or power operation is also binary: in the for x^y, the operator is in between the two operands similarly to
addition. In the form pow(x,y) it precedes the operands. Some languages might allow a +(5,3) as well.

Note that + the operator can indicate a unary operation or binary operation and thus be a unary or binar
operator. In programming languages we call this operator overload. The presence of one or two operands
resolves the type of the operator/operation (unary vs binary).

Definition 17.4 (Operator overload). The same operator can indicate a unary or binary operation. The
presence of one or two operands, that is the context, can be used to resolve the type of the operator and its
coresponding operation.

Definition 17.5 (Prefix, postfix and infix notation). A unary operator requires one operand, a binary oper-
ator two operands. In the former case the operator precedes the operand. In the latter case the operator
can precede, follow or be in-between the operands. Thus +5 3 or 5 3+ or 5+3 indicate the same addition
operation in prefix, postfix and infix notation. In all cases 5 is the left operand and 3 is the right operand.

We are used to using infix notation in describing (binary) operations.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 22 Handout 3

18 Multiplication and Division by a power of 2

Fact 18.1 (n-bit unsigned integer). An n-bit unsigned integer N has

• (i) no sign bit

• (ii) all n bits represent the magnitude of the integer that is |N|.

2n positive values and zero can be represented. The range of integers is 0,1, . . . ,2n−1, that is 0 ≤ N < 2n

or |N|< 2n.

Fact 18.2 (Multiplication by a power of two). If n-bit integer N is multiplied by 2k for some integer k > 1,
then the result M = N×2k has (n+ k) bits. The binary representation of M is N shifted left k bit positions
(and filling them with zeroes). In other words, the binary representation of M is the concatenation of the
binary representation of N with a bit sequence of k zero bits.

Exercise 18.1. Let N = 5 whose binary representation in n = 3 is 101. The M = N× 25 = 5× 32 = 160.
Its binary representation is the concatenation of N’s 101 and the five zeroes implied by 25 i.e. 00000. The
result is 10100000 as needed. Note that 25 = 32 has binary representation 100000 i.e. a one followed by
five zeroes.

Fact 18.3 (Integer division by a power of two). If n-bit integer N is divided by 2k for some integer k > 1,
then the result M = bN/2kc has (n− k) bits. The binary representation of M is the binary representation of
N after shifting N to the right k bit positions and discarding the k bits past the righmostbit position, or in
other words by isolating the n− k bits of N.

Exercise 18.2. Let N = 160 whose binary representation in n = 8 is 10100000. Then M = bN/26c =
b160× 64c = 2. If N 10100000 is shifted right 6 positions 100000 gets discarded and we are left with 10.
Equivalently the n− k = 8− 6 = 2 leftmost bit position are extracted. In either case we are left with 10
which is 2 in radix-10, as needed.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 23 Handout 3

19 Pages in Operating Systems

In Operating Systems memory management is a fundmental process. Viewing memory as a collection of
byte is several times problematic. Multiple application use memory at the same time and at various times, a
given application might request multiple allocations of blocks of memory. One way to alleviate the problems
arising from such a behavior is to view memory as a sequence of pages (blocks) of same size. Thus instead of
having n blocks (bytes) of size 1 (byte), which is the default abstraction of memory, if we assume memory
size is n bytes, we view that same memory as n/p block (pages) each page (block) of size s bytes. In
computing n is usually a power of two. Likewise we want s to be a power of two as well. Then n/s is also a
power of two. n/s can be determined by subtracting the exponents of the powers of two representing n and
s. For example if n = 2N and s = 2S, then n/s = 2(N−S).

Integer multiplication and division by a power of 2. For a given integer x the product y = x · 2k can
easily be computed. From the binary representation of x i.e. bin(x,2,0), we shift x to the left k positions or
equivalently pad to the right of x, k zeroes. The result is y, in fact the binary representation of y. Thus

bin(xk,2,0) = bin(x,2,0) 0 . . .0︸ ︷︷ ︸
k zeroes

Likewise integer division is equivalent to a shift right of x by k positions.
We now move to some futher details.

Memory and Logical Addresses. The size (in bytes) of memory M would be assumed to be n byte long.
Each one of those of bytes is directly addressable. Thus the byte at offset k from 0 (the start, the starting
address of memory m) has address k. The contents of address k are denoted by M[k]. For simplicity we use
array indexing as used in C or C++ or Java. In C or C++ the address of k can be retrieved through the ’address
of’ operator applicable to variables and in particular &M[k] or (M+k). Given that the starting address of M
is equal to 0, C and C++ assign that starting address to become the value of M. The (M+k) = (0+k), as we
obviously previously observed. IN C or C++ the contents of memory address x can be retrieved using the
’contents of (memory) address’ operator. There are some specifics that we omit for the time being, the data
type of the sata stored at that address. For address x its contents are ∗x. If we want to specify the data type
we can say (double)(∗x) for example. Moreover ∗(M + k) and ∗(&M[k]) they all evaluate to the obvious
and direct M[k].

Logical Address in M. Number of bit of an address. A logical address L refers to memory in general is
an integer between 0 and n−1. The size of memory is n, and a power of two. All memory addresses from 0
through n−1 can be represented with the same fixed number of binary digits needed for the representation
of the largest integer in the range, n− 1. By way of Fact 16.1 this is lgn if we substitute a = n− 1 in
Fact 16.1, and given that n is (assumed to be) a power of two no ceilings or floors are needed.

Pages of page size s. In operating systems a flat logical memory space of n bytes is split into pages of equal
size. The size of a page is s and s is also a power of two. Thus an n address space can be split into G = n/s
pages, each of size s bytes.

Divisions involving powers of: shift-right operations. The fact that both n and s are powers of two helps
a lot. Division (as in n/s) is exact with no decimal (i.e. quotient is integer and remainder is zero). Moreover
we can avoid division by subtracting the exponents. Thus dividing 256 by 8 the regular way requires a
division but dividing 28 with 23 requires a subtraction between the exponents 8 and 3 i.e. 8−3 = 5 and thus
28/23 = 28−3 = 25 i.e. a 32. In fact we can avoid even that subtraction if we maintain the original numbers

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 24 Handout 3

and the results in binary : bin(256,2,0)=0b100000000 bin(8,2,0)=0b1000. Division of 256 = 28 by 8 = 23

is equivalent to shifting the binary representation of 256 three positions to the right. The result is 0b100000.

Divisor Dividend ; Q=Divisor/Dividend

256 / 8 256 / 8 = 32

2**8 / 2**3

Q= 2**8 / 2**3 = 2**(8-3)= 2**5 = 32

bin(256,2,0)=100000000 bin(8,2,0)=1000 In binaryh

Q= SHIFTRIGHT(100000000,3)=0b100000 0b100000 = 32

L = (P,T): Logical address as a Page Number and (Page) Offset pair. Noting that page size is s, a logical
memory address L in the range 0 to n− 1 can be expressed then as a page number P and offset T within a
page: L = (P,T). If memory is of size n and a page is of size s we have G = n/s pages of size s bytes each.
Thus a page number such as P varies from 0 to G−1. If page size is s bytes, T also varies from 0 to s−1.

Given n (size of memory M in bytes) and s (page size also in bytes) finding L = (P,T). Logical address
L gets mapped to pair (P,T) of a page number P, and an offset T , where 0≤ L < n, 0 ≤ P < G = n/s, and
0≤ T < s. using two simple formulas.

Finding P.
P = floor(L/s)

and
Finding T.

T = L mod s

Note. Function mod is denoted in C/C++ by the % sign to denote the integer remainder when dividing the
left hand side with the right hand side. The left-hand size (L) is the dividend, and the right-hand side (s) is
the divisor of the division. The quotient is P and the remainder of the division is T (the offset).

Definition 19.1 (Convert a logical address L to a page number P with offset T : L=(P,T)). A memory
space of n bytes, supports a paging system of page size s bytes. A logical (absolute) address L in that memory
space can be mapped into a page P and offset T within that page: L = (P,T). The mapping is as follows:

(n,s) : L = (P,T) ⇒ P = floor(L/s), T = L mod s, 0≤ L < n, 0≤ P < n/s, 0≤ T < s.

In C/C++ floor is integer division and mod is denoted %. Thus another way to write it is to say

(n,s) : L = (P,T) ⇒ P = (L/s), T = L%s, 0≤ L < n, 0≤ P < n/s, 0≤ T < s.

Definition 19.2 (Convert a page number with offset (P,T) into a logical address L.). Moreover, given
(P,T) we can recover L if we know the page size s. From (P,T) to L.

(n,s) : (P,T) = L ⇒ L = P× s+T, 0≤ L < n, 0≤ P < n/s, 0≤ T < s.

Exercise 19.1. (To make initial calculations easy, we drop the power of two requirement.) If we have a
memory of size n= 100,000B and a paged organization with page size s= 5,000B, then we can view memory
as a collection of 20 pages (n/s = 100000/5000 = 20) each of size s = 5000B. Thus an L = 23456 gets
mapped to P= 23456/50000= 4, and T = 23456%5000= 3456. Therefore L= (P,T) is 23456= (4,3456).
Moreover we can retrieve L from (P,T): L = P× s+T . Therefore 23456 = 4×5000+3456.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 25 Handout 3

In binary, most information about s and G = n/s can be retrieved from the bit sequence representing L.

Definition 19.3. We view a logical address L as the concatenation of a page number P and and an offset T .
Thus L = (P,T) becomes L = 〈P,T 〉, where 〈〉 is the concatenation operator.

P: Page Number T: Offset
}

Logical Address︸ ︷︷ ︸
L: Logical Address

Suppose that n = 256. Then lgn = 8 and we use 8-bit addresses.
Suppose that s = 8. Then lgs = 3.
In this case G = n/s = 32 = 25 i.e. 0 ≤ P < 25 = G. Thus we need lgG = lg32 = 5 bit for the page

number P.
Moreover since s = 8, we have that 0≤ T < 23 = s. Thus we need lgs = lg8 = 3 bit for the offset T .

Definition 19.4. An 8-bit logical address L is thus the concatenation of the 5-bit page number P and a 3-bit
offset T . Thus L = (P,T) becomes L = 〈P,T 〉, where 〈〉 is the concatenation operator.

P:5-bit Page Number T:3-bit Offset
}

Logical Address︸ ︷︷ ︸
L: 8-bit Logical Address

Exercise 19.2. We can easily extract all relevant information from the picture below. Memory space has
n = 256 bytes. Number of bits is 8 since n = 256 and thus lgn = 8. A logical address L is in the range
0 ≤ L < n = 256 and thus needs 8 bit for its representation. Given that the page size s is 8B an offset T
needs lgs = lg8 = 3 bit and thus 0 ≤ T < s = 23 = 8. Moreover G = n/s = 256/8 = 32 and lgG = 5 and
thus a page number P is 5-bit since G = 25 and therefore 0≤ P < G = 25 = 32.

01234567

0 1 0 1 1 0 0 1
}

Logical Address︸ ︷︷ ︸
Page Number

︸ ︷︷ ︸
Offset

Let L = 01011001 be in binary. The logical address is the binary 01011001 which is 89 in denary. The
page number P is the binary 01011, the left-most five bit of L. In denary, this is 11. Thus P = 11. The
offset T is the binary 001, the right-mist three bit of L. In denary, this is 1. Thus offset T = 1. Because
n,s are powers of two an arbitrary L in the range 0 . . .n− 1 can be mapped into (P,T) without a division
but with just bit manipulation. Of course we could have extracted (P,T) from L using integer division by
establishing a quotient (which is P) and a remainder (which is T) from the dividend L and the divisor s:
(L/s,L%s) = (89/8,89%8) = (11,1).
Moreover L = P× s+T = 11×8+1 = 89.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 26 Handout 3

20 Hard-Disk Drives (HDD)

20.1 Definitions related to HDD

• Platter (or just disk) It is a circular disk. It consists of two surfaces also known as sides:
up and down. Both sides (surfaces) can be read/written into. Thus every side of every platter has an
associated mechanism known as head to facilitate the reading/writing of information on it. All platters
rotate in unison. Usually, one platter or one side of one platter is for control purposes and unused by
the user. The remaining ones are utilized for data preservation.

• Arm and Heads The Arm contains the disk controller. Attached to the arm are the heads. The
number of heads is equal to the number of platters times two. Heads move in unison assisted by the
arm. Arms/Head move parallel to surface of platters. If you view a platter as a circular surface the arm
and its attached heads moves from the outside periphery to the inside or from the inside to the ouside
periphery of a (the) platter(s). Note that only ONE head is active for read and write even though all of
them might be over a platter area.

• Track It is a concentric circular band (region) on a platter’s surface or side. Tracks might be num-
bered from the outside periphery to the inside or the other way around for ease of reference. The
density of tracks is expressed in KTPI (thousands of tracks per inch)

• Cylinder All tracks of the same radius from the center of a platter, over all sides of all platters
form a cylinder. The number of tracks (over a platter) is thus equal to the number of cylinders (of the
HDD).

• Sector A sector is a piece of a track at a given arc range. Every track has the same fixed number of
sectors as any other track even if tracks on the outside are longer than tracks on othe inside. Thus if
tracks have 60 sectors, the first track is between degree 0 and 6, the next one between 6 and 12 and so
on. A head reads or writes a sector worth of data.

• Cluster A set of consecutive sectors of a track form a cluster.

• Spindle Speed / Rotation Platters (disks) rotate very fast. The spindle speed of a drive is the
rotational speed of its platters.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 27 Handout 3

20.2 HDD Operation

The hard disk controller receives a request for I/O to be performed on a particular sector number. The data
received by the disk controller are then mapped to a platter number, side of a platter (up or down), track
within a platter, and sector within a track.

20.3 Seek

The controller moves the arm and its heads horizontally and parallel to the surface of the platters to identify
the correct track. There is some initial delay due to controller overhead, then the arm/heads move, and then
the arm/heads brake before they settle over a given track. (Think of it as initial delay, acceleration, steady
move, and braking and settling.)

Seek Time is the time for arm/heads to move to the right track from their current position. Seek time
depends on the initial position (starting track of the heads) and the final/settline position of the heads (desti-
nation/target track). This time includes settling time (braking time) and might or might not include controller
overhead.

Maximum Seek Time is defined as the time to move the arm/heads to the most inside track from the
most outside track or the other way around.

In the 1950s and 1960s maximum seek time was 600ms. In the 1970s it went down to 25ms. First
PC-based HDD in the 1980s has maximum seek time around 120ms and nowadays this is around 20-30ms
for laptop or desktop drives and 10-12ms for server drives.

The Average Seek Time is a better measure of performance. The average seek time is defined as one-
third of max seek time. A proof is to be shown later. (Think of it that you figure seek time for every possible
initial position and every possible ending position of the heads.) The average seek time for a typical HDD
is 8-9ms for a read and 9-10ms for a write operation. Server HDD might have average seek time as low as
4ms.

A Track-to-Track Seek Time refers to the time it takes for heads to move minimally by one track.
Most of this time is settling time and possibly controller overhead if it is not accounted separately. Typical
Track-to-Track seek time is 1 to 1.2ms.

Controller Overhead is less than 2ms for typical drives.
After settling the heads are over the appropriate track. At this point the controller activates one head

for the relevant platter and the relevant surface (up or down) involved in the I/O. One and only one head is
active in the remainder.

20.4 Rotational Delay or Latency

The active head waits for the appropriate sector to appear under or over the head. (A surface/side can be
under a head if it is an up surface; it can be over the head if it is a down surface.) This is because the
platters (i.e. disks) rotate at spindle speed also known as rotational speed that varies from 3600RPM to
5400RPM (laptop drives) to 7200RPM (some desktop and regular server drives). The unit RPM refers to
Rotations/Revolutions Per Minute.

Rotational delay or Latency Time refers to the time it takes for the appropriate sector be under or over
the relevant head positioned under or over the active head. A 7200RPM drive completes one rotation in
approximately 8.33ms.

Time
Rotation

=
1mn

7200R
=

60s
7200R

=
60,000ms

7200R
= 8.33ms/Rotation = 8.33ms/R R = Rotation

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 28 Handout 3

Because a head might just have missed a specific sector or might just catch a specific sector of a track a
more relevant measure of rotational delay is Average Latency or Average Rotational delay.

Average Latency Time or Average Rotational Delay is defined to be one-half of the rotational delay.
Thus for a 7200RPM disk this is (1/2)×8.33 = 4.17ms/R.

20.5 Transfer Time

The active head has made contact with the appropriate sector. Data get transferred from the sector (read
operation) or transferred into the sector (write operation).

Sector size is 512B. Modern hard disk drives support 4KiB (4096B) sectors. In the latter case the term
logical sector size is defined as 512B and the term physical sector size is defined as 4KiB (4096B).

Transfer data speed for modern HDD is expressed in bytes/s or multiples of bytes/s. Rarely in bits/s.
Beware of dubious multiples of bytes such KB and MB and their definitions. Typical data transfer speed
rates are in the aread of 200,000KiB/s.

Transfer time is the time it takes for the head to transfer data to/from the disk.
This time is quite straightforward to figure out if the operation involves one sector (of one track of one

cylinder of one side of one platter). Multi-sector I/O on different tracks are more complicated to analyze.
In most cases when the transfer involves more that sector size worth of data, we ignore additional access,
latency costs.

20.6 More on Sectors

A sector of a track stores not only data but also additional information. Some of it relates to the data directly:
it is error correcting information in the form of error correcting codes (ECC) that can be used to retrieve or
recover information from minor accidents (eg scratches). Additional information is available to prepare the
head to read information or synchronize with the sector underneath or over it.

Therefore, a 512B sector is preceded by 15B of gap, sync, and sector address data, followed by 50B
of ECC (Error Correcting Code) data (40 10-bit).Therefore a head effectively reads 15+512+50 = 577B
when it reads a (logical) sector. In other words 512/577 = 88% of the sector data read is sector data for the
application.

For a 4096B sector, things change slightly after the sector: the 15B of gap, sync and sector address data
still appear before the 4096B sector data. They are followed by 100B of ECC (80 10-bit).

20.7 An Example: HDD around 2019

A modern 7200RPM server hard disk drive with capacity (10TB or 10TiB?) usually has 7 platters (disks)
with 14 heads. One of the 14 sides is used for controlling the disk, the remaining 13 sides for data storage.
Data density nowadays is approximately 1.5TiB per platter or equivalently 0.75TiB per side. (Logical) sector
size is defined as 512B, and thus a (Physical) sector size is defined as 4KiB (4096B) as already mentioned.
A physical sector emulates 8 logical sector (8x512=4096) Average seek time is 8-9ms depending on whether
a read or write is performed, wih average rotational delay (average latency) being 4.16-4.17ms which is one
half of the rotational speed of 8.33ms/R of a 7200RPM HDD. Controller overhead is no more than 2ms. I/O
transfer rate is approximately 200,000 KiB/s.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 29 Handout 3

Step 1. The time to read one logical sector (512B) is the sum of disk access time plus transfer time.
Step 2. Disk access time includes controller overhead, average seek time and average rotational

delay / average latency. Contoller overhead is about 2ms, average seek time is roughly 8ms, and average
rotational dealy is 4.17ms. The total disk access time is 14.17ms.

Step 3. Transfer rate is 200,000KiB/s. Thus the transfer time for a 512B sector is negligible at 0.002ms.
Step 4. Thus the time to read one logical sector (512B) is 14.17ms.

Effective Transfer Rate is determined by actual byte transferred in the unit of time. If we use the time
to read one logical sector, we have 512B transferred in 14.17ms, which gives an effective transfer rate of

512B
14.17ms

=
512B

14.17×10−3s
= 36132B/s≈ 35KiB/s

20.8 Average Seek Time vs Maximum Seek Time

Fact 20.1. Assume a Hard-Disk Drive (HDD) contains N + 1 tracks indexed 0 through N. The maximum
seek time of an arm/heads movement, expressed in number of tracks, is N, when the heads move from track 0
to track N or the other way around. The average seek time, expressed in number of tracks, is approximately
N/3+1/3≈ N/3.

Proof. If the arm/heads move from track i to track j, the distance in track covered is |i− j|. Thus the average
seek time A, in terms of number of tracks, is the average over all initial and over all final positions of the
arm/heads. The number of choices for i is N +1 (i.e. 0 through N) and likewise for j. Therefore

A =
∑

N
i=0 ∑

N
j=0 |i− j|

(N +1)2 =
1

(N +1)2 ·
N

∑
i=0

N

∑
j=0
|i− j|= 1

(N +1)2 ·S.

S is computed on the following page; equivalently using integrals, we have

A =
1

N2

∫ N

0

∫ N

0
|x− y|dxdy =

1
N2

∫ N

0

∫ y

0
|x− y|dxdy+

∫ N

0

∫ N

y
|x− y|dxdy

=
1

N2

∫ N

0

∫ y

0
(y− x)dxdy+

∫ N

0

∫ N

y
(x− y)dxdy

=
1

N2

∫ N

0

∫ y

0
ydxdy−

∫ N

0

∫ y

0
xdxdy+

∫ N

0

∫ N

y
xdxdy−

∫ N

0

∫ N

y
ydxdy

=
1

N2

∫ N

0
ydy

∫ y

0
dx−

∫ N

0
dy
∫ y

0
xdx+

∫ N

0
dy
∫ N

y
xdx−

∫ N

0
ydy

∫ N

y
dx

=
1

N2

(∫ N

0
y2dy−

∫ N

0
(y2/2)dy+

∫ N

0
(A2/2− y2/2)dy−

∫ N

0
y(A− y)dy

)
=

1
N2

(
N3/3−N3/6+N3/2−N3/6−N3/2+N3/3

)
=

N
3

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 30 Handout 3

We compute next the sum S.

S =
N

∑
i=0

N

∑
j=0
|i− j|

=
N

∑
i=0

[
i

∑
j=0
|i− j|+

N

∑
j=i+1

|i− j|

]

=
N

∑
i=0

[
i

∑
j=0

(i− j)+
N

∑
j=i+1

(j− i)

]

=
N

∑
i=0

[
i

∑
j=0

i−
i

∑
j=0

j+
N

∑
j=i+1

j−
N

∑
j=i+1

i

]

=
N

∑
i=0

[
i(i+1)− i(i+1)/2+

N

∑
j=0

j−
i

∑
j=0

j− i(N− i)

]

=
N

∑
i=0

[i(i+1)− i(i+1)/2+N(N +1)/2− i(i+1)/2− i(N− i)]

=
N

∑
i=0

[N(N +1)/2− i(N− i)]

=
N

∑
i=0

N(N +1)/2−N ·
N

∑
i=0

i+
N

∑
i=0

i2

= N(N +1)2/2−N2(N +1)/2+N(N +1)(2N +1)/6

After some minor calculations we obtain the following

S =
N

∑
i=0

N

∑
j=0
|i− j|

=
3N(N2 +2N +1)−3N3−3N2 +2N3 +3N2 +N

6

=
3N3 +6N2 +3N−3N3−3N2 +2N3 +3N2 +N

6

=
2N3 +6N2 +4N

6
=

N3 +3N2 +2N
3

= N(N +1)(N +2)/3.

Therefore from Equation 1 by replacing into Equation 1 we obtain the following.

A =
1

(N +1)2 ·S =
1

(N +1)2 ·
N(N +1)(N +2)

3
=

N
3
+

N
3(N +1)

=
N
3
+

N +1−1
3(N +1)

=
N
3
+

1
3
− 1

3(N +1)
→ N

3
+

1
3
.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 31 Handout 3

21 ASCII, Unicode, UTF-8, UTF-16

Sequences of bits (or bytes) can be viewed as an unsigned integer (positive or non-negative integer), or
signed integer (positive or negative or zero), or a real number (fixed-point or floating-point). They can also
be viewed as the representation of a symbol (also known as ’character’) in a string. A symbol (character) can
be a letter in a language (eg. English, Greek, Central European, Chinese, etc), a digit, a punctuation mark or
any other special (auxiliary) symbol. For example, the byte in Example 21.1 and also in Example 21.2 could
represent natural number 65 in 8-bit and 16-bit binary notation. It is also the ASCII (American Standard
Code for Information Interchange) representation of the letter A in English in Example 21.1 and the Unicode
representation of the same letter A.

Exercise 21.1.
01234567

0 1 0 0 0 0 0 1
}

ASCII for A

Exercise 21.2.
0123456789101112131415

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
}

Unicode for A

Exercise 21.3.
01234567

0 0 1 1 0 0 0 1
}

ASCII for 1

Exercise 21.4.
01234567

0 0 0 0 0 0 0 1
}

8-bit representation of natural number 1

Fact 21.1 (ASCII). An english letter or a digit or a punctuation mark, or any other auxiliary symbol is
represented in ASCII as a 7-bit bit-sequence and stored in a single byte. The corresponding numeric value is
known as the ordinal (value) of the character. ASCII is limited to representing 128 symbols (with ’extensions’
to represent up to 256 symbols.)

Exercise 21.5 (ASCII and the first character of the alphabet). The ASCII representation of the upper-case
english letter A is 1000001. The byte view containing it is shown in Example 21.1. The ordinal value of that
byte, viewed as an unsigned integer, is 65.

Exercise 21.6 (ASCII and the digit one). The ASCII representation of the symbol that is numeric digit one
(1) is 0110001. The byte view containing it is shown in Example 21.3. The ordinal value of that byte,
viewed as an unsigned integer, is 49. Natural number one (1) represented as a numerical value has the 8-bit
representations shown in Example 21.4. Thus symbol 1 has a different ordinal value than the magnitude of
the binary representation of natural number one.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 32 Handout 3

Fact 21.2 (Table of ASCII characters). The table below contains the ASCII representation of all 128 ASCII
symbols arranged in 8 rows (0-7 in octal or hexadecimal) of 16 columns (0-F in hexadecimal). The ASCII
code (ordinal value) for a character in hexadecimal notation can be retrieved by concatenating the row
index (code) with the column index code.

For example A is in row 4 and column 1 i.e. its hexadecimal code is 0x41. Converting radix-16 into
radix-10 we get 65 the ordinal value for A. Its row index 4 in 4-bit binary is 0100 and 1 in 4-bit binary
is 0001. Thus the code for A is 01000001 which is 65 in decimal or 0x41 in hexadecimal. Rows 0 and 1
contain Control Characters represented by the corresponding mnemonic code/symbol. Code 32 or 0x20 is
the space symbol (empty field).

Fact 21.3 (Unicode Standard). The Unicode Standard uses two or more bytes to represent one symbol (char-
acter). Ordinal values in Unicode are known as code-points. The characters from U+0000 to U+FFFF form
the Unicode Standard basic multilingual plane (BMP). Characters with code-points higher than U+FFFF

are called supplementary characters. The Unicode character for an ASCII character remains the same if
one adds extra zeroes (padding). Thus the Unicode representation for an ASCII character is a zero-bit byte
followed by a byte of the ASCII representation.

Example 21.2 shows the Unicode representation of letter A. The first byte is a zero-bit byte followed es-
sentially by the ASCII byte for A. Likewise, symbol DEL which is 0x7F in ASCII has Unicode representation
(code) 0x007F. We also write this as U+007F.

Fact 21.4 (Java char). In Java the char data type has size 2B; java uses UTF-16 representation. It can
only reprent and represents the Unicode Standard basic multilingual plane (BMP) that is the characters
from U+0000 to U+FFFF. Its minimum code-point is ’\u0000’ (or U+0000) and its maximum code-point is
’\uFFFF’ (or U+FFFF).

There are several encoding to represent Unicode symbols. One of them is UTF-8 where symbols are encoded
using 1 to 6 bytes. The UTF-8 representation of an ASCII symbol is the ASCII representation of that symbol
for compatibility reasons and also for space efficiency. Another one is UTF-16 employed by Java.

Fact 21.5 (UTF-8). UTF-8 encodes characters in 1 to 6 bytes.

• ASCII symbols with ordinal values 0-127 are also Unicode symbols U+0000 to U+007F and are repre-
sented in UTF-8 encoded as byte 0x00 to 0x7F; the seven least-significant bits of a byte is the ASCII
code for the symbol with the most-siginificant bit being a zero.

• Unicode symbols with ordinal values larger than U+007F use two or more bytes each of which has the
most significant bit set to 1.

• The first byte of a non-ASCII character is one of 110xxxxx, 1110xxxx, 11110xxx, 111110xx,

1111110x and it indicates how many bytes there are altogether or the number of 1s following the first
1 and before the first 0 indicates the number of bytes in the rest of the sequence. All remaining bytes
other than the first start with 10yyyyyy.

Exercise 21.7 (UTF-8, ASCII, Unicode). • ASCII and UTF-8 encoding look the same.

• No ASCII code can appear as part of any other UTF-8 encoded Unicode symbol since only ASCII
characters have a 0 in the most-significant bit position of a byte.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 33 Handout 3

Fact 21.6 (UTF-16). UTF-16 is a character encoding that use one or two 16-bit binary sequences to encode
all 1,112,604 code points of Unicode. The characters from BMP are presented with 2B (i.e. one 16-bit binary
sequence), the surrogates with 4B.

========================

ASCII CHARACTER SET

========================

==

\ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS TAB LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 ! " # $ % & ’ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ‘ a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

==

NUL = null BS = Backspace DLE = Datalink escape CAN = cancel

SOH = start of heading TAB = horizontal tab DC1 = Device control 1 EM = end of medium

STX = start of text LF = linefeed/newline DC2 SUB = substitute

ETX = end of text VT = vertical TAB DC3 ESC = escape

EOT = end of transmission FF = form feed/newpage DC4 FS = file separator

ENQ = enquiry CR = carriage return NAK = negative ACK GS = group separator

ACK = acknowledge SO = shift out SYN = synchronous idle RS = record separator

BEL = bell SI = shift in ETB = end of trans. blockUS = unit separator

===

UTF-8 ENCODING

===

UTF-8 Number of bits in code point Range

0xxxxxxx 7 00000000-0000007F

110xxxxx 10xxxxxx 11 00000080-000007FF

1110xxxx 10xxxxxx 10xxxxxx 16 00000800-0000FFFF

11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 21 00010000-001FFFFF

111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 26 00200000-03FFFFFF

1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 31 04000000-FFFFFFFF

===

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 34 Handout 3

22 Signed Integers

As we mentioned earlier in the previous section, a byte or a collection of bytes (e.g. a word) can be viewed
as the binary representation of a natural number or an ASCII symbol, or a Unicode Standard symbol, or
UTF-8 or UTF-16 that encodes Unicode symbols. (And ASCII symbols are part of Unicode as well.)

Of interest in this section is the representation of not just natural numbers (positive or non-negative
integer numbers) but of integer numbers in general: positive, negative, or zero. We call the latter signed
integers to stress that they include all three groups.
Fixed-width. We describe some fixed width methods that represent signed integers with one, two, or four
bytes: they can be extended to any fixed number of bytes, e.g. eight.

Fact 22.1 (N byte signed integers). If we were given N bytes i.e. 8N binary digits the number of positive,
negative and zero values that can be represented is an even number and equal to 28N . If the number of
positive integer values that can be represented is p, the number of negative values is n and there is a single
zero, then n+ p+1 = 28N implies that n+ p must be an odd number: we cannot represent the same number
of positive and negative values, unless we have more than one representation of zero.

Exercise 22.1 (N = 1: 8-bit representation). If we use 1B, which is 8 bit, to represent a natural number (i.e.
unsigned integer), we can represent with that byte 28 = 256 consecutive numbers from 0 to 255.
If we try to represent an integer (i.e. signed integer) we need to think about the representation of the
sign (positive or negative in one bit) and the representation itself. If we attempt to represent in binary
27 = 28/2= 128 negative values, the remaining values must represent the zero and no more that 127 positive
values.

8-bit unsigned All integers from 0 to 255

8-bit signed (two’s complement) All integers from -128 to -1 , 0 , 1 to 127

We present three representations of signed integers: signed mantissa, one’s complement, and two’s
complement. All three of them use the leftmost bit as a sign bit indicator: one indicates a negative number
and a zero a positive number.

Caution: We shall use the term leftmost bit and most-significant bit very carefully. In signed integer
representation, the leftmost bit is a sign bit. The most significant bit of the number is the one to the right of
the sign bit i.e. the second from left bit.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 35 Handout 3

22.1 Signed Mantissa

Fact 22.2 (n-bit Signed Mantissa). An n-bit integer N in signed mantissa representation has

• (i) a sign bit that is its leftmost bit, and

• (ii) the remaining n−1 bits represent the magnitude of the integer that is |N|.

2n−1 positive and as many negative integer numbers can be represented including zeroes (a positive and a
negative one). The range of integers is −2n−1 +1, . . . ,−1,−0,+0,+1, . . . ,+2n−1−1, that is,
−2n−1 < N < 2n−1 or |N|< 2n−1.

Exercise 22.2 (8-bit Signed Mantissa). In 8-bit signed mantissa, the leftmost bit is the sign and the remaining
7 bits the magnitude of the signed integer. Thus 28 = 256 integer values can be represented, 128 positive
and 128 negative. One of those positive and one of those negative values is +0 and −0 shown below.

01234567

0 0 0 0 0 0 0 0
}

Signed Mantissa of positive zero +0
01234567

1 0 0 0 0 0 0 0
}

Signed Mantissa of negative zero −0
01234567

0 0 1 0 1 0 1 1
}

Signed Mantissa of +43
01234567

1 0 1 0 1 0 1 1
}

Signed Mantissa of −43

For the +43 and −43 represenation, the leftmost of the 8 bits is the sign and varies. The remaining 7
righmost bits is the magnitude: |−43|= |43|= 43 and both signed integers have the same magnitude. If we
convert the 8-bit sequence from radix-2 to radix-10 we get 43 for +43 obviously, but 171 for −43’s binary
representation. Note that 171 = 128+43 and 128 accounts for the sign bit contribution.

Thus if N is a positive integer number that is N > 0 and such that N < 2n−1 the signed mantissa repre-
sentation of N is the same as the 8-bit unsigned integer binary representation of N: the two representation
are identical for positive numbers.

For −N, a negative number, the signed mantissa representation of −N is the same as the 8-bit unsigned
integer binary representation of 128+N = 27 +N.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 36 Handout 3

22.2 One’s Complement

Fact 22.3 (n-bit One’s complement). An n-bit integer N in one’s complement representation has

• (i) a sign bit that is its leftmost bit, and

• (ii) the remaining n−1 bits represent the magnitude of integer N >= 0 or its complement otherwise.

2n−1 positive and as many negative integer numbers can be represented including zeroes (a positive and a
negative one). The range of integers is −2n−1 +1, . . . ,−1,−0,+0,+1, . . . ,+2n−1−1, that is,
−2n−1 < N < 2n−1 or |N|< 2n−1.

Signed mantissa and one’s complement represent differently the negative integers including the negative
zero.

Exercise 22.3 (8-bit One’s complement). In 8-bit one’s complement, the leftmost bit is the sign and the
remaining 7 bits the magnitude of the signed integer or the complement of the magnitude. By complement
we mean flipping ones into zeroes and zeroes into ones. Thus 28 = 256 integer values can be represented,
128 positive and 128 negative. One of those positive and one of those negative values is +0 and −0 shown
below. The positive zero, as before is represented as 00000000. The negative zero is 11111111. This is
because in the bit sequence the sign bit is 1 indicating a negative number is represented. In order to retrieve
the magnitude of this number, we first extract the 7 righmost bits 1111111 and then we flip them and they
become 0000000. Thus the negative number represented has magnitude 0 and this is −0.

01234567

0 0 0 0 0 0 0 0
}

One’s complement : positive zero +0
01234567

1 1 1 1 1 1 1 1
}

One’s complement : negative zero −0
01234567

0 1 1 1 1 1 1 1
}

One’s complement : +127
01234567

1 0 0 0 0 0 0 0
}

One’s complement : −127
01234567

0 0 1 0 1 0 1 1
}

One’s complement : +43
01234567

1 1 0 1 0 1 0 0
}

One’s complement : −43

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 37 Handout 3

22.3 Two’s Complement

Fact 22.4 (n-bit Two’s complement). An n-bit integer N in two’s complement representation has

• (i) a sign bit that is its leftmost bit, and

• (ii) If N = 0 its representations is n zero bits.

• (iii) If 2n−1 > N > 0 the binary representation of N is the same as the unsigned (and also the one’s
complement) representation of N.

• (v) If −2n−1 ≤ N < 0 the binary represenation of N is derived by writing down the unsigned bit
representation of |N| in n bits, flipping all n bits and adding one to the result.

2n−1− 1 positive and 2n−1 negative integer numbers can be represented including one zero (a 0-bit se-
quence). The range of integers is −2n−1, . . . ,−1,0,+1, . . . ,+2n−1−1, that is, −2n−1 ≤ N < 2n−1.

Exercise 22.4 (8-bit Two’s complement). In 8-bit Two’s complement, the leftmost bit is the sign and the
remaining 7 bits can be used to determine the magnitude of the integer. Thus 28 = 256 integer values can be
represented, 127 positive and 128 negative; a zero which is an 8-bit all zero sequence has the same sign bit
as the positive numbers. The zero is represented as 00000000.

01234567

0 0 0 0 0 0 0 0
}

Two’s complement : zero 0
01234567

0 1 1 1 1 1 1 1
}

Two’s complement MAXINT: +127
01234567

1 0 0 0 0 0 0 0
}

Two’s complement MININT: −128
01234567

1 0 0 0 0 0 0 1
}

Two’s complement : −127
01234567

0 0 0 0 0 0 0 1
}

Two’s complement : +1
01234567

1 1 1 1 1 1 1 1
}

Two’s complement : −1
01234567

0 0 1 0 1 0 1 1
}

Two’s complement : +43
01234567

1 1 0 1 0 1 0 1
}

Two’s complement : −43

From radix-10 to two’s complement. If we start with a negative integer say −128 we find its two’s
complement representation as follows. Its magnitude is | − 128| = 128. We write down the magnitude in
8-bit as 10000000. We first flip the bits to get 01111111 and then add one to the result to get 10000000.
This is the two’s complement of −128, also shown above. For −43 we start with its magnitude |−43|= 43
in 8-bit binary i.e. 00101011. We then flip it to get 11010100 and add one to the result to get 11010101.
The latter’s is two’s complement of −43.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 38 Handout 3

From two’s complement to radix-10. Given the two’s complement representation of an integer say in
8-bit we can retrieve the value of the integer as follows. Let the 8-bit two’s complement be 11111111. The
leftmost bit is the sign bit and it is one. This means we have a negative integer. We first flip all the bits to get
00000000 and then add one to the result. We get 00000001. This is the magnitude of the negative integer
in unsigned representation, which is one. Thus 11111111 is the binary representation of −1.

For the two’s complement bit sequence 10000000 we note that it represents a negative number, after
flipping we get 01111111 and adding one we get 10000000. The latter in unsigned representation is a 128.
This means that the original 10000000 is −128.

For the two’s complement bit sequence 10000001 we note that it represents a negative number, after
flipping we get 01111110 and adding one we get 01111111. The latter in unsigned representation is a 127.
This means that the original 10000001 is −127.

Method. Thus the same method works both ways: for a negative number (either because it has a − in
its radix-10 representation or a sign bit of 1 in its two’s complement representation) flip and add one to the
result.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 39 Handout 3

23 Fixed-point real numbers

Fact 23.1 (n-bit fixed-point real numbers). One easy way to deal with real numbers is to assume that ni of
the n bits represent the integer part of the real number and nd of the n bits represent the decimal part of it,
where ni +nd = n.

Exercise 23.1 (8-bit fixed-point real number).
The 8-bit binary sequence represents a fixed-point real number R with ni = nd = 4. The decimal point is
implied after the first four leftmost bit positions and thus the integer part of R is in binary the four leftmost
bits i.e. 0001 or in radix-10, Ri = 0× 23 + 0× 22 + 0× 21 + 1× 20 = 1. For the decimal part we first
isolate the bit sequence to the right of decimal point 1100 and then convert it to radix-10 according to
Rd = 1×2−1 +1×2−2 +0×2−3 +0×2−4 = 0.75. Thus R = Ri +Rd = 1.00+0.75 = 1.75.

01234567

0 0 0 1 1 1 0 0
}

n-bit fixed point with ni = 4

If we have ni = 5 and nd = 3, the same bit sequence implies a decimal point after the first five leftmost
bit positions and thus the integer part of R is in binary the five leftmost bits i.e. 00011 or in radix-10, Ri =
0×24+0×23+0×22+1×21+1×20 = 3. For the decimal part we first isolate the bit sequence to the right
of decimal point 100 and then convert it to radix-10 according to Rd = 1×2−1 +0×2−2 +0×2−3 = 0.50.
Thus R = Ri +Rd = 3.00+0.50 = 3.50.

01234567

0 0 0 1 1 1 0 0
}

n-bit fixed point with ni = 5

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 40 Handout 3

24 Floating-Point real numbers

Definition 24.1 (Normalized real numbers). A normalized real number has a bit that is one to the immediate
left of the decimal point or has only one bit on the left of the decimal point.

Fact 24.1 (Division by a power of two). If n-bit real number N is divided by 2k for some integer k > 1, then
the result M = N/2k has (n− k) integer bits and k additional decimal bits. The binary representation of M
is the binary representation of N after shifting N to the right k bit positions.

Exercise 24.1. Real number 100. is not normalized (first part of the definition). There is a period to the
right of the second zero bit. Because of this, on the left of the decimal point there is a zero. Moreover there
are three bits to the left of the decimal point.

Exercise 24.2. Let N = 160 whose binary representation in n = 8 is 10100000. Then M = N/26 = 160×
64 = 2.50. If N 10100000 or 1010000. is shifted right 6 positions and we are left with 10.10000 in binary.
(The implied decimal points is beteen the second and third leftmost bit, if the real number is viewed as
fixed-point.) Viewing the result in fixed point it gives 1×21 +0×20 +1×2−1 = 2.5 as needed.

Exercise 24.3 (Normalizing a real or integer number). Real number N= 100. is not normalized. However
M =N/22 is normalized. In other words, N =M×22. Given that M = 1.00 or just 1., the N can be rewritten
as N = 1.0× 22. We have normalized N. It consists of an integer part 1 that is on the left of the decimal
point, a mantissa .0 that is on the right of the decimal point, and an exmponent 2 (not the base).

Exercise 24.4 (Normalization resolved). Real number N= 101. is not normalized according to the refined
definition requiring only one bit on the left of the decimal point. However M = N/22 is normalized, or
N = M×22. Then N = 1.01×22. The integer part is 1, the mantissa is 01 and the exponent is 2.

Theorem 24.1 (Properties of real numbers and integers). Let a,b,c be integer or real numbers. The follow-
ing properties are true.
(The last or is disjunctive, not exclusive.)

a+b = b+a (commutative addition)
(a+b)+ c = a+(b+ c) (associative addition)
a+0 = 0+a = a (identity element for addition is zero)
a+(−a) = (−a)+a = 0 (inverse of every element exists for addition)
ab = ba (commutative multiplication)
(ab)c = a(bc) (associative multiplication)
a ·1 = 1 ·a = a (identity element for multiplication is one)
a(b+ c) = ab+ac (multiplication is distributive over addition)
ab = 0 ⇐⇒ a = 0 or b = 0 (integral domain).

Definition 24.2 (IEEE 754-1985 Standard). Real numbers in floating-point are represented using the IEEE
754-1985 standard. Be reminded that in IEEE 754-1985 neither addition nor multiplication are associative
operations. Thus it is possible that (a+b)+ c 6= a+(b+ c). Thus errors can accumulate when we add.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 41 Handout 3

24.1 IEEE-754: Single Precision

Fact 24.2 (Normalized real numbers: Mantissa, Exponent, Significand). A (fully) normalized real number
R is (or can be converted into) the binary notation form R =±×1.xxxx×2yyyy = s×1.X×2Y , the positive
or negative sign becomes a 0 or 1 bit, the part 1.xxxx or 1.X is known as the significand (D) of which the
integer part is one, and the rest, known as the fraction or mantissa, is xxxx or X as shown. The yyyy or Y
is the exponent. The significand D is a small real number between 1 and 2 (i.e. normalized).

Definition 24.3.
S:1 E:(exponent):8 F:(Mantissa):23

}
SP: 32-bit

Fact 24.3 (IEEE-754 Single Precision(SP)). In IEEE-754, single precision floating-point numbers are de-
rived from a normalized input of the form R = s× 1.X × 2Y , where, s is the sign, a ±1, the significand
D = 1.X is between 1.0 and 2.0, and the exponent Y is an integer. The resulting IEEE-754 notation also has
three given parts, a sign bit S, an exponent E and a mantissa F also known as fraction, and an implied part
known as the bias B.

• S is the the leftmost bit with 0 indicating non-negative and 1 indicating non-positive

• E is the 8-bit exponent,

• F is the 23-bit fraction, (fraction without integer part),

• B is the bias (and set B = 127).

There are two zeroes in the representation: an all-zero E and F has sign the sign of the sign bit S. Exponents
that are all-0 and all-1 are reserved. The quadraplet (S,E,F,B) determines the quintuplet (S,E,F,B,D =
1+F). The floating-point number represented by (S,E,F,B,D) is

R = (1−2S)× (1+F)×2E−B = (1−2S)×D×2E−B

The relative precision in SP with a 23-bit fraction is ≈ 2−23, thus offering 23log10 (2)≈ 6 decimal digits of
precision.

Exercise 24.5 (Smallest SP (absolute) value). Smallest E = 1 and then E −B = 1− 127 = −126. The
smallest fraction F = all−0, and then 1.F = (1+F) = 1.0. The smallest (absolute value) numbers are then
±1.0×2−126.

Exercise 24.6 (Largest SP (absolute) value). Largest E in binary is 1111110 and thus E = 254. Then
E −B = 254− 127 = 127. The largest fraction F = all−1, and then 1.F = (1+F) ≈ 2.0. The largest
(absolute value) numbers are then ±2.0×2127.

Exercise 24.7 (Radix-10 to SP). Let R = −0.875 with the fractional part being .111. Then R = (−1)1×
1.11×2−1. We obviously have S = 1, the fraction is F= 110 . . . 0. We also have E =−1+B =−1+127 =
126. The exponent E in 8-bit binary is E= 01111110.

S E F

10111111 01000000 00000000 00000000 = 1 | 01111110 | 1000000 00000000 00000000

012345678910111213141516171819202122232425262728293031

1 0 1 1 1 1 1 1 0 1 1 0
}

R =−0.875 in SP

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 42 Handout 3

24.2 IEEE-754: Double Precision

Definition 24.4.
S:1 Exponent:11 Mantissa:52

}
DP: 64-bit

Fact 24.4 (IEEE-754 Double Precision(DP)). In IEEE-754, double precision floating-point numbers are
derived from a normalized input of the form R = s× 1.X × 2Y , where s is the sign, a ±1, the significand
D = 1.X is always between 1.0 and 2.0, and the exponent Y is an integer. The IEEE-754 DP has three given
parts, a sign bit S, an exponent E and a mantissa F also known as fraction, and an implied part known as
the bias B.

• S is the leftmost bit with 0 indicating non-negative and 1 indicating non-positive,

• E is the 11-bit exponent,

• F is the 52-bit fraction, (fraction without integer part),

• B is the bias (and set B = 1023).

There are two zeroes in the representation: an all-zero E and F has sign the sign of the sign bit S. Exponents
that are all-0 and all-1 are reserved. The quadraplet (S,E,F,B) determines the quintuplet (S,E,F,B,D =
1+F). The floating-point number represented by (S,E,F,B,D) is

R = (1−2S)× (1+F)×2E−B = (1−2S)×D×2E−B

The relative precision in DP with a 52-bit fraction is roughly 2−52, thus 52log10 (2) ≈ 13 decimal digits of
precision.

Exercise 24.8 (Smallest DP (absolute) value). Smallest E = 1 and then E−B = 1− 1023 = −1022. The
smallest fraction F = all−0, and then 1.F = (1+F) = 1.0. The smallest (absolute value) numbers are then
±1.0×2−1022.

Exercise 24.9 (Largest DP (absolute) value). Largest E in binary is 111111111110 and thus E = 2046.
Then E−B = 2046− 1023 = 1023. The largest fraction F = all−1, and then 1.F = (1+F) ≈ 2.0. The
largest numbers are then ±2.0×21023.

Exercise 24.10 (Radix-10 to DP). Let R = −0.875 with the fractional part being .111. Then R = (−1)1×
1.11×2−1. We obviously have S = 1, the fraction is F= 110 . . . 0. We also have E =−1+B =−1+1023 =
1022. The exponent E in 11-bit binary is E= 01111111110.

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

1011111111101100
}

R =−0.875 in DP

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 43 Handout 3

Exercise 24.11. What number is the 32-bit real number in IEEE-754 110000001010....0? Since the sign
bit is S = 1 we know the number is negative. The following 8 bits are the exponent E 10000001 i.e. they
represent E +B = 129. Then the exponent is E = 129− 127 = 2. The fractional part is F=010 . . .0 and
thus D = 1.010 . . .0. Converting D into denary we get d = 1+1/4 = 1.25. Thus the number reprsented is
(1−2S)×1.25×22 =−5.0

Exercise 24.12 (Patriot missile bug). Then represent 1/10 in SP. The one-tenth representation caused prob-
lems in the 1991 Patriot missile defense system that failed to intercept a Scud missile in the first Iraq war
resulting to 28 fatalities.

Fact 24.5 (Smallest real greater than one). The first single precision number greater than 1 is 1+ 2−23 in
SP. The first double precision number greater than 1 is 1+2−52 in DP.

Note 24.1 (Same algebraic expression, two results). The evaluation of an algebraic expression when com-
mutative, distributive and associative cancellation laws have been applied can yield at most two resulting
values; if two values are resulted one must be a NaN. Thus 2/(1+1/x) for x = ∞ is a 2, but 2x/(x+1) is a
NaN.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 44 Handout 3

24.3 IEEE-754: Double Extended Precision

Definition 24.5 (Double Extended Precision).
In Double Extended Precision the exponent E is at least 15-bit, and fraction F is at least 64-bit. At least
10B are used for a long double.

S:1 Exponent:15 Mantissa:64
}

Double Extended Precision: 80-bit

single precision (SP) 32-bit double precision (DP) 64-bit

Bias B=127 Bias B=1023

------------------------------ ------------------------------

|S| E 8-bit | F 23-bit | |S| E 11-bit | F 52-bit |

Reserved Values

E F s E F

00000000 0..0 0 0..0 0..0 is positive zero +0.0

00000000 0..0 1 0..0 0..0 is negative zero -0.0

00000000 X..X NotNormalized (1-2S) x 0.F x 2**-126

11111111 0..0 0 1..1 0..0 is positive Infinity

11111111 0..0 1 1..1 0..0 is negative Infinity

11111111 X..X NaN Not-a-Number (eg 0/Inf, 0/0, Inf/Inf)

Smallest E: 0000 0001 = 1 - B = -126

Smallest F: 0000 ... 0000 implies Smallest D: 1.0000 ... 0000 = 1.0 [normalized]

Smallest Nmbr= 0 00000001 0....0 = (1-2S) x 1.0 x 2**-126 ~ (1-2S) 1.2e-38 [normalized]

Largest E: 1111 1110 = 254 - B = 127

Largest F: 1111 ... 1111 implies Largest D: 1.1111 ... 1111 ~ 2.0 [normalized]

Largest Nmbr= 0 11111110 1....1 = (1-2S) x 2.0 x 2**127 ~ (1-2S) 3.4e38 [normalized]

Smallest E: 0000 0000 reserved to mean 2**-126 for nonzero F

Smallest F: 0000 ... 0001 implies Smallest D: 0.0000 ... 0001 = 2**-23 [unnormalized]

Smallest Nmbr= 0 00000000 0....1 = (1-2S) x 2**-23 x 2**-126 = 2**-149 [unnormalized]

Largest E: 0000 0000 reserved to mean 2**-126 for nonzero F

Largest F: 1111 ... 1111 implies Largest D: 0.1111 ... 1111 ~ 1-2**-23 [Unnormalized]

Largest Nmbr= 0 00000000 1....1 = (1-2S) x 1-2**-23 x 2**-126 ~ 2**-126(1-2**-23)[Unnormalized]

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 45 Handout 3

25 Computer Architectures: von-Neumann and Harvard

25.1 Von-Neuman model of computation

Fact 25.1 (Von-Neumann model: Program and Data in Same Memory). Under this architectural model,
a central processing unit, also known as the CPU, is responsible for computations. A CPU has access to
a program that is being executed and the data that it modifies. The program that is being executed and
its relevant data both reside in the same memory usually called main memory. Thus main memory stores
both program and data, at every cycle the CPU retrieves from memory either program (in the form of an
instruction) or data, performs a computation, and then writes back into memory data that were computed at
the CPU by one of its units in a current or prior cycle.

25.2 Harvard model of computation

Fact 25.2 (Harvard model: Program and Data in Different Memories). An alternative architecture,
the so called Harvard model of computation or architecture as influenced by (or implemented into) the
Harvard Mark IV computer for USAF (1952) was also prevalent in the early days of computing. In the
Harvard architecture, programs and data are stored separately into two different memories and the CPU
maintains distinct access paths to obtain pieces of a program or its associated data. In that model, a
concurrent access of a piece of a program and its associated data is possible. This way in one cycle an
instruction and its relevant data can both and simultaneously reach the CPU as they utilize different data
paths.

Fact 25.3 (Hybrid Architectures). The concepts of pipelining, instruction and data-level caches can
be considered Harvard-architecture intrusions into von-Neumann models. Most modern microprocessor
architectures are using them.

25.3 CPU, Microprocessor, Chip and Die

Fact 25.4 (CPU vs Microprocessor). CPU is an acronym for Central Processing Unit. Decades ago all
the units that formed the CPU required multiple cabinets, rooms or building. When all this functionality was
accommodated by a single microchip, it became known as the microprocessor. The number of transistors
in modern processor architectures can range from about a billion to 5 billion or more (Intel Xeon E5, Intel
Xeon Phi, Oracle/Sun Sparc M7).

Fact 25.5 (Chip vs Die). A chip is the package containing one or more dies (actual silicon IC) that are
mounted and connected on a processor carrier and possibly covered with epoxy inside a plastic or ceramic
housing with gold plated connectors. A die contains or might contain multiple cores, a next level of cache
memory adjacent to the cores (eg. L3), graphics, memory, and I/O controllers.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 46 Handout 3

25.4 More than one

Fact 25.6 (Multi-core, Many-core, GPU and more). In the past 10-15 years uni-processor (aka single
core aka unicore) performance has barely improved. The limitations of CPU clock speeds (around 2-3GHz),
power consumption, and heating issues have significantly impacted the improvement in performance by just
increasing the CPU clock speed. An alternative that has been pursued is the increase of the number of
“processors” on a processor die (computer chip). Each such “processor” is called a core. Thus in order
to increase performance, instead or relying to increasing the clock speed of a single processor, we utilize
multiple cores that work at the same clock speed (boost speed), or in several instances at a lower (clock)
speeds (regular speed). Thus we now have multiple-core (or multi-core) or many-core processors.

Exercise 25.1 (Dual-core and Quad-core). Dual-core or Quad-core refer to systems with specifically 2 or 4
cores. The number of cores is usually (2019) less than 30 (eg Intel’s generic Xeon processors), with Intel’s
Xeon Phi reaching 57-72 cores. Intel’s Phi processor is attached to the CPU and work in ’parallel’ with the
CPU or independetly of it. In such a case a many-core system is called a coprocessor.

Fact 25.7 (GPU). A GPU (Graphics Processing Unit) is used primarily for graphics processing. CUDA
(Compute Unified Device Architecture) is an application programming interface (API) and programming
model created by NVIDIA (TM). It allows CUDA-enabled GPU units to be used for General Purpose pro-
cessing, sequential or massively paprallel. Such GPUs are also known as GPGPU (General Purpose GPU)
when provided with API (Application Programming Interface) for general purpose work. A GPU processor
(GK110) contains a small number (up to 16 or so) of Streaming Multiprocessors (SM, SMX, or SMM). Each
streaming multiprocessor has up to 192 32-bit cores supporting single-precision floating-point operations
and up to 64 64-bit cores supporting double-precisions operations. Other cores support other operations
(eg. transendental functions). Thus the effective ”core count” is in the thousands.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 47 Handout 3

26 Computer Architectures: Memory Hierarchies

Fact 26.1 (CPU and Main Memory Speed.). A CPU rated at 2GHz can execute 2G or 4G operations per
second or roughly two-four operations per nanosecond, or roughly one operation every 0.25-0.5ns. A CPU
can fetch one word from maim memory (”RAM”) every 80-100ns. Thus there is a differential in performance
between memory and CPU. To alleviate such problems, multiple memory hierarchies are inserted between
the CPU (fast) and Main Memory (slow): the closer the memory to the CPU is the faster it is (low access
times) but also the costlier it becomes and the scarcier/less of it also is. A cache is a very fast memory.
Its physical proximity to the CPU (or core) determines its level. Thus we have L1 (closest to the CPU, in
fact ”inside” the CPU), L2, L3, and L4 caches. Whereas L2 and L3 are ”static RAM/ SRAM”, L4 can
be ”dynamic RAM / DRAM” (same composition as the main ”RAM” memory) attached to a graphics unit
(GPU) on the CPU die (Intel Iris).

Fact 26.2 (Level-1 cache.). A level-1 cache is traditionally on-die (same chip) within the CPU and exclusive
to a core. Otherwise performance may deteriorate if it is shared by multiple cores. It operates at the speed
of the CPU (i.e. at ns or less, currently). Level-1 caches are traditionally Harvard-hybrid architectures.
There is an instruction (i.e. program) cache, and a separate data-cache. Its size is very limited to few tens of
kilobytes per core (eg. 32KiB) and a processor can have separate jevel-1 caches for data and instructions.
In Intel architectures there is a separate L1 Data cache (L1D) and a L1 Instruction cache (L1I) each one of
them 32KiB for a total of 64KiB. They are implemented using SDRAM (3GHz typical speed) and latency to
L1D is 4 cycles in the best of cases (typical 0.5-2ns range for accessing an L1 cache) and 32-64B/cycle can
be transferred (for a cumulative bandwidth over all cores as high as 2000GB/s). Note that if L1D data is to
be copied to other cores this might take 40-64 cycles.

Fact 26.3 (Level-2 cache.). Since roughly the early 90s several microprocessors have become available
utilizing secondary level-2 caches. In the early years those level-2 caches were available on the motherboard
or on a chip next to the CPU core (the microprocessor core along with the level-2 cache memory were
sometimes referred to as the microprocessor slot or socket). Several more recent microprocessors have
level-2 caches on-die as well. In early designs with no L3 cache, L2 was large in size (several Megabytes)
and shared by several cores. L2 caches are usually coherent; changes in one are reflected in the other ones.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 48 Handout 3

An L2 cache is usually larger than L1 and in recent Intel architectures 256KiB and exclusive to a core.
They are referred to as ”static RAM”. The Its size is small because a larger L3 cache is shared among the
cores of a processor. An L2 cache can be inclusive (older Intel architectures such as Intel’s Nehalem) or
exclusive (AMD Barcelona) or neither inclusive nor exclusive (Intel Haswell). Inclusive means that the
same data will be in L1, L2, and L3. Exclusive means that if data is in L2, it can’t be in L1 and L3. Then
if it is needed in L1, a cache ”line” of L1 will be swapped with the cache line of L2 containing it, so that
exclusivity can be maintained: this is a disadvantage of exclusive caches. Inclusive caches contain fewer
data because of replication. In order to remove a cache line in inclusive caches we need only check the
highest level cache (say L3). For exclusive caches all (possibly three) levels need to be checked in turn.
Eviction from one requires eviction from the other caches in inclusive caches. In some architectures (Intel
Phi), in the absence of an L3 cache, the L2 caches are connected in a ring configuration thus serving the
purpose of an L3. The latency of an L2 cache is approximately 12-16 cycles (3-7ns), and up to 64B/cycle
can be transferred (for a cumulative bandwidth over all cores as high as 1000-1500GB/s). Note that if L2
data is to be copied to other cores this might take 40-64 cycles.

Fact 26.4 (Level-3 cache.). Level-3 caches are not unheard of nowadays in multiple-core systems/architectures.
They contain data and program and typical sizes are in the 16-32MiB range. They are available on the moth-
erboard or microprocessor socket. They are shared by all cores. In Intel’s Haswell architecture, there is
2.5MiB of L3 cache per core (and it is write-back for all three levels and also inclusive). In Intel’s Nehalem
architecture L3 contained all the data of L1 and L2 (i.e. (64+256)∗4KiB in L3 are redundantly available
in L1 and L2). Thus a cache miss on L3 implies a cache miss on L1 and L2 over all cores! It is also called
LLC (Last Level Cache) in the absence of an L4 of course. It is also exclusive or somewhat exclusive cache
(AMD Barcelona/Shanghai, Intel Haswell). An L3 is a victim cache. Data evicted from the L1 cache can be
spilled over to the L2 cache (victim’s cache). Likewise data evicted from L2 can be spilled over to the L3
cache. Thus either L2 or L3 can satisfy an L1 hit (or an access to the main memory is required otherwise).
In AMD Barcelona and Shanghai architectures L3 is a victim’s cache; if data is evicted from L1 and L2 then
and only then will it go to L3. Then L3 behaves as in inclusive cache: if L3 has a copy of the data it means
2 or more cores need it. Otherwise only one core needs the data and L3 might send it to the L1 of the single
core that might ask for it and thus L3 has more room for L2 evictions. The latency of an L3 cache varies
from 25 to 64 cycles and as much as 128-256cycles depending on whether a datum is shared or not by cores
or modified and 16-32B/cycle. The bandwidth of L3 can be as high 250-500GB/s (indicative values).

Fact 26.5 (Level-4 cache.). It is application specific, graphics-oriented cache. It is available in some
architecture (Intel Haswell) as auxiliary graphics memory on a discrete die. It runs to 128MiB in size,
with peak throughput of 108GiB/sec (half of it for read, half for write). It is a victim cache for L3 and not
inclusive of the core caches (L1, L2). It has three times the bandwidth of main memory and roughly one
tenth its memory consumption. A memory request to L3 is realized in parallel with a request to L4.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 49 Handout 3

Fact 26.6 (Main memory.). It still remains relatively slow of 60-110ns speed. Latency is 32-128cycles
(60-110ns) and bandwidth 20-128GB/s (DDR3 is 32GiB/sec). It is available on the motherboard and in rel-
atively close proximity to the CPU. Typical machines have 4-512GiB of memory nowadays. It is sometimes
referred to as ”RAM”. As noted earlier, random access memory refers to the fact that there is no difference
in speed when accessing the first or the billionth byte of this memory. The cost is uniformly the same.

Definition 26.1 (Linearity of computer memory). Memory is a linear vector. A memory is an array of
bytes, i.e. a sequence of bytes. In memory M, the first byte is the one stored at M[0], the second one at M[1]
and so on. A byte is also a sequence of 8 binary digits (bit).

Big Endian vs Little Endian. If we plan to store the 16-bit (i.e. 2B) integer 0101010111110000 in memory
locations 10 and 11, how do we do it? Left-part first or right-part first (in memory location 10)? This is
what we call byte-order and we have big-endian and little-endian. The latter is being used by Intel and
the formed in powerPC architectures.

BigEndian LittleEndian(Intel architecture)

10: 01010101 11110000

11: 11110000 01010101

Fact 26.7 (Multi-cores and Memory.). To support a multi-core or many-core architecture, traditional L1
and L2 memory hierarchies (aka cache memory) are not enough. They are usually local to a processor or a
single core. A higher memory hierarchy is needed to allow cores to share memory ”locally”. An L3 cache
has been available to support multi-core and more recently (around 2015) L4 caches have started appearing
in roles similar to L3 but for specific (graphics-related) purposes. When the number of cores increases
beyond 20, we talk about many-core architectures (such as Intel’s Phi). Such architectures sacrifice the L3
for more control logic (processors). To allow inter-core communication the L2 caches are linked together to
form a sort of shared cache.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 50 Handout 3

27 Constants, Variables, Data-Types

Fact 27.1 (Constant.). If the value of an object can never get modified, then it’s called a constant. 5 is a
constant, its value never changes (ie. a 5 will never have a value of 6).

Fact 27.2 (Variable.). In computer programs we also use objects (names, aliases) whose values can change.
Those objects are known as a variable.

Fact 27.3 (Data-type.). In a programming language, every variable has a data-type, which is the set of
values the variable takes. Moreover, the data-type defines the operations that are allowable on it.

Exercise 27.1. What are data types supported by C, C++, or Java?

In mathematics, an integer or a natural number is implicitly defined to be of arbitrary precision.

Fact 27.4 (Built-in or primitive data-types. Composite data-types.). Computers and computer languages
have built-in (also called primitive) data-types for integers of finite precision. These primitive integer data-
types can represent integers with 8-, 16-, 32- or (in some cases) 64-bits or more. An integer data-type of
much higher precision is only available not as a primitive data-type but as a composite data-type through
aggregation and composition and built on top of primitive data-types. Thus a composite data-type is built
on top of primitive data types.

Fact 27.5 (Java’s integer primitive data types). Java’s (primitive) (signed) integer data types include byte,
short, int, and long.

• In java a byte is an 8-bit signed two’complement integer whose range is −27 . . .27−1.

• In java a short is a 16-bit signed two’complement integer whose range is −215 . . .215−1.

• In java an int is a 32-bit signed two’complement integer whose range is −231 . . .231−1.

• In java a long is a 64-bit signed two’complement integer whose range is −263 . . .263−1.

The default value of a variable for byte, short, int is 0, and for long it is a 0L.

Fact 27.6 (Java’s other primitive data types). Java’s other data types include float, double, boolean, and
char.

• In java a float is a 32-bit IEEE 754 floating-point number.

• In java a double is a 64-bit IEEE 754 floating-point number.

• In java an boolean has only two possible values: true and false.

• In java a char is a 16-bit Unicode character.

The default value of a variable for float, double, boolean, and char is 0.0f, 0.0d, false and ’\u0000’ i.e
U+0000.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 51 Handout 3

Exercise 27.2 (Composition : Arrays). One way to build a composite data-type is through an aggregation
called an array: an array is a sequence of objects of (usually) the same data-type. Thus we can view
memory as a vector of bytes. But if those bytes are organized in the form of a data-type a sequence of
elements of the same data-type becomes known as an array (rather than a plain vector).

Sometimes the data type of a variable is assigned by default, depending on the value assigned to the
variable. The data-type of the right-hand side determines the data-type of x in x = 10: in this case it is of
”number data type”. In some other cases we explicitly define the data type of a variable. A programming
language such as C++ consists of primitive data-types such as int, char, double and also composite
data types that can be built on top of them such as array, struct and class.

Exercise 27.3. What are the primitive data types of C, C++, or Java? What are the composite data types of
C, C++, or Java?

Fact 27.7 (What is a Data Model (DM)?). It is an abstraction that describes how data are represented and
used.

Exercise 27.4. What is the data model of C, C++, or Java. Do they differ from each other? The whole
set of data types and the mechanisms that allow for the aggregation of them define the data model of each
programming language.

Fact 27.8 (Weakly-typed and strongly-typed languages.). In a weaky-typed language the data type of a
variable can change during the course of a program’s execution. In a strongly-type language as soon as
the variable is introduced its data-type is explicitly defined, and it cannot change from that point on. For
example

Weakly Typed Language such as MATLAB

x=int8(10); % x is integer (data type)

x=10.12; % x is real number (data type)

x=’abcd’; % x is a string of 4 characters (data type)

Strongly Typed Language such as C, C++, or Java

int x ; % x is a 32-bit (4B) integer whose data type can not change in the program

x=10;x=2; % ok

x=10.10 ; % Error or unexpected behavior: right hand-side is not an integer.

A. V. GERBESSIOTIS
CS332-XXX

Fall 2020 Aug 17, 2020
Computer Science: Fundamentals
Page 52 Handout 3

Fact 27.9 (Definition vs Declaration.). In computing we use the term definition of a variable to signify
where space is allocated for it and its data-type explicitly defined for the first time, and declaration of a
variable to signify our intend to use it. A declaration assumes that there is also a definition somewhere
else, does not allocate space and serves as a reminder. For a variable there can be only ONE definition
but MULTIPLE declarations. This discussion makes sense for compiled languages and thus int x serves
above as a definition of variable x. For interpreted languages, separate definitions are usually not available
and declarations coincide with the use of a variable. Thus we have three declarations that also serve as
definitions of x in the weakly-typed example each one changing the data type of x. In the latter example
variable x is defined once and used twice (correctly) after that definition.

Fact 27.10 (What is an abstract data type (ADT)?). An abstract data type (ADT) is a mathematical model
and a collection of operations defined on this model.

Fact 27.11 (The ADT Dictionary.). For example a Dictionary is an asbtract data type consisting of a
collection of words on which a set of operations are defined such as Insert, Delete, Search.

Fact 27.12 (What is a data-structure?). A data structure is a representation of the mathematical model
underlying an ADT, or, it is a systematic way of organizing and accessing data.

Fact 27.13 (Does it matter what data structures we use?). For the Dictionary ADT we might use arrays,
sorted arrays, linked lists, binary search trees, balanced binary search trees, or hash tables to represent the
mathematical model of the ADT as expressed by its operations. What data structure we use, it matters if
economy of space and easiness of programming are important. As running/execution time is paramount
in some applications, we would like to access/retrieve/store data as fast as possible. For one or the other
among those data structures, one operation is more efficient than the other.

Fact 27.14 (Mathematical Function: Input and Output Interface.). When we write a function such as
f (x) = x∗x in Mathematics we mean that x is the unknown or parameter or ideterminate of the function.
The function is defined in terms of x. The computation performed is x2 i.e. x ∗ x. The value ’returned’ or
’computed’ is exactly that x ∗ x. When we call a function with a specific input argument we write f (5). In
this case 5 is the input argument or just argument. Then the 5 substitutes for x i.e. it becomes the value of
parameter x and the function is evaluated with that value of x. The result is a 25 and thus the value of ’ f (5)’
becomes ’25’. If we write a = f (5), the value of f (5) is also assigned to the value of variable a. Sometimes
we call s the output argument, which is provided by the caller of the function to retrieve the value of the
function computed.

Fact 27.15 (Algorithms.). We call algorithms the methods that we use to operate on a data structure. An
algorithm is a well-defined sequence of computational steps that performs a task by converting an (or a set
of) input value(s) into an (or a set of) output value(s).

Fact 27.16 (Computational Problem.). A (computational) problem defines an input-output relationship.
It has an input, and an output and describes how the output can be derived from the input.

Fact 27.17 (Computational Problems and (their) Algorithms.). An algorithm describes a specific pro-
cedure for achieving this relationship, i.e. for each problem we may have more than one algorithms.

