
University of Leicester | Linux Tutorial 1

Linux Tutorial

Version 1.21

Jon Wakelin, Liam Gretton, Gary Gilchrist, Teri Forey, University of Leicester.

Adapted from Michael Stonebank’s original course

‘UNIX Tutorial for beginners’

This tutorial has been adapted to make use of the University of Leicester HPC facilities

SPECTRE and ALICE. If you use either of these facilities for research work which

results in a publication you should acknowledge this with one of the following

statements:

This research used the ALICE High Performance Computing Facility at the University

of Leicester

or

This research used the SPECTRE High Performance Computing Facility at the

University of Leicester

http://www.ee.surrey.ac.uk/Teaching/Unix/

University of Leicester | Tutorial One 2

Tutorial One

1.1 Listing files and directories (ls)

When you first login, your current working directory is your home directory. Your home
directory has the same name as your user-name, for example, nye1, and it is where
your personal files and subdirectories are saved.

To find out what is in your home directory type

ls

The ls command lists the contents of your current working directory.

However, it does not cause all the files in your home directory to be listed, but only
those ones whose name does not begin with a dot (.) Files beginning with a dot (.) are
known as hidden files and usually contain important program configuration
information. They are hidden because you should not change them unless you are
familiar with Linux.

To list all files in your home directory including those whose names begin with a dot,
type

ls -a

ls is an example of a command which can take options: -a is an example of an option.
The options change the behaviour of the command. There are online manual pages
that tell you what options a particular command can take, and how each option
modifies the behaviour of the command. The online manual command is covered in
tutorial 4.3.

ls -l

ls -lt

ls -lS

ls -lrS

ls -lrt

1.2 Making Directories (mkdir)

We will now make a subdirectory in your home directory to hold the files you will be
creating and using in the course of this tutorial. To make a subdirectory called unixstuff
in your current working directory type

mkdir unixstuff

University of Leicester | Tutorial One 3

To see the directory you have just created, type

ls

1.3 Changing to a different directory (cd)

The command cd directory means change the current working directory to 'directory'.
The current working directory may be thought of as the directory you are in, i.e. your
current position in the file-system tree.

To change to the directory you have just made, type

cd unixstuff

Type ls to see the contents (which should be empty)

Exercise 1a

Make another directory inside the unixstuff directory called backups

1.4 The directories . and ..

Still in the unixstuff directory, type

ls -a

As you can see, in the unixstuff directory (and in all other directories), there are two
special directories called . and ..

In Linux . means the current directory, so typing

cd .

There is a space between cd and the dot. There is normally always a space between
the command and the argument.

This may not seem very useful at first, but using (.) as the name of the current directory
will save a lot of typing, as we shall see later in the tutorial. (..) means the parent of
the current directory, so typing

cd ..

will take you one directory up the hierarchy (back to your home directory). Try it now.

Typing cd with no argument always returns you to your home directory. This is very
useful if you are lost in the file system.

University of Leicester | Tutorial One 4

1.5 Pathnames (pwd)

Pathnames enable you to work out where you are in relation to the whole file-system.
For example, to find out the absolute pathname of your home-directory, type cd to get
back to your home-directory and then type

pwd

/home/n/nye1

Exercise 1b

Use the commands ls, pwd and cd to explore the file system.

(Remember, if you get lost, type cd by itself to return to your home-directory)

1.6 More about home directories and pathnames

Understanding pathnames

First type cd to get back to your home-directory, then type

ls unixstuff

to list the contents of your unixstuff directory. Now type

ls backups

backups: No such file or directory

This is simply because you have not created a directory called backups.

Now, create a sub-directory of unixstuff named backups:

cd unixstuff/

mkdir backups

ls backups/

Note that it is not necessary to be in the unixstuff directory to create a subdirectory of

it. A quicker alternative would be:

mkdir unixstuff/backups

ls unixstuff/backups

University of Leicester | Tutorial One 5

~ (your home directory)

Home directories can also be referred to by the tilde ~ character. It can be used to
specify paths starting at your home directory. So typing

ls ~/unixstuff

will list the contents of your unixstuff directory, no matter where you currently are in
the file system.

What do you think the following would list?

ls ~

What do you think the following would list?

ls ~/..

1.7 Shell Shortcuts for bash

Ctrl-A (jump to start of line)

Ctrl-E (jump to end of line)

Ctrl-K (delete (kill) everything from the cursor onwards

Ctrl-W (delete the previous word only)

Ctrl-Y (paste whatever was just deleted)

Ctrl-C (kill/exit a running process)

Ctrl-L (clear the screen)

Ctrl-R (search for previously executed commands)

Tab (auto-complete command or file/directory name)

↑ / ↓ (scroll back / forwards through previously entered commands)

Summary

ls list files and directories

ls -a list all files and directories

mkdir make a directory

cd directory change to named directory

cd change to home-directory

cd ~ change to home-directory

cd .. change to parent directory

pwd display the path of the current directory

University of Leicester | Tutorial Two 6

Tutorial Two

2.1 Copying Files and Directories (cp)

cp file1 file2 is the command which makes a copy of file1 in the current working
directory and calls it file2.

What we are going to do now is to take a file stored in an open access area of the file
system, and use the cp command to copy it to your unixstuff directory.

First, change to your unixstuff directory.

cd ~/unixstuff

Then at the shell prompt type:

cp /cm/shared/training/tutorial/science.txt .

Don't forget the dot (.) at the end. Remember, in UNIX, the dot means the current
directory. The above command means copy the file science.txt to the current
directory, keeping the name the same.

Directories can also be copied with the cp command, but it’s necessary to add the
option –R to do so. This option means ‘recursive’ and will copy the contents of the
directory as well as the directory itself, for example:

cp -R directory1 directory2

Try running

cp -R /cm/shared/training/tutorial ~/unixstuff

Exercise 2a

Create a backup of your science.txt file by copying it to a file called science.bak

2.2 Moving files and Directories (mv)

The move command has a variety of similar but subtly different uses. It can be used
to move a file to a different location (i.e. a different directory). It can also be used to
move multiple files to a different directory. It can also be used to rename a file or a
directory. For example:

mv file1 directory1/

University of Leicester | Tutorial Two 7

This would move file1 from the current directory into directory1.

mv file1 file2 file3 directory1/

This would move file1, file2 and file3 from the current directory into directory1.

mv file1 file2

This would rename file1 as file2.

mv directory1/ directory2/

This would rename a directory. Finally,

mv file1 directory/file2

This would move and rename a file in one step.

We are now going to move the file science.bak to your backup directory. First, change
directories to your unixstuff directory (can you remember how?). Then, inside the
unixstuff directory, type

mv science.bak backups/

To see if it worked type

ls

ls backups

2.3 Removing Files (rm) and Directories (rmdir)

To delete (remove) a file, use the rm command. As an example, we are going to create
a copy of the science.txt file then delete it.

Inside your unixstuff directory, type

cp science.txt tempfile.txt
ls
rm tempfile.txt
ls

In order to delete an empty directory you can use the command

rmdir directory

University of Leicester | Tutorial Two 8

However this won't remove directories that already have files in them, instead you can
use

rm -r directory

to recursively delete files in directory (use sparingly - there is no Recycle bin!)

You can use the rmdir command to remove a directory (make sure it is empty first).
Try to remove the backups directory. You will not be able to since Linux will not let
you remove a non-empty directory.

Exercise 2b

Create a directory called tempstuff using mkdir, then remove it using the rmdir
command.

2.4 Displaying the contents of a file on the screen

clear (clear screen)

Before you start the next section, you may like to clear the terminal window of the
previous commands so the output of the following commands can be clearly
understood.

At the prompt, type

clear

This will clear all text and leave you with the prompt at the top of the window.

 cat (concatenate)

The command cat can be used to display the contents of a file on the screen. Type:

cat science.txt

As you can see, the file is longer than than the size of the window, so it scrolls past
making it unreadable.

less

The command less writes the contents of a file onto the screen a page at a time. Type

less science.txt

Press the space bar if you want to see another page, type q if you want to quit reading.
As you can see, less is used in preference to cat for long files.

University of Leicester | Tutorial Two 9

head

The head command writes the first ten lines of a file to the screen. First clear the
screen then type

head science.txt

Then type

head -5 science.txt

What difference did the -5 do to the head command?

tail

The tail command writes the last ten lines of a file to the screen. Clear the screen and
type

tail science.txt

How can you view the last 15 lines of the file?

2.5 Searching the contents of a file

Simple searching using less

Using less, you can search though a text file for a keyword (pattern). For example, to
search through science.txt for the word 'science', type

less science.txt

then, still in less (i.e. don't press q to quit), type a forward slash (/) followed by the
word to search for, e.g.

/science

As you can see, less finds and highlights the keyword. Type n to search for the next
occurrence of the word.

grep

grep is one of many standard UNIX utilities. It searches files for specified words or
patterns. First clear the screen, then type

grep science science.txt

University of Leicester | Tutorial Two 10

As you can see, grep has printed out each line that contains the word science. Or has
it?

Try typing

grep Science science.txt

The grep command is case sensitive; it distinguishes between Science and science.

To ignore upper/lower case distinctions, use the -i option, i.e. type

grep -i science science.txt

Often when there is a lot of text it is useful to highlight the matches (this is a default
setting on ALICE / SPECTRE now but may not be on other systems)

grep --color -i science science.txt

To search for a phrase or pattern, you must enclose it in single quotes (the apostrophe
symbol). For example to search for the phrase spinning top, type

grep -i 'spinning top' science.txt

Some of the other options of grep are:

-v display those lines that do NOT match
-n precede each matching line with the line number
-c print only the total count of matched lines

Try some of them and see the different results. Don't forget, you can use more than
one option at a time, for example, the number of lines without the words science or
Science is

grep -ivc science science.txt

wc (word count)

A handy little utility is the wc command, short for word count. To do a word count on
science.txt, type

wc -w science.txt

To find out how many lines the file has, type

wc -l science.txt

University of Leicester | Tutorial Two 11

To find out how many characters the file has, type

wc -m science.txt

Summary

cp file1 file2 copy file1 and call it file2

mv file1 file2 move or rename file1 to file2

rm file remove a file

rmdir directory remove a directory

cat file Display or concatenate a file

less file display a file a page at a time

head file display the first few lines of a file

tail file display the last few lines of a file

grep 'keyword' file search a file for keywords

wc file count number of lines/words/characters in file

University of Leicester | Tutorial Three 12

Tutorial Three

3.1 Redirection

It is extremely common for processes initiated by Linux commands write to the
standard output (that is, they write to the terminal screen), and many take their input
from the standard input (that is, they read it from the keyboard). There is also the
standard error, where processes write their error messages, by default, to the terminal
screen.

 Standard Input (STDIN) - Usually the keyboard
 Standard Output (STDOUT) - Usually the Terminal
 Standard Error (STDERR) - Usually the Terminal

3.2 Redirecting Standard Output

We use the > symbol to redirect the output of a command. Many of the commands we
have seen so far write their output to the terminal (for instance cat, ls, grep, tail, head
and wc all write to STDOUT). However we can redirect the output of any of these
commands to a file instead (the file can have any name you chose. If the file does not
exist it will be created, if it does exist it will be replaced.

The command echo prints its arguments to standard output. Compare these two
commands

 echo "Hello World"

and

 echo "Hello World" > output.txt

You can view the contents of your new file using

 less output.txt

Exercise 3a

Create a file called list1 using a suitable text editor (see appendices

University of Leicester | Tutorial Three 13

A.3 Opening a text editor (PuTTY/SSH) and A.4 Opening a text editor (NX) for more
information) containing the following items one per line, orange, plum, mango,
grapefruit. Save and close your file. Now create a second file called list2 that contains
the following items: apple, peach, grape, orange. Again save and close your file. You
can view your files using a command such as cat, more or less, for example

more list1

more list2

You should now have two files. We will use the cat command to join (concatenate)
these files into a new file called biglist. Type

cat list1 list2 > biglist

this command reads the contents of list1 and list2 in turn, and then writes the text to
the file biglist.

3.3 Appending data to an existing file

It was mentioned above that the redirection operator, >, will create a new file if one
does not exist, but it will overwrite the contents of a file if the file already exists. If we
want to add/append data to an existing file, rather than overwrite it, we need to use
the >> operator instead

For example, to append a kiwi to the file biglist we would type:

echo "kiwi" >> biglist

cat biglist

You will see that a kiwi was added to the list. Now repeat this using a single > operator.

echo "Avocado" > biglist

cat biglist

You will see that all of the original content of the file has been lost and replaced with
the word Avocado

3.4 Redirecting Standard Error

University of Leicester | Tutorial Three 14

Standard error and standard output are very similar. Both are generally written to the
terminal and it is not always obvious what is STDOUT and what is STDERR. However,
STDOUT can be easily differentiated from STDERR using redirection. We redirect
Standard Error to a file using the operator 2>

3.5 Redirecting Standard Input

Similarly we can use the < operator to redirect STDIN. For example, the sort command
read input from STDIN (the keyboard) and produces an alphabetically or numerically
sort list. Type

sort

Then type in the names of some vegetables. Press Return after each one, and hit
control-d after the last entry to return to the shell.

 carrot

 beetroot

 artichoke

 ^d (control-d to stop)

The output will be

 artichoke

 beetroot

 carrot

Instead of generating STDIN using the keyboard, we can use the < operator to redirect
the contents of a file to STDIN. For example, to sort your list of fruit, first re-create
biglist:

cat list1 list2 > biglist

then to sort it type:

sort < biglist

and the sorted list will be output to the screen.

Putting it all together: It is possible to redirect input, output and errors all in one go for
example,

sort < biglist > sorted_list 2> errors.txt

University of Leicester | Tutorial Three 15

In which case input is read from the file biglist (rather than the keyboard), output is
sent to the file sorted_list (rather than to the terminal) and any error messages are
sent to the file errors.txt (rather than the terminal).

3.6 Pipes

To see who is on the system with you, type

who

One method to get a sorted list of names is to type,

 who > names.txt

 sort < names.txt

This is a bit slow and you have to remember to remove the temporary file called
names.txt when you have finished. What you really want to do is connect the output
of the who command directly to the input of the sort command. This is exactly what
pipes do. The symbol for a pipe is the vertical bar |

The pipe / vertical bar character is usually typed with ‘shift’ and the key to the left of ‘z’
on the keyboard.

For example, typing

 who | sort

will give the same result as above, but quicker and cleaner. To find out how many
users are logged on, type

 who | wc -l

How would you find out how many login sessions you have running? Hint: you will
need to use grep from Tutorial 2.5

Summary

command > file redirect standard output to a file

command 2> file redirect standard error to a file

command >> file append standard output to a file

command < file redirect standard input from a file

command1 | command2 pipe the output of command1 to the input of command2

cat file1 file2 > file0 concatenate file1 and file2 to file0

sort sort data

University of Leicester | Tutorial Three 16

who list users currently logged in

University of Leicester | Tutorial Four 17

Tutorial Four

4.1 Wildcards

The characters * and ?

The character * is called a wildcard, and will match against none or more character(s)
in a file (or directory) name. For example, in your unixstuff directory, type

ls list*

This will list all files in the current directory starting with list....

Try typing

ls *list

This will list all files in the current directory ending withlist

The character ? will match exactly one character. So ls ?ouse will match files like
house and mouse, but not grouse. Try typing

ls ?list

ls list?

If you need to match a limit number of patterns you can use {pattern1,pattern2,etc}

ls list{1,2}

This can be used with most commands:

mkdir newdir{1,2,3,4,5}

The previous command would create 5 new directories

4.2 Filename conventions

We should note here that a directory is merely a special type of file. So the rules and
conventions for naming files apply also to directories.

In naming files, characters with special meanings such as / * & % , should be avoided.
Also, avoid using spaces within names. The safest way to name a file is to use only
alphanumeric characters, that is, letters and numbers, together with _ (underscore)
and . (dot).

University of Leicester | Tutorial Four 18

File names conventionally start with a lower-case letter, and may end with a dot
followed by a group of letters indicating the contents of the file. For example, all files
consisting of C code may be named with the ending .c, for example, prog1.c. Then in
order to list all files containing C code in your home directory, you need only type ls
*.c in that directory.

4.3 Getting Help

On-line Manuals

There are on-line manuals which gives information about most commands. The
manual pages tell you which options a particular command can take, and how each
option modifies the behaviour of the command. Type man command to read the
manual page for a particular command.

For example, to find out more about the wc (word count) command, type

man wc

Alternatively

whatis wc

gives a one-line description of the command, but omits any information about options
etc.

When you are not sure of the exact name of a command,

man –k keyword

will give you the commands with keyword in their manual page header. For example,
try typing

man –k list

Summary

* match any number of characters

? match one character

man command read the online manual page for a command

whatis command brief description of a command

apropos keyword match commands with keyword in their man pages

University of Leicester | Tutorial Five 19

Tutorial Five

5.1 Viewing file and directory permissions

In your unixstuff directory, type

 ls -l

You will see that you now get lots of details about the contents of your directory, similar
to the example below.

-rwxrw-r—- 1 nye1 cc_staff 700 2008-07-27 20:45 file1

Each file (and directory) has associated access rights, which may be found by typing
ls -l.

In the left-hand column is a 10-symbol string consisting of the symbols d, r, w, x, -,
and, occasionally, s or S. If d is present, it will be at the left hand end of the string, and
indicates a directory: otherwise - will usually be the starting symbol of the string,
indicating a normal file.

The 9 remaining symbols indicate the permissions, or access rights, and are taken as
three groups of 3.

 The left group of 3 gives the file permissions for the user that owns the file (or
directory) (nye1 in the above example);

 The middle group gives the permissions for the group of people to whom the
file (or directory) belongs (cc_staff in the above example);

A 9-letter code giving the access
rights. In this case it’s read, write,
execute for the owner (nye1);
read, write for the group
(cc_staff); read only for everyone
else.

The initial character
will be d if the file is a

directory.

The user (nye1) and
group (cc_staff) which
owns the file

The size of the
file in bytes

The date and time
when the file was
created

The name of the
file

University of Leicester | Tutorial Five 20

 The rightmost group gives the permissions for everyone else.

The symbols r, w, etc., have slightly different meanings depending on whether they
refer to a simple file or to a directory.

Access rights on files

 r (or -), indicates read permission (or otherwise), that is, the presence or
absence of permission to read and copy the file

 w (or -), indicates write permission (or otherwise), that is, the permission (or
otherwise) to change a file

 x (or -), indicates execution permission (or otherwise), that is, the permission to
execute a file, where appropriate

Access rights on directories

 r allows users to list files in the directory;
 w means that users may delete files from the directory or move files into it;
 x means the right to access files in the directory. This implies that you may read

files in the directory provided you have read permission on the individual files.

So, in order to read a file, you must have execute permission on the directory
containing that file, and hence on any directory containing that directory as a
subdirectory, and so on, up the tree.

Some examples

-rwxrwxrwx a file that everyone can read, write and execute (and delete).

-rw-------
a file that only the owner can read and write - no-one else
can read or write and no-one has execution rights.

5.2 Changing access rights (chmod)

Only the owner of a file can use chmod to change the permissions of a file. The options
of chmod are as follows

Symbol Meaning

u user

g group

o other

a all

r read

w write (and delete)

x execute (and access directory)

+ add permission

- take away permission

University of Leicester | Tutorial Five 21

For example, to remove read write and execute permissions on the file biglist for the
group and others, type

chmod go-rwx biglist

This will leave the other permissions unaffected.

To give read and write permissions on the file biglist to all,

chmod a+rw biglist

Exercise 5a

Try changing access permissions on the file science.txt and on the directory backups

To check that the permissions have changed, use:

ls -l

5.3 Processes and Jobs

A process is an executing program identified by a unique PID (process identifier). To
see information about your processes, with their associated PID and status, type

ps

A process may be in the foreground, in the background, or be suspended. In general
the shell does not return the UNIX prompt until the current process has finished
executing.

Some processes take a long time to run and hold up the terminal. Backgrounding a
long process has the effect that the UNIX prompt is returned immediately, and other
tasks can be carried out while the original process continues executing.

Running background processes

To background a process, type an & at the end of the command line. For example, the
command sleep waits a given number of seconds before continuing. Type

sleep 10

This will wait 10 seconds before returning the command prompt. Until the command
prompt is returned, you can do nothing except wait.

To run sleep in the background, type

University of Leicester | Tutorial Five 22

sleep 10 &

[1] 6259

The & runs the job in the background and returns the prompt straight away, allowing
you to run other programs while waiting for that one to finish.

The first line in the above example is typed in by the user; the next line, indicating job
number and PID, is returned by the machine. The user is be notified of a job number
(numbered from 1) enclosed in square brackets, together with a PID and is notified
when a background process is finished. Backgrounding is useful for jobs which will
take a long time to complete.

Backgrounding a current foreground process

At the prompt, type

sleep 100

You can suspend the process running in the foreground by holding down the Control
key and typing z (written as ^z) Then to put it in the background, type

bg

Note: do not background programs that require user interaction e.g. nano.

5.4 Listing suspended and background processes

When a process is running, backgrounded or suspended, it will be entered onto a list
along with a job number. To examine this list, type

jobs

An example of a job list could be

 [1] Suspended sleep 100

 [2] Running firefox

 [3] Running nedit

To restart (foreground) a suspended processes, type

fg %jobnumber

University of Leicester | Tutorial Five 23

For example, to restart sleep 100, type

fg %1

Typing fg with no job number foregrounds the last suspended process.

5.5 Killing a process

kill (terminate or signal a process)

It is sometimes necessary to kill a process (for example, when an executing program
is in an infinite loop)

To kill a job running in the foreground, type ^c (control-c). For example, run

sleep 100

 ^c

To kill a suspended or background process, type

kill %jobnumber

For example, run

sleep 100 &

jobs

If it is job number 4, type

kill %4

To check whether this has worked, examine the job list again to see if the process has
been removed.

University of Leicester | Tutorial Five 24

ps (process status)

Alternatively, processes can be killed by finding their process numbers (PIDs) and
using kill PID_number

sleep 100 &

ps

 PID TT S TIME COMMAND

 20077 pts/5 S 0:05 sleep 100

 21563 pts/5 T 0:00 netscape

 21873 pts/5 S 0:25 nedit

To kill off the process sleep 100, type

kill 20077

and then type ps again to see if it has been removed from the list. If a process refuses
to be killed, uses the -9 option, i.e. type

kill -9 20077

Note: It is not possible to kill off other users' processes!

Summary

ls -lag list access rights for all files

chmod [options] file change access rights for named file

command & run command in background

^C kill the job running in the foreground

^Z suspend the job running in the foreground

bg background the suspended job

jobs list current jobs

fg %1 foreground job number 1

kill %1 kill job number 1

ps list current processes

kill 26152 kill process number 26152

University of Leicester | Tutorial Six 25

Tutorial Six

Other useful UNIX commands

quota

On SPECTRE / ALICE all accounts are allocated a certain amount of disk space on
the file system for personal files, up to 20GB. If you go over your quota, you cannot
create any more files.

To check your current quota and how much of it you have used, type

quotacheck

df

The df command reports on the space left on the file system. For example, to find out
how much space is left on the fileserver, type

df .

Filesystem 1K-blocks Used Available Use% Mounted
on

panfs://172.16.3.1:global 933294615568 846657542400 86637073168 91% /panfs

df -h .

Filesystem Size Used Avail Use% Mounted on

panfs://172.16.3.1:global 870T 789T 81T 91% /panfs

du (disk usage)

The du command outputs the number of kilobytes used by each subdirectory. This is

useful if you have gone over quota and can no longer log in using NX and you want

to find out which directory has the most files (or alternatively, you can use the

‘homeusage’ command). In your home-directory, type

du *

du –s *

du –sh *

homeusage

The homeusage command will do the same as running du –sh * in your home

directory but will output in ascending order of size to make it easy to see where you

are using space. You do not need to be in your home directory to run this command.

University of Leicester | Tutorial Six 26

gzip

This command compresses a file. For example, to compress science.txt, type

gzip science.txt

This will compress the file and place it in a file called science.txt.gz. To uncompress
the file, use the gunzip command.

gunzip science.txt.gz

file

file classifies the named files according to the type of data they contain,
for example ascii (text), pictures, compressed data, etc.. To report on all
files in your home directory. It can be useful to determine what sort of data a file
contains in cases where the file name doesn’t give a hint. Type

file filename

history

The shell keeps an ordered list of all the commands that you have entered.
Each command is given a number according to the order it was entered.

history

You can use the exclamation character (!) to recall commands easily.

!! # recall last command

!-3 # recall third most recent command

!5 # recall 5th command in list

!grep # recall last command starting with grep

You can increase the size of the history buffer by typing

HISTSIZE=1000

find

find is a powerful but rather complicated command for finding files. By default it
searches recursively from the directory specified.

The first argument to the file command is the directory to start searching from. In its
simplest form the command then needs a name of an object to search for, and this

University of Leicester | Tutorial Six 27

must be specified as an argument to the –name option. The following example will
look for any object called file1, and will start searching from the current working
directory:

find . –name file1

To find all objects beginning with file, a wildcard can be used, but it must be quoted:

find . –name “file*”

locate

locate is a very quick way of finding files on a large system. It performs a similar role
to the find command but works in a very different way. find looks through the file
system until it finds your files (which can be slow but is almost always correct);
locate on the other hand searches a database in which the locations of files are
maintained. This is far quicker but doesn't reflect very recent changes to the file
system, because the database is usually only updated once a day.

locate filename

locate -i filename

locate -r filename

If your home directory is mounted on a shared filesystem such as NFS, then the

database which the locate command queries may not include your home directory.

wget

wget is a web client (not a browser). It can be used download files from web and ftp
sites:

wget URL

wget http://www.ee.surrey.ac.uk/Teaching/Unix/science.txt

wget -O sci.txt http://www.ee.surrey.ac.uk/Teaching/Unix/science.txt

University of Leicester | Tutorial Seven 28

Tutorial Seven

7.1 Variables

Variables are a way of passing information from the shell to programs when you run
them. Programs look "in the environment" for particular variables and if they are found
will use the values stored. Some are set by the system, others by you, yet others by
the shell, or any program that loads another program.

7.2 Environment Variables

An example of an environment variable is the OSTYPE variable. The value of this is
the current operating system you are using. When using variables it’s necessary to
refer to them with a $ sign at the start so that the shell knows that we are referring to
a variable. Type

echo $OSTYPE

More examples of environment variables are

 $USER - Your login name

 $HOME - Path name of your home directory

 $HOSTNAME - Name of the computer you are using

 $PATH - Directories the shell searches to find commands

 $SHELL – The shell you are using (should be bash!)

Environment variables are displayed using the env command. To show all values of
these variables, type

env | less

7.3 Setting variables

You can set shell variables using the = operator. For example, to change the number
of shell commands saved in the history list, you need to set the shell variable
HISTSIZE. It is set to 1000 by default on SPECTRE, but you can increase this if you
wish.

HISTSIZE=2000

Check this has worked by typing

echo $HISTSIZE

University of Leicester | Tutorial Seven 29

However, this will only set the variable for the current shell - it will be lost once you log
out. You should also be aware that the new value of the variable will

1. Not be picked up by any forked processes, including sub-shells
2. Not be picked up by any new sessions that you start

To address the first issue, you can export the variable – this means that forked
processes and sub-shells will inherit the variables,

export HISTSIZE=2000

To address the second issue (i.e to make the changes permanent) you will need to
add the above command to your .bashrc file.

First open the .bashrc file in nano (or another suitable text editor – (see appendices

A.3 Opening a text editor (PuTTY/SSH) and A.4 Opening a text editor (NX) for more
information)). If you have connected using PuTTY/SSH, use nano:

nano ~/.bashrc

Add the following line to your .bashrc file (it doesn’t matter where within the file as long
as it’s on a line of its own):

export HISTSIZE=2000

Save the file and force the shell to reread its .bashrc file by using the shell source
command:

source ~/.bashrc

University of Leicester | Tutorial Seven 30

Alternatively you could log out and then start a new shell. Finally, check this has
worked by typing

echo $HISTSIZE

7.4 Setting the path

When you type a command, your PATH variable defines in which directories the shell
will look to find the command you typed. It is a colon-separated list of directories, and
on SPECTRE can be very long, reflecting the number of applications and program
modules you may have loaded.

echo $PATH

will show a long list of directories.

If the system returns a message saying command: command not found, this indicates
that either the command doesn't exist at all on the system or it is simply not in your
path.

For example, to run units which we will compile and install in Tutorial Eight you either
need to directly specify the units path (~/units174/bin/units), or you need to have the
directory ~/units174/bin in your path. Come back to the rest of Tutorial 7.4 once you
have completed Tutorial Eight.

You can add it to the end of your existing path (the $PATH represents this) by issuing
the command:

 export PATH=$PATH:~/units174/bin

Don’t forget the colon, which separates the existing list of directories from the one you
are adding to the list.

Test that this worked by trying to run units in any directory other than where units is
actually located.

cd; units

HINT: You can run multiple commands on one line by separating them with a
semicolon.

To add this path permanently, add the following line to your .bashrc list of other
commands.

PATH=$PATH:~/units174/bin

University of Leicester | Tutorial Seven 31

which

The which command shows you the full path to a command (provided that the file is in
the path)

which command

which wget

If there are multiple programs with the same name, you can use:

which -a command

to list them all. However you should realize that if there are multiple programs with the

same name in your path only the one listed first will be executed.

University of Leicester | Tutorial Eight 32

Tutorial Eight

8.1 Compiling software packages

We have many public domain and commercial software packages installed on
SPECTRE which are available to all users. However, users are allowed to download
and install small software packages in their own home directory, software usually only
useful to them personally.

There are a number of steps needed to install the software.

 Locate and download the source code (which is usually compressed)
 Unpack the source code
 Compile the code
 Install the resulting executable
 Set paths to the installation directory

Of the above steps, probably the most difficult is the compilation stage.

Compiling Source Code

All high-level language code must be converted into a form the computer understands.
For example, C language source code is converted into a one or more object files
containing low-level machine code. The final stage in compiling a program involves
linking the object files to libraries which contain certain built-in functions. This final
stage produces an executable program, code which the computer’s CPU can execute
directly.

To do all these steps by hand is complicated and beyond the capability of the ordinary
user. A number of utilities and tools have been developed for programmers and end-
users to simplify these steps.

make and the Makefile

The make command allows programmers to manage large programs or groups of
programs. It aids in developing large programs by keeping track of which portions of
the entire program have been changed, compiling only those parts of the program
which have changed since the last compile.

The make program gets its set of compile rules from a text file called Makefile which
resides in the same directory as the source files. It contains information on how to
compile the software, e.g. the optimisation level, whether to include debugging info in
the executable. It also contains information on where to install the finished compiled
binaries (executables), manual pages, data files, dependent library files, configuration
files, etc.

University of Leicester | Tutorial Eight 33

Some packages require you to edit the Makefile by hand to set the final installation
directory and any other parameters. However, many packages are now distributed
with the GNU configure utility.

configure

As the number of UNIX variants increased, it became harder to write programs which
could run on all variants. Developers frequently did not have access to every system,
and the characteristics of some systems changed from version to version. The GNU
configure and build system simplifies the building of programs distributed as source
code. All programs are built using a simple, standardised, two-step process. The
program builder need not install any special tools in order to build the program.

The configure shell script attempts to guess correct values for various system-
dependent variables used during compilation. It uses those values to create a
Makefile in each directory of the package.

The simplest way to compile a package is:

1. cd to the directory containing the package's source code.
2. Type ./configure to configure the package for your system.
3. Type make to compile the package.
4. Optionally, type make check to run any self-tests that come with the package.
5. Type make install to install the programs and any data files and

documentation.
6. Optionally, type make clean to remove the program binaries and object files

from the source code directory

The configure utility supports a wide variety of options. There is usually a help option
available to get a list of interesting options for a particular configure script.

./configure --help

The only generic options you are likely to use are the --prefix and --exec-prefix options.
These options are used to specify the installation directories.

The directory named by the --prefix option will hold machine independent files such as
documentation, data and configuration files.

The directory named by the --exec-prefix option, (which is normally a subdirectory of
the --prefix directory), will hold machine dependent files such as executables.

8.2 Downloading source code

For this example, we will download a piece of free software that converts between
different units of measurements.

First create a new directory then copy the software and save it to your new directory.

University of Leicester | Tutorial Eight 34

mkdir download

cd download

cp /cm/shared/training/tutorial/units-1.74.tar.gz .

8.3 Extracting the source code

Make sure you are within the download directory and list the contents.

cd ~/download

ls -l

As you can see, the filename ends in .tar.gz. This is a common file format for
distributing software packages in source form. It comprises a tar file which has been
compressed with gzip (tar.gz files are often called tarballs). A tar file is a collection of
directories and files packaged as a single file with the tar command. Sometimes files
of this type are named ending with .tgz

First uncompress the file using the gunzip command. This will create a .tar file.

gunzip units-1.74.tar.gz

Then extract the contents of the tar file.

tar -xvf units-1.74.tar

Alternatively the two steps can combined into a single command:

tar -zxvf units-1.74.tar.gz

Notice the extra -z flag. This instructs tar to gunzip the file before unpacking the
archive. Again, list the contents of the download directory, then go to the units-1.74
sub-directory.

cd units-1.74

8.4 Configuring the package

The first thing to do is carefully read the README and INSTALL text files (use the
less command). These contain important information on how to compile and run the
software.

The units package uses the GNU configure system to compile the source code. We
will need to specify the installation directory, since the default will be the main system
area which you will not have write permissions for. We need to create an install
directory in your home directory.

University of Leicester | Tutorial Eight 35

mkdir ~/units174

Then run the configure utility setting the installation path to this.

./configure --prefix=$HOME/units174

If configure has run correctly, it will have created a Makefile with all necessary options.
You can view the Makefile if you wish (use the less command), but do not edit the
contents of this.

8.5 Building the package

Now you can go ahead and build the package by running the make command.

make

After a minute or two (depending on the speed of the computer), the executables will
be created. You can check to see everything compiled successfully by typing

make check

If everything is okay, you can now install the package.

make install

This will install the files into the ~/units174 directory you created earlier. It is
important to realize that while the

./configure

make

make check

make install

sequence is extremely common, it is not a standard and there is no absolute guarantee
that software will install this way. However, the make command is a standard Linux
command which reads in a user written file (the makefile) that describes how to build
and install software. If you are writing your own software (and in particular if you are
distributing your software) you should look to use the make command - although its
use is beyond the scope of this course. The configure command is more in-depth still
and will create a makefile for a given system from a template file, you will probably not
need to create your own configure scripts unless you are working on developing a very
large software application and intended to distribute it widely.

University of Leicester | Tutorial Eight 36

8.6 Running the software

You are now ready to run the software (assuming everything worked).

cd ~/units174

If you list the contents of the units directory, you will see a number of subdirectories.

bin The binary executables

info GNU info formatted documentation

man Man pages

share Shared data files

To run the program, change to the bin directory and type

./units

You have: 6 feet

You want: metres

* 1.8288

/ 0.54680665

(ctrl-d to exit)

If you get the answer 1.8288, congratulations, it worked. To view what units it can
convert between, view the data file in the share directory (the list is quite
comprehensive). To read the full documentation, change into the info directory and
type

info --file=units.info

8.7 Stripping unnecessary code

 When a piece of software is being developed, it is useful for the programmer to include
debugging information into the resulting executable. This way, if there are problems
encountered when running the executable, the programmer can load the executable
into a debugging software package and track down any software bugs.

This is useful for the programmer, but unnecessary for the user. We can assume that
the package, once finished and available for download has already been tested and
debugged. However, when we compiled the software above, debugging information
was still compiled into the final executable. Since it is unlikely that we are going to
need this debugging information, we can strip it out of the final executable. One of the
advantages of this is a much smaller executable, which should run slightly faster.

What we are going to do is look at the before and after size of the binary file. First
change into the bin directory of the units installation directory.

University of Leicester | Tutorial Eight 37

cd ~/units174/bin

ls -l

As you can see, the file is over 100kB in size. You can get more information
on the type of file by using the file command.

file units

units: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), for GNU/Linux
2.6.4, dynamically linked (uses shared libs), not stripped

To strip all the debug and line numbering information out of the binary file, use the strip
command

strip units

ls -l

As you can see, the file is now 45 kB – less than half its original size. Half of the binary
file was debug code! Check the file information again.

file units

units: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), for GNU/Linux
2.6.4, dynamically linked (uses shared libs), stripped

Notice now that the file is stripped.

University of Leicester | Tutorial Nine 38

Tutorial Nine

Automation of commands using shell scripts

Once you have become used to basic commands and finding your way around a

Linux system you may want to automate tasks which are executed frequently. This

can be done with shell scripts – lists of commands to run in sequence. This is a

simple but powerful form of programming which with loops and conditional

statements allows complex sequences of commands to be run, saving much time.

9.1 Basic shell script

Create and edit a file called test.sh:

#!/bin/bash

echo “Hello $USER”

The line at the beginning is called a shebang, sha-bang, hashbang, pound-bang or

hash-pling and tells the computer that the script should be run in a bash shell. The

script knows that everything beginning with a dollar sign ($) is a variable and will use

the value of the environment variable $USER (see section 7.2)

 Once you have finished editing the file, close the editor and make the file executable

with ‘chmod’, which you used in section 5.2

chmod +x test.sh

Before you run the script, what do you think the output will be?

Now run the script:

./test.sh

9.2 Using variables

As well as using environment variables, new variables can created and used within

your script. The example below uses a new variable, NUMLOGINS.

Note that you do not need to use the dollar sign when you create the variable, only to

refer to it once it has been created. The $(command) construct is used in this

instance to pass the output of a command or commands and assign the value to the

new variable.

University of Leicester | Tutorial Nine 39

#!/bin/bash

echo “Hello $USER”

NUMLOGINS=$(who | grep $USER | wc -l)

echo “You have $NUMLOGINS login sessions”

9.3 Looping with ‘for’

Rather than simply process a sequence of commands one after the other, loops can

perform the same commands for different variables. The example below uses the

variable $user which is set up at the beginning of the ‘for’ loop. Note that this is not

the same as the $USER environment variable as variable names are case sensitive.

#!/bin/bash

for user in gg78 ljg2 root

do

 NUMLOGINS=$(who | grep $user | wc –l)

 echo “$user has $NUMLOGINS sessions”

done

The script loops over the section between ‘do’ and ‘done’ once for each value of

$user specified by the line beginning with ‘for’.

Numbers can be used instead of variables in the loop so that the script can keep

track of which number loop it is on:

#!/bin/bash

for i in 1 2 3 4 5

do

 echo “loop $i”

done

If the script needs to loop a lot of times, this notation can be used:

for i in {1..20}

This will loop 20 times with the value of $i incrementing by 1 each time. If

incrementing by a value other than 1 is required then use the ‘seq’ command, eg:

for i in $(seq 0 0.5 4)

This will give values for $i from 0 to 4, incrementing by 0.5

University of Leicester | Tutorial Nine 40

9.4 Conditional statements

“if / then / else” statements allow conditional branching within a script. This script

tests the value of a variable and then decides which branch to take (and therefore

what to output), depending on that value.

#!/bin/bash

NUMLOGINS=$(who | grep $USER | wc –l)

if [$NUMLOGINS -gt 1]

then

 echo "$USER is logged in with at least 2 sessions"

else

 echo "$USER has less than 2 sessions"

fi

The ‘if … then … else’ statement must be finished with ‘fi’. The ‘else’ option is

optional – the script will carry on past ‘fi’ if you do not use it.

‘-gt’ is short for ‘greater than’. Other tests include:

 -eq is equal to

 -ne is not equal to

 -ge is greater than or equal to

 -lt is less than

 -le is less than or equal to

Exercise

Write a script which will test how many logins you and the ‘root’ user have and tell

you who has the most (or if equal)

University of Leicester | Appendix A: Connecting to SPECTRE 41

Appendix A: Connecting to SPECTRE

A.1 Using NoMachine (NX) Client

Windows 10

To install and then start NoMachine on a standard Windows 10 managed PC use

 Start > Software Center

Wait for the software list to populate, search for NoMachine and click to install:

University of Leicester | Appendix A: Connecting to SPECTRE 42

Once installed, you can log in to SPECTRE with the NoMachine client by doing:

 Start > NoMachine Enterprise Client > NoMachine Enterprise Client > UoL HPC

Windows 7

To install NoMachine from a standard Windows 7 managed PC use

Start > All Programs > Program Installer

Select NoMachine Enterprise Client 5.0.47 from the list, then click Install.

Once installed you can log in to SPECTRE with the NoMachine client by going to

 Start > All Programs > NoMachine Enterprise Client 5.0.47 > UoLHPC

University of Leicester | Appendix A: Connecting to SPECTRE 43

Windows 10 / Windows 7

The window shown below will now appear. Enter your username and password and

click Login.

After a short delay a window will open showing the SPECTRE desktop environment.

University of Leicester | Appendix A: Connecting to SPECTRE 44

A.2 Using PuTTY Client

Windows 10

To install and then start PuTTY on a standard Windows 10 managed PC use

 Start > Software Center

Wait for the software list to populate (this can take several minutes), search for

PuTTY and click to install:

University of Leicester | Appendix A: Connecting to SPECTRE 45

Once installed, you can start PuTTY by doing:

 Start > PuTTY > PuTTY

Windows 7

To install and start PuTTY on a standard Windows 7 managed PC use

Start > All Programs > Program Installer

University of Leicester | Appendix A: Connecting to SPECTRE 46

Select PuTTY 0.66 from the list of applications, then click Install to install it.

Once installed you start PuTTY by going to

 Start > All Programs > PuTTY > PuTTY

Windows 7 / Windows 10

Once you have installed and started PuTTY you will see the window shown below.

Double-click on SPECTRE2 in the Saved Sessions list. A new window will open and

promp for your username and password. The first time you connect you will be

asked to confirm the server key’s hash.

University of Leicester | Appendix A: Connecting to SPECTRE 47

A.3 Opening a text editor (PuTTY/SSH)

If you have logged on using PuTTY you will need to use a command line text editor.

We recommend using nano in this course. At the command prompt type

nano filename

This will open the text editor in the terminal and you will not be able to run other

commands until you’ve closed nano. You will see the following screen in the

terminal:

GNU nano 1.3.12 New Buffer

^G Get Help ^O WriteOut ^R Read File ^Y Prev Page ^K Cut Text ^C Cur Pos

^X Exit ^J Justify ^W Where Is ^V Next Page ^U UnCut Text^T To Spell

At this point you can enter the text you want to appear. You will need to know two

nano specific commands, to save your file, type:

Ctrl-O

and press enter to confirm the file name,

then to close nano type:

Ctrl-X

You will now be returned to the command prompt.

University of Leicester | Appendix A: Connecting to SPECTRE 48

A.4 Opening a text editor (NX)

If you logged on using NX you will be able to use a graphical text editor such as

gedit, at the command prompt, you should be able to type gedit followed by the

name of the file you would like to open (or create if it does not exist):

gedit <filename>

This will open the text editor in a new window.

Alternatively, you can find gedit on SPECTRE in Applications > Accessories > Text

Editor

A.5 Summary of commands used in this Tutorial

ls list files and directories

ls -a list all files and directories

mkdir make a directory

cd directory change to named directory

cd change to home-directory

cd ~ change to home-directory

cd .. change to parent directory

pwd display the path of the current directory

cp file1 file2 copy file1 and call it file2

mv file1 file2 move or rename file1 to file2

rm file remove a file

rmdir directory remove a directory

cat file Display or concatenate a file

less file display a file a page at a time

head file display the first few lines of a file

tail file display the last few lines of a file

grep 'keyword' file search a file for keywords

wc file count number of lines/words/characters in file

command > file redirect standard output to a file

command 2> file redirect standard error to a file

command >> file append standard output to a file

command < file redirect standard input from a file

command1 | command2 pipe the output of command1 to the input of command2

cat file1 file2 > file0 concatenate file1 and file2 to file0

sort sort data

who list users currently logged in

University of Leicester | Appendix A: Connecting to SPECTRE 49

* match any number of characters

? match one character

man command read the online manual page for a command

whatis command brief description of a command

apropos keyword match commands with keyword in their man pages

ls -lag list access rights for all files

chmod [options] file change access rights for named file

command & run command in background

^C kill the job running in the foreground

^Z suspend the job running in the foreground

bg background the suspended job

jobs list current jobs

fg %1 foreground job number 1

kill %1 kill job number 1

ps list current processes

kill 26152 kill process number 26152

