
A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 1 Handout 3

1 Powers of two

Definition 1.1 (Powers of 2). The expression 2n means the multiplication of n twos.

Therefore, 22 = 2 ·2 is a 4, 28 = 2 ·2 ·2 ·2 ·2 ·2 ·2 ·2 is 256, and 210 = 1024. Moreover, 21 = 2 and 20 = 1.

Several times one might write 2 ∗ ∗n or 2ˆn for 2n (ˆ is the hat/caret symbol usually co-located with the
numeric-6 keyboard key).

Power Value
20 1
21 2
24 16
28 256
210 1024
216 65536
220 1048576
230 1073741824
240 1099511627776
250 1125899906842624

Figure 1: Powers of two

Prefix Name Multiplier
d deca 101 = 10
h hecto 102 = 100
k kilo 103 = 1000
M mega 106

G giga 109

T tera 1012

P peta 1015

E exa 1018

d deci 10−1

c centi 10−2

m milli 10−3

µ micro 10−6

n nano 10−9

p pico 10−12

f femto 10−15

Figure 2: SI system prefixes

Prefix Name Multiplier
Ki kibi or kilobinary 210

Mi mebi or megabinary 220

Gi gibi or gigabinary 230

Ti tebi or terabinary 240

Pi pebi or petabinary 250

Figure 3: SI binary prefixes

Definition 1.2 (Properties of powers).

• (Multiplication.) 2m ·2n = 2m 2n = 2m+n. (Dot · optional.)

• (Division.) 2m/2n = 2m−n. (The symbol / is the slash symbol)

• (Exponentiation.) (2m)n = 2m·n.

Example 1.1 (Approximations for 210 and 220 and 230). Since 210 = 1024 ≈ 1000 = 103, we have that
220 =

(
210
)2 ≈ 10002 = 106, and likewise, 230 =

(
210
)3 ≈ 10003 = 109.

The last number, a one followed by nine zeroes, we call it a billion in American English; in (British) English
a billion is a million millions (aka trillion). If one writes 109 or 1012 no confusion is possible; therefore
avoid saying ”billion” or might hear a joke about millions, billions and trillions.

Note 1.1. A kilo uses a lower case k. A capital case K stands for Kelvin, as in degrees Kelvin.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 2 Handout 3

2 Logarithms base two (and e, and 10)

Definition 2.1 (Logarithm base two of n is lg(n)). The logarithm base two of n is formally denoted by
y = lg(n) or if we drop the parentheses, y = lgn, and is defined as the power y that we need to raise integer
2 to get n.

That is, y = lg(n) ⇐⇒ 2y = 2lg(n) = n.

From now on we will be using the informal form y = lgn without parentheses instead of y = lg(n). Another
way to write both is y= log2 n or y= log2 (n). The two writings: lgk n=(lgn)k are equivalent. We sometimes
write lg lgn to denote lg(lg(n)) and the nesting can go on. Note that lg(k) n with a parenthesized exponent
means something else (it is the iterated logarithm function).

Definition 2.2 (Other Logarithms). The other logarithms: log10(x) or log10 x and ln(x) or lnx or loge n,
are to the base 10 or to the base e = 2.7172 . . . of the Neperian logarithms respectively. If one writes logn,
then the writing may be ambiguous. Note that if we tilt towards calculus we use x as in lg(x) but if we
tilt towards computing or discrete mathematics we use n as in lg(n) for the indeterminate’s i.e. variable’s
name.

Expression Value Explanation
lg(n) y since 2y = 2lgn = n (by definition)
lg(1) 0 since 20 = 1
lg(2) 1 since 21 = 2
lg(256) 8 since 28 = 256
lg(1024) 10 since 210 = 1024
lg(1048576) 20 since 220 = 1048576
lg(1073741824) 30 and so on

Figure 4: Logarithms: Base two

Example 2.1. lg2 is one since 21 = 2. lg(256) is 8 since 28 = 256. lg(1) is 0 since 20 = 1.

Theorem 2.1 (Properties of Logarithms.). In general, 2lg(n) = n and thus,

i. (Multiplication.) lg(n ·m) = lgn+ lgm.

ii. (Division.) lg(n/m) = lgn− lgm.

iii. (Exponentiation.) lg(nm) = m · lgn.

iv. (Change of base.) nlgm = mlgn. Moreover lga = loga
log2 (whatever the base of the latter logs).

Example 2.2. Since 220 = 210 ·210 we have that lg(220) = lg(210 ·210) = lg(210)+ lg(210) = 10+10 = 20.
Likewise lg(230) = 30. Drawing from the exercise of the previous page, lg(1,000)≈ 10 , lg(1,000,000)≈
20 and lg(1,000,000,000)≈ 30.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 3 Handout 3

3 Sets and Sequences

Definition 3.1 (Set). A set is a collection of elements in no particular order.

Note 3.1 (Curly braces for a set). For a set we use curly braces { and } to denote it. In a set the order
of its elements does not mater. Thus set {10,30,20} is equal to {10,20,30}: both represent the same set
containing elements 10,20, and 30 and thus {10,30,20}= {10,20,30}.

Definition 3.2 (Sequence). A sequence is a collection of elements ordered in a specific way.

Note 3.2 (Angular brackes for a sequence). For a sequence we use angular brackets 〈 and 〉 to denote it. In
a sequence the order of its elements matters. Thus by using angular bracket notation sequence 〈10,30,20〉
represents a sequence where the first element is a 10, the second a 30 and the third a 20. This sequence is
different from sequence 〈10,20,30〉. The two are different because for example the second element of the
former is a 30, and the second element of the latter is a 20. Thus those two sequences differ in their second
element position. (They also differ in their third element position anyway.) Thus 〈10,30,20〉 6= 〈10,20,30〉.

Note 3.3 (Set vs Sequence). Sets include unique elements; sequences not necessarily. The {10,10,20} is
incorrect as in a set each element appears only once. The correct way to write this set is {10,20}. For a
sequence repetition is allowed thus 〈10,10,10〉 is OK.

Note 3.4 (Set/Sequence with many elements). Sets or sequences with too many elements to write down:
three periods (. . .). Thus {1,2, . . . ,n} would be a way to write all positive integers from 1 to n inclusive. The
three period symbol . . . is also known as ellipsis (or in plural form, ellipses).

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 4 Handout 3

4 Bits and bytes

Note 4.1 (Joke: ’Bits and bytes’ capitalization). The capitalization in the section header is English grammar
imposed and intended as an unintentional joke! Read through the end of this page in order to get it!

Definition 4.1 (Bit). The word bit is an acronym derived from binary digit and it is the minimal amount
of digital information. The correct notation for a bit is a fully spelled lower-case bit.

A bit can exist in one of two states: 1 and 0, or High and Low, or Up and Down, or True and False, or T and
F, or t and f. A lower-case b should never denote a bit! Several publications mistakenly do so, however!
If we want to write down in English 9 binary digits we write down 9bit; a transfer rate can be 9.2bit/s or
also 9.2bps. The notation 9b should be considered nonsense.

Definition 4.2 (Byte). A byte is the minimal amount of binary information that can be stored into the
memory of a computer and it is denoted by a capital case B.

Definition 4.3 (Word). Word is a fixed size piece of data handled by a microprocessor. The number of bit or
sometimes equivalently the number of bytes in a word is an important characteristic of the microprocessor’s
architecture.

Etymologically, a byte is the smallest amount of data a computer could bite out of its memory! We cannot
store in memory a single bit; we must utilize a byte thus wasting 7 binary digits. Nowadays, 1B is equivalent
to 8bit. Sometimes a byte is also called an octet. A 32-bit architecture has word size 32 bit.

Definition 4.4 (Memory size). Memory size is usually expressed in bytes or its multiples.

We never talk of 8,000bit memory, we prefer to write 1,000B rather than 1,000byte, or 1,000Byte.

Prefix Name Multiplier
1KiB 1kibibyte 210B
1MiB 1mebibyte 220B
1GiB 1gibibyte 230B
1TiB 1tebibyte 240B
1PiB 1pebibyte 250B

Figure 5: SI aggregates of a byte

Name Multiplier
1 short 2B = 16bit
1 word 4B = 32bit
1 double word 8B = 64bit

Figure 6: Other aggregates of a byte

Definition 4.5 (Confusing Notation: How many bytes in 1kB or 1MB or 1GB of RAM or Disk?). In SI,
1kB implies 1,000B; likewise 1MB is 1,000,000B and 1GB is 1,000,000,000B. When we refer to memory (eg.
RAM i.e. Random Access Memory or main memory), companies such as Microsoft or Intel mean that 1kB is
1,024B, that 1MB is 1,048,576B and 1GB is 230B. To add to this confusion, hard disk drive manufacturers
in warranties, define a 1kB, 1MB, and 1GB as in SI (1000B, 106B and 109B respectively).

Example 4.1 (When is 500GB equal to 453GB for the correct 453GiB?). A hard-disk drive (say, Seagate)
with 500GB on its packaging, will offer you a theoretical 500,000,000,000B. However this is unformatted
capacity; the real capacity after formatting would be 2-3% less, say 487,460,958,208B. Yet an operating
system such as Microsoft Windows 7 will report this latter number as 453GB. Microsoft would divide the
487,460,958,208 number with 1024*1024*1024 which is 453.93GiB i.e Microsoft’s 453GB.

Conclusion: Stick to KiB, MiB, GiB and avoid kB,MB,GB.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 5 Handout 3

5 Notation

Some preliminaries.

Definition 5.1 (colon symbol : and pipe symbol |). The colon symbol : stands for such that. The pipe
symbol | also stands for such that or alternatively for where.

Definition 5.2 (universal quantifier ∀). The ∀ symbol is also known as the universal quantifier. It reads as
for all.

Definition 5.3 (existential quantifier ∃). The ∃ symbol is also called the existential quantifier. It reads as
there exists in singular or in plural as there exist.

Definition 5.4 (set membership). Symbol ∈ is the belongs to set membership symbol.

Definition 5.5 (implication). X⇒Y is also known as implication and can be stated otherwise as “X implies
Y ”. Y is then necessary for X, and X is sufficient for Y .

Definition 5.6 (Unknown, Variable, Indeterminate). For f (x) or log(x) the x inside the parentheses is what
is traditionally known as an unknown. Compu-speak we might call it a ”variable” but we have not yet
defined a variable formally. In Math we also call it an indeterminate. We called it before a value (or an
operand).

An operator in mathematics and also in computing is a symbol that indicates an operation. The object
of the operator and its operation is known as the operand. An operation denoted by an operator (and thus
a function) can have one or more operands and is then known as a unary operator/operation (one operand),
binary (two operands), etc.

Definition 5.7 (Unary operators and operations). A unary operator is a symbol that indicates a unary op-
eration, i.e. the application of a mathematical or computing function on one (single) value. The value is
known as the operand of the operator (and the corresponding operation).

When a unary operator is used, it precedes (or surrounds) its operand.
Any one of the trigonometric functions such as sin is a unary operator. In sin(x), the sin is a unary

operator, the x is the operand and sin(x) is the unary opeation that involves the application of the sine
trigonometric function on operand x.

Thus operator is a symbol, the operation is the mathematical or comuting function implied by the
symbol (operator) and the object of the operation or operator is the operand.

Another unary operator is the absolute value function ||. Thus |5| is a 5. We also have unary operators
+ and − to assign a positive or negative sign to a number. Thus in +5 and −5 the operator also precedes its
corresponding single operand.

Besides unary operators we also have binary operators that denote a binary operation.

Definition 5.8 (Binary operators, and operations). A binary operator is a symbol that indicates a binary
operation i.e. the application of a mathematical or computing function on two values. The two values are
known as the operands of the operator and its corresponding operation. The first one (from the left) is known
as the left operand and the second one as the right operand.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 6 Handout 3

The +, the plus-symbol, is the (additive) binary operator that indicates the operation known as addition.
In 5+ 3, the operator is the plus (+), the operation is addition as implied by the presence of the additive
operator plus. Operation addition is a binary operation and requires two operands present. Numbers 5 and
3 are the two operands that will participate in the operation: 5 is the left operand and 3 the right operand.
In this context, operation addition is a binary operation and + is a binary operator because they require two
operands. Previously, the plus-symbol indicated a unary operator and operation. The presence of one or two
operands resolves the type of the operator/operation (unary vs binary).

Definition 5.9 (Operator overload). The same operator can indicate one or more operations: one unary and
one binary. The presence of one or two operands, that is the context, can be used to resolve the type of the
operator and its coresponding operation.

In expression 5−3 the dash-symbol (also known as the minus-symbol) − denotes operation subtraction
and it is a binary operator. Operation subtraction is then a binary operation. The plus-symbol and similarly
the dash-symbol are also unary operators and each one indicates the sign assigned to an integer.

Definition 5.10 (Prefix, postfix and infix notation). A unary operator requires one operand, a binary oper-
ator two operands. In the former case the operator precedes the operand. In the latter case the operator
can precede, follow or be in-between the operands. Thus +5 3 or 5 3+ or 5+3 indicate the same addition
operation in prefix, postfix and infix notation. In all cases 5 is the left operand and 3 is the right operand.

We are used to using infix notation in describing operations.

Definition 5.11 (Integer vs Real ideterminate names). In functions defined hereafter we will shall more often
use n instead of x. Indeterminate n implies a non-negative or positive integer. Indeterminate x implies a real
number. We describe a discrete math universe of non-negative integers.

Definition 5.12 (Algorithms: Problem size, Input size and names). Indeterminate n will usually denote
problem size or input size. Thus for a sequence of n keys, n represents the number of elements or keys in
the sequence, the problem size and also to some degree the input size. For a 2d-array (aka matrix) n× n,
n represents the problem size denoting the number of its rows or columns i.e. its geometry or shape of the
matrix. In this latter example the input size is the size of the matrix i.e. its number of elements which is n2.

Definition 5.13 (Sums and Sigma notation). The sum a0+a1+ . . .+an can be represented in compact form
as

i=n

∑
i=0

ai =
n

∑
i=0

ai = a0 + . . .+an

Variable i has values that vary between a smallest value as indicated under the sum’s Sigma symbol and
it is i = 0 in this example and its largest value as indicated over the sum’s Sigma symbol and it is i = n). It
also assumes all integer number values between 0 and n (inclusive of the end points). The variable’s name
is available beneath the Sigma and can be omitted over it as shown in the second formulation of the sum.
The terms of the sum are usually members of a sequence and in this case a0,a1, . . . ,an. The general member
of the sequence is ai as described in the sigma / sum formulation. If the sequence is simple such as ai = i
instead of ai we use directly i; likewise for ai = i2, ai = i3.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 7 Handout 3

Definition 5.14 (Integer numbers). An integer number is a number that takes integer values. It can be
positive, negative or zero. For a positive integer number we might or might not place a plus sign + before
its magnitude. For a negative integer number we always place a negative sign − before its magnitude.

Definition 5.15 (Non-negative integer numbers). A non-negative integer number can be positive or zero.

Definition 5.16 (Natural (integer) numbers: unsigned integers). A natural (integer) number is an integer
number that is a positive integer number. However this definition varies and it might also mean a non-
negative integer number. We also call it an unsigned integer.

Most numbers listed below would be natural numbers (one way or the other). When we start talking
about negative numbers this will be made very clear (and the discussion will be brief).

Example 5.1. Integer 13 is a positive integer and so is +13. Integer −13 is a negative integer. Integer 0 is
neither positive nor negative. Ordinarily, there should be no sign preceding a 0.

Definition 5.17 (Integer Numbers: Signed Integers). In general, a (signed) integer number can be posi-
tive, negative or zero.

A zero does not have a sign. A 5 or +5 mean the same thing: a positive sign for 5. Then a −5 means a
negative sign for five i.e. minus five.

Definition 5.18 (Real Numbers: Floating-point Numbers). A real number that includes integer digits,
possibly a decimal point, and decimal digits is called a floating-point number.

Thus 12.1 or 12.10 or 1.21 ·101 all represent the same real number.

Definition 5.19 (Exponential notation). A real number can be expressed in exponential notation in the form
a×10b or equivalently as aEb or aeb.

Thus 5.1×103 is 5.1e3 or 5.1E3.

Definition 5.20 (Magnitude of a number real or integer). The magnitude of an integer or real number is its
absolute value.

Example 5.2 (Magnitude vs value). For a negative number such as −5 its magnitude is 5 and its value is
−5. Thus the ’we always place a negative sign − before its magnitude’ above makes sense.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 8 Handout 3

6 Frequency and the Time domain

Definition 6.1 (Time). The unit of time is the second and it is denoted by 1s or also 1sec but the latter is
not SI compliant.

Submultiples are 1ms,1µs,1ns,1ps which are 10−3,10−6,10−9,10−12 respectively of a second, and are
pronounced millisecond, microsecond, nanosecond, and picosecond respectively. Note that a millisecond
has two ells.

Definition 6.2 (Frequency). Frequency is the number of times an event is repeated in the unit of time. The
unit of frequency is cycles per second or cycles/s or just Hz. The symbol for the unit of frequency is the
Hertz, i.e. 1Hz = 1cycle/s.

Then 1kHz, 1MHz, 1GHz, and 1THz are 1000, 106,109,1012 cycles/s or Hz. Note that in all cases the H
of a Hertz is CAPITAL CASE, never lower-case. (The z is lower case everywhere.)

Definition 6.3 (Time vs Frequency). The relationship between time (t) and frequency (f) is inversely pro-
portional. Thus f · t = 1

Thus 5Hz, means that there are 5 cycles in a second and thus the period of a cycle is one-fifth of a
second. Thus f=5Hz implies t=1/5s=0.2s.

Computer or microprocessor speed used to be denoted in MHz and nowadays in GHz. Thus an Intel

80486DX microprocessor of the early 1990s rated at 25MHz, used to execute 25,000,000 instructions per
second; one instruction had a period or execution time of roughly 1/25,000,000 = 40µs.

A moderm CPU rated at 2GHz allows instructions to be completed in 1/2,000,000,000 = 0.5ns.
And note that in the 1990s and also in the 2010s retrieving one byte of main memory still takes 60-80ns.

Definition 6.4 (A nanosecond is (roughly) one foot!). In one nanosecond, light (in vacuum) can travel a
distance that is approximately 1 foot. Thus 1 foot is approximately ’’1nanosecond’’.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 9 Handout 3

7 Number systems: Denary, Binary, Octal, and Hexadecimal

When one writes down number 13, implicit in its writing is that the number is an integer number base-10.
For integer numbers base-10 we utilize ten digits to describe them (i.e. write them down). These ten digits
are 0-9. The base is formally known as the radix. Integer numbers or numbers in general can be written
down in a variety of radixes (the plural of radix). The most popular radix is radix-10 i.e. base-10.

Definition 7.1 (Radix-10 or Base-10: denary notation). A number written down in radix-10, also known
colloquially as base-10, is expressed in denary notation by utilizing the ten digits 0 through 9 to write it.
One can explicitly indicate the radix by writing the radix in the form of a subscript next to the number.

The den of denary is a corruption of ten i.e. 10 and it means base-10 or radix-10!

Example 7.1 (A denary integer). Formally we should read 13 as ”base-10 integer 13” or ”radix-10 integer
13”. To indicate the radix explicitly we may write 1310; then we can skip the ”base-10 integer” or ”radix-10
integer” wording. In all three cases thirteen is expressed in denary notation. The left-most non-zero digit
is the most-significant digit (msd), the right-most digit is the least-significant digit (lsd). Thus for integer
13 in radix-10, the 1 is the most-significant digit and the 3 is the least-significant digit.

Note 7.1 (Caution!). Avoid the use of the term decimal to refer to a radix-10 or base-10 integer expressed
in denary notation. The term decimal implies a decimal point i.e. we imply a real number expressed in
denary notation such as 13.0 or 13.31!

Definition 7.2 (Denary natural numbers in fixed-width). An n-digit radix-10 natural integer number x is
denoted as x = xn−1xn−2 . . .x0, where xi ∈ {0, . . . ,9} for all 0≤ i < n. The most-significant digit is xn−1 and
the least-significant digit is x0. The magnitude of the number is

|x|=
i=n−1

∑
i=0

xi ·10i.

The value of x is its magnitude i.e. a = |x|.

The definition can easily extend to integer numbers in general.

Definition 7.3 (Denary integer numbers in fixed-width). An n-digit radix-10 natural integer number x is
denoted as x = sxn−1xn−2 . . .x0, where xi ∈ {0, . . . ,9} for all 0 ≤ i < n, and s is + or empty to indicate a
positive integer, empty for zero, or − to indicate a negative integer. The most-significant digit is xn−1 and
the least-significant digit is x0, and s is the sign. The magnitude of the number is

|x|=
i=n−1

∑
i=0

xi ·10i.

The value of a is x = (−1) · |x| if the sign of x is a negative one i.e. −1, or its magnitude x = |x| otherwise.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 10 Handout 3

Example 7.2 (Units of radix-10 integer). For x = xn−1xn−2 . . .x0, xi ∈ {0, . . . ,9} for all 0≤ i < n, the digit
xi indicates the number of times the corresponding multiplier 10i is going to be used to derive the magnitude
of the radix-10 integer.

For the example above x0 is the number of units, x1 is the number of tens, x2 is the number of hundreds,
x3 is the number of thousands contributing to the magnitude of x.

Method 7.1 (Finding the magnitude of a radix-10 integer). For a = 12345610 we have, 6 units, 5 tens, 4
hundreds, 3 thousands, and so on. To derive its magnitude, we write all powers of 10 right to left from most
to least significant digit over the number, multiply the corresponding digit and power and add up the results.

105 104 103 102 101 100 generate powers
· + · + · + · + · + ·
1 2 3 4 5 6 = digits
1 ·105 + 2 ·104 + 3 ·103 + 4 ·102 + 5 ·101 + 6 ·100 = pairwise product
100,000 + 20,000 + 3,000 + 400 + 50 + 6 = 123,456 add up results

Example 7.3 (Leading zeroes vs Trailing zeroes). Leading zeroes do not change the outcome. So 123456
and 00123456 are the same number; the two leading zeroes have no effect. Trailing zeroes are important,
123456 and 12345600 are two different numbers. The latter can be derived from the former by multiplying
with 102 i.e. 10 raised to the number of trailing zeroes to derive the latter number from the former. This is
also the case for 12300 and 1230000.

Base or Radix # digits digits

Binary 2 2 0 , 1

Octal 8 8 0 .. 7

Denary 10 10 0 .. 9

Hexadecimal 16 16 0 .. 9 , a .. f ; alternative: 0 .. 9 , A .. F

Fact 7.1 (Table of integers). A table of some integers in binary, octal, hexadecimal and denary is shown
below.

Binary Denary Hexadecimal Octal Binary(4-bit) Shorthand

0 0 0 0 0000 0o17 for octal 17

1 1 1 1 0001 0xff for hexadecimal FF lower-case

10 2 2 2 0010 0xFF for hexadecimal FF upper-ace

11 3 3 3 0011

100 4 4 4 0100 Sometimes

101 5 5 5 0101 017 indicates 0o17

110 6 6 6 0110

111 7 7 7 0111

1000 8 8 10 1000

1001 9 9 11 1001

1010 10 A 12 1010

1011 11 B 13 1011

1100 12 C 14 1100

1101 13 D 15 1101

1110 14 E 16 1110

1111 15 F 17 1111

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 11 Handout 3

Definition 7.4 (Binary notation of a natural number). A natural number x is denoted in radix-2 as the n-digit
(or n-bit) sequence bin(x) = xn−1xn−2 . . .x0, where xi ∈ {0,1} for all 0≤ i < n. For bin(x) in binary notation
its magnitude and value x is

x = |x|=
i=n−1

∑
i=0

xi ·2i.

Definition 7.5 (Octal notation of a natural number). A natural number x is denoted in radix-8 as the n-
digit sequence oct(x) = xn−1xn−2 . . .x0, where xi ∈ {0,1,2,3,4,5,6,7} for all 0≤ i < n. For oct(x) in octal
notation its magnitude x is

x = |x|=
i=n−1

∑
i=0

xi ·8i.

Definition 7.6 (Hexadecimal notation of a natural number). A natural number x is denoted in radix-16
as the n-character sequence hex(x) = xn−1xn−2 . . .x0, where xi ∈ {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e, f} for
all 0 ≤ i < n, or equivalently xi ∈ {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} for all 0 ≤ i < n. For hex(x) in
hexadecimal notation its magnitude x is

x = |x|=
i=n−1

∑
i=0

xi ·16i,

with an a or A being interpreted as ordinal 10, b or B as an 11, c or C as a 12, d or D as a 13, e or E as a
14, and f or F as a 15.

Example 7.4. If we write 101 we might indicate 10110 or 1012 or 1018 or 10116.
10110 is 101 in denary which is one hunder and one.
1012 is 1 ·22 +0 ·21 +1 ·20 = 5 i.e. five in denary.
1018 is 1 ·82 +0 ·81 +1 ·80 = 65 i.e. sixty-five in denary.
10116 is 1 ·162 +0 ·161 +1 ·160 = 257 i.e. two-hundred fifty seven in denary.

Binary into Denary

Example 7.5 (Convert binary into denary). Find the magnitude or value x of the 5-bit binary
number (n = 5) with bin(x) = 11001.

24 23 22 21 20

· · · · ·
1 1 0 0 1 =

16 + 8 + 0 + 0 + 1 = 25

Thus x = |x|= 25.

All previous definition are for a fixed-width notation, where the number of digits used is fixed to n. It is
possible then that leading zeroes would appear in the representation. Thus leading zeroes can be suppressed
and all natural numbers in a given range say from 0 to 2m−1 can be represented with a minimal number of
m binary digits (aka bits).

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 12 Handout 3

Example 7.6 (Fixed-width vs Minimal-width).

0,1 represented in binary with 1 bit as 0,1

0,1,2,3 represented in binary with 2 bits as 00,01,10,11

0,1,2,3,4,5,6,7 represented in binary with 3 bits as 000,001,010,011,100,101,110,111

0−15 represented in binary with 4 bits as 0000−1111

. . .

0 . . .2m−1 represented in binary with m bits as 00 . . .0︸ ︷︷ ︸
m bits

−1 . . .1︸ ︷︷ ︸
m bits

Example 7.7 (m bits for a natural number). What is the range of natural numbers that can be represented
with m bits? What is the smallest and largest natural number? How many natural numbers in total. The
answer is 2m as shown above with the smallest being 0 i.e. m zeroes and the largest 2m−1 i.e. m ones.

Example 7.8 (m ones). The value a of m-bit bin(a) = 1 . . .1︸ ︷︷ ︸
m ones

is a = 2m−1.

Example 7.9 (One followed by m−1 zeroes). The value a of m-bit bin(a) = 1 0 . . .0︸ ︷︷ ︸
m−1 zeroes

is a = 2m−1.

Definition 7.7 (Octal Notation: Addendum). Instead of writing 1018 we can also write 0o101 to indicate
a number in octal notation. (In the past a leading zero indicated an octal number but this is confusing:
0o101 is more obvious than an 0101.)

Definition 7.8 (Hexadecimal Notation: Addendum). Instead of writing 10116 we can also write 0x101 to
indicate a number in hexadecimal notation. Moreover one can use 0x or 0X depending on whether a− f
or A−F are to be used in the representation: thus we write 0x1f1 for the lower-case f ’s appearance and
0X1F1 for the upper-case F’s appearance.

Example 7.10 (n-bit or n-digit natural numbers). An n-bit notation indicates a binary number represen-
tation as a bit is an indicator of a binary digit. Otherwise we use the term n-digit and the word digit can
also refer to the a-f or A-F of a number in hexadecimal notation.

Example 7.11.

101 is radix-10, radix-2, radix-8, radix-16 representation of 101, 5, 65, 257 resp.

81 cannot be in radix-2, radix-8 because it uses an 8 (radix-10, radix-16 only)

AB cannot be in radix-10, radix-2, radix-8, becaused digits A,B are radix-16 digits only

Fact 7.2 (Number of bits for unsigned integer a > 0). The number of bits m without leading zeroes in bin(a)
of a natural number a is given by m = blgac+1 = dlg(a+1)e.

Thus for 1 we need 1 bit, for 2 i.e. 102 we need two, for 4 ie. 1002 we need three and for 7 i.e 1112 we
also need three.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 13 Handout 3

Proof. From Example 7.8 and Example 7.9 we have that any natural number a such that 2m−1 ≤ a≤ 2m−1
needs m bits for its representation bin(a). Natural numbers a < 2m−1 need m− 1 or fewer bits; they can
become m-bit by using leading zeroes as shown in Example 7.6.

The range of a with leading bit one 2m−1 ≤ a ≤ 2m− 1 can be rewritten as 2m−1 ≤ a < 2m. Taking
logarithms base two we have m−1≤ lga < m.

2m−1 ≤ a ≤2m−1

2m−1 ≤ a <2m

m−1≤ lg(a) <m.

m−1≤ blg(a)c ≤ lg(a) <m.

Since blg(a)c ≤ lg(a) and by the last inequality above less than m, we have that consecutive integers m−1
and m are the only two integers surrounding lg(a). If blg(a)c ≤ lg(a) cannot be m it should be m− 1 i.e.
m−1 = blgac implying m = blgac+1.

Similarly,

2m−1 ≤ a ≤2m−1

2m−1 +1≤ (a+1) ≤2m

2m−1 < (a+1) ≤2m

m−1 < lg(a+1) ≤m.

m−1 < lg(a+1)≤ dlg(a+1)e ≤m.

Since dlg(a+1)e> m−1 and dlg(a+1)e ≤m, there can be only one possibility that dlg(a+1)e= m.

Extension of Algorithm in Example 7.5 : Radix-b to Radix-10

Fact 7.3 (Radix-b to Radix-10t). We can convert a radix-b into radix-10 either left-to-right or right-to-left.
The example below is left-to-right for b = 2.

Algorithm Base-b-to-Base-10 The example shown is for binary to decimal conversion

Algorithm Base-2-to-Base-10 RES*b + t -> RES > shows bit that is being read

that is the t value

RES=0; b=2; 0 - 0 1 0 1 0 1 1

repeat until all bits are read 0*b + 1 -> 1 >1 0 1 0 1 1

read_next_bit t; %shown next to . 1*b + 0 -> 2 1 >0 1 0 1 1

RES = RES * b +t; % RES next to = 2*b + 1 -> 5 1 0 >1 0 1 1

5*b + 0 -> 10 1 0 1 >0 1 1

10*b + 1 -> 21 1 0 1 0 >1 1

21*2 + 1 -> 43 1 0 1 0 1 >1

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 14 Handout 3

Binary into Octal, Binary into Hexadecimal

Fact 7.4 (Radix-2 to Radix-8: Groups of 3 bit). For natural number a for which bin(a) is available, it
octal notation can be derived easily by grouping bits into groups of three right to left and converting the
three-bit binary into the corresponding octal digit using the Table of Fact 7.1. (The leftmost group might
have its binary digits padded with leading zeroes to have four bits.)

’ 11’111’111 : Group into groups of 3 bits : Step 1

’011’111’111 : Add leading zeroes left group : Step 2

3 7 7 : Convert triplets into octal : Step 3 [Use also Table of Fact 6.1]

0o377 : Output : Step 4

Fact 7.5 (Radix-2 to Radix-16: Groups of 4 bit). For natural number a for which bin(a) is available, it
hexadecimal notation can be derived easily by grouping bits into groups of four right to left and converting
the four-bit binary into the corresponding hexadecimal digit using the Table of Fact 7.1. (The leftmost group
might have its binary digits padded with leading zeroes to have three bits.)

’1111’1111 : Group into groups of 4 bits : Step 1.

’1111’1111 : Add leading zeroes left group : Step 2

F F : Convert quadruplets into hex : Step 3 [Use also Table of Fact 6.1]

0XFF : Output using A-F : Step 4

or

0xff : Output using a-f : Step 4

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 15 Handout 3

Binary into Octal, Binary into Hexadecimal

Fact 7.6 (Radix-10 to Radix-2: Right to Left).

Input : Decimal integer a.
Output: Binary representation of bin(a) of a. (Right to left.)

Step 1. Set X = a. Bit sequence will be generated right-to-left, least-to-most significant.
Step 2. If X is even, generate a 0, set X = X/2, and Go to Step 4; otherwise (X odd) go to Step 3.
Step 3. If X is odd, generate a 1 and set X = (X−1)/2. Go to Step 4.
Step 4. If X is 0 go to Step 5, else go to Step 2 and repeat.
Step 5. Output the result (write it down properly).

Fact 7.7 (Radix-10 to Radix-2: Left to Right).

Input : Decimal integer a.
Output: Binary representation of bin(a) of a. (Left to right.)

Step 1. Starting with 1, compute by doubling 20,21, . . . ,2m the largest 2m ≤ a. Set X = a. P = 2m.
Step 2. If X is equal to 0 Go to Step 5 else continue to Step 3.
Step 3. If X ≤ P output ’1’ , set X = X−P, P = P/2. Go to Step 2.
Step 4. If X > P output ’0’ , set P = P/2. Go to Step 2.
Step 5. Done.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 16 Handout 3

Definition 7.9 (bin(x,n)). We shall use the notation bin(x,n) to denote the n-bit notation of denary x in
binary. (Leading zeroes are used to pad the result to n bit.)

Definition 7.10 (oct(x,n)). We shall use the notation oct(x,n) to denote the n octal-digit notation of denary
x in octal representation. (Leading zeroes are used to pad the result to n digit octal.)

Definition 7.11 (hex(x,n) or HEX(x,n)). We shall use the notation hex(x,n) or HEX(x,n) to denote the n
hexadecimal-digit notation of denary x in hexadecimal representation. (Leading zeroes are used to pad the
result to n digit hexadecimal.)

Thus bin(2,8)= 00000010 and bin(0,4)=0000. But note that bin(2,1)= 10. Moreover oct(2,5)= 00002,
oct(8,2)= 10 and hex(10,2)= 0a whereas HEX(10,2) =0A.

Note that when we use the notation oct(8,2) we write oct(8,2)=10 rather than oct(8,2)=0o10. The octal
number is not standalone but the result (value) of a function’s application!

Definition 7.12 (den(x,n) or den(x,n,m)). Function den(x,n) converts x into n-digits denary. If n is insuf-
ficient (too small) it generates as many digits as needed with not leading zeroes. By default x is in binary
unless it is preceded by 0x or 0X or 0o. Function den(x,n,m) works similarly except that m = 2 denotes that
x is in binary, m = 8 in octal, and m = 16 in hecadecimal.

Thus den(10,0)=2, den(1000,2)=08, den(10,0,2)=2, den(10,0,8)=8, den(10,0,16)=16. Likewise, den(0o10,0)=8,
den(0x10,0)=16.

Operating Systems : Page numbers and offsets.
In operating systems, sometimes we need to do bit manipulations or extraction of information. A logical

address referring to memory in general is an integer between 0 and n− 1. The size of memory is n. In
practice n is a power of two. This means that all memory addresses from 0 through n−1 can be represented
with the same fixed number of binary digits needed for the representation of the largest integer in the range,
n−1. By way of Fact 7.2 this is lgn if we substitute a = n−1 in Fact 7.2, and given that n is (assumed to
be) a power of two no ceilings or floors are needed.

In operating systems a flat logical memory space of n bytes is split into pages of equal size. The size of
a page is s and s is also a power of two. Thus an n address space can be split into G = n/s pages, each of
size s bytes.

Divisions involving powers of two become subtractions i.e. shift-right operations. The fact that both
n and s are powers of two helps a lot. Division (as in n/s) is exact with no decimal (i.e. quotient is integer
and remainder is zero). Moreover we can avoid division by subtracting the exponents. Thus dividing 256 by
8 the regular way requires a division but dividing 28 with 23 requires a subtraction between the exponents 8
and 3 i.e. 8−3 = 5. The result is 28−3 = 25 i.e. 32. In fact we can avoid even that subtraction if we maintain
the original numbers and the results in binary : 256 in minimal binary representation (no leading zeroes) is
100000000 and 8 is 1000. Division of 256 = 28 by 8 = 23 is equivalent to shifting the binary representation
of 256 three positions to the right (i.e. we shift the Dividend 256 three positions to the right, with three
being the exponent of the divisor with the result being the quotient i.e. a 100000 which is binary for 32.)

Divisor Dividend ; Q= Divisor / Dividend

(Both are power of two)

256 integer-divison-by 8 in-denary

2**8 2**3 in-denary but base 2 expo notation

Q= 2**8 / 2**3 = 2**(8-3)= 2**5 = 32 in denary

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 17 Handout 3

bin(256)=100000000 bin(8)= 1000 in-binary

Q= SHIFTRIGHT(100000000,3)=100000 Q is 100000 in binary (i.e. 2**5)

Convert a logical address to a page number and an offset: L = (P,T). A logical memory address L
in the range 0 to n−1 can be expressed then as a page number P and offset T within a page: L = (P,T). If
the number of pages is G then P varies from 0 to G−1. If page size is s bytes, T varies from 0 to s−1.

Logical address L gets mapped to pair (P,T) of a page number P, and an offset T , where 0 ≤ L < n,
0≤ P < n/s, and 0≤ T < s.

There is an easy way to obtain P and T from L: P = floor(L/s), T = L mod s. Function mod is denoted
in C/C++ by the % sign to denote the integer remainder when dividing the left hand side with the right hand
side. The left-hand size (L) is the dividend, and the right-hand side (s) is the divisor of the division. The
quotient is P and the remainder of the division is T (the offset).

Definition 7.13 (Convert a logical address to a page number with offset: L=(P,T)). A memory space of
n bytes, supports a paging system of page size s bytes. A logical (absolute) address L in that memory space
can be mapped into a page P and offset T within that page: L = (P,T). The mapping is as follows:

(n,s) : L = (P,T) ⇒ P = floor(L/s), T = L mod s, 0≤ L < n, 0≤ P < n/s, 0≤ T < s.

In C/C++ floor is integer division and mod is denoted %. Thus another way to write it is to say

(n,s) : L = (P,T) ⇒ P = (L/s), T = L%s, 0≤ L < n, 0≤ P < n/s, 0≤ T < s.

Definition 7.14 (Convert a page number with offset (P,T) into a logical address L.). Moreover, given
(P,T) we can recover L if we know the page size s. From (P,T) to L.

(n,s) : (P,T) = L ⇒ L = P× s+T, 0≤ L < n, 0≤ P < n/s, 0≤ T < s.

Example 7.12. (To make initial calculations easy, we drop the power of two requirement.) If we have a
memory of size n= 100,000B and a paged organization with page size s= 5,000B, then we can view memory
as a collection of 20 pages (n/s = 100000/5000 = 20) each of size s = 5000B. Thus an L = 23456 gets
mapped to P= 23456/50000= 4, and T = 23456%5000= 3456. Therefore L= (P,T) is 23456= (4,3456).
Moreover we can retrieve L from (P,T): L = P× s+T . Therefore 23456 = 4×5000+3456.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 18 Handout 3

In binary, most information about s and G = n/s can be retrieved from the bit sequence representing L.

Definition 7.15. We view a logical address L as the concatenation of a page number P and and an offset T .
Thus L = (P,T) becomes L = 〈P,T 〉, where 〈〉 is the concatenation operator.

P: Page Number T: Offset
}

Logical Address︸ ︷︷ ︸
L: Logical Address

Suppose that n = 256. Then lgn = 8 and we use 8-bit addresses.
Suppose that s = 8. Then lgs = 3.
In this case G = n/s = 32 = 25 i.e. 0 ≤ P < 25 = G. Thus we need lgG = lg32 = 5 bit for the page

number P.
Moreover since s = 8, we have that 0≤ T < 23 = s. Thus we need lgs = lg8 = 3 bit for the offset T .

Definition 7.16. An 8-bit logical address L is thus the concatenation of the 5-bit page number P and a 3-bit
offset T . Thus L = (P,T) becomes L = 〈P,T 〉, where 〈〉 is the concatenation operator.

P:5-bit Page Number T:3-bit Offset
}

Logical Address︸ ︷︷ ︸
L: 8-bit Logical Address

Example 7.13. We can easily extract all relevant information from the picture below. Memory space has
n = 256 bytes. Number of bits is 8 since n = 256 and thus lgn = 8. A logical address L is in the range
0 ≤ L < n = 256 and thus needs 8 bit for its representation. Given that the page size s is 8B an offset T
needs lgs = lg8 = 3 bit and thus 0 ≤ T < s = 23 = 8. Moreover G = n/s = 256/8 = 32 and lgG = 5 and
thus a page number P is 5-bit since G = 25 and therefore 0≤ P < G = 25 = 32.

01234567

0 1 0 1 1 0 0 1
}

Logical Address︸ ︷︷ ︸
Page Number

︸ ︷︷ ︸
Offset

Let L = 01011001 be in binary. The logical address is the binary 01011001 which is 89 in denary. The
page number P is the binary 01011, the left-most five bit of L. In denary, this is 11. Thus P = 11. The
offset T is the binary 001, the right-mist three bit of L. In denary, this is 1. Thus offset T = 1. Because
n,s are powers of two an arbitrary L in the range 0 . . .n− 1 can be mapped into (P,T) without a division
but with just bit manipulation. Of course we could have extracted (P,T) from L using integer division by
establishing a quotient (which is P) and a remainder (which is T) from the dividend L and the divisor s:
(L/s,L%s) = (89/8,89%8) = (11,1).
Moreover L = P× s+T = 11×8+1 = 89.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 19 Handout 3

8 ASCII, Unicode, UTF-8, UTF-16

Sequences of bits (or bytes) can be viewed as an unsigned integer (positive or non-negative integer), or
signed integer (positive or negative or zero), or a real number (fixed-point or floating-point). They can also
be viewed as the representation of a symbol (also known as ’character’) in a string. A symbol (character) can
be a letter in a language (eg. English, Greek, Central European, Chinese, etc), a digit, a punctuation mark or
any other special (auxiliary) symbol. For example, the byte in Example 8.1 and also in Example 8.2 could
represent natural number 65 in 8-bit and 16-bit binary notation. It is also the ASCII (American Standard
Code for Information Interchange) representation of the letter A in English in Example 8.1 and the Unicode
representation of the same letter A.

Example 8.1.
01234567

0 1 0 0 0 0 0 1
}

ASCII for A

Example 8.2.
0123456789101112131415

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
}

Unicode for A

Example 8.3.
01234567

0 0 1 1 0 0 0 1
}

ASCII for 1

Example 8.4.
01234567

0 0 0 0 0 0 0 1
}

8-bit representation of natural number 1

Fact 8.1 (ASCII). An english letter or a digit or a punctuation mark, or any other auxiliary symbol is
represented in ASCII as a 7-bit bit-sequence and stored in a single byte. The corresponding numeric value is
known as the ordinal (value) of the character. ASCII is limited to representing 128 symbols (with ’extensions’
to represent up to 256 symbols.)

Example 8.5 (ASCII and the first character of the alphabet). The ASCII representation of the upper-case
english letter A is 1000001. The byte view containing it is shown in Example 8.1. The ordinal value of that
byte, viewed as an unsigned integer, is 65.

Example 8.6 (ASCII and the digit one). The ASCII representation of the symbol that is numeric digit one
(1) is 0110001. The byte view containing it is shown in Example 8.3. The ordinal value of that byte,
viewed as an unsigned integer, is 49. Natural number one (1) represented as a numerical value has the 8-bit
representations shown in Example 8.4. Thus symbol 1 has a different ordinal value than the magnitude of
the binary representation of natural number one.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 20 Handout 3

Fact 8.2 (Table of ASCII characters). The table below contains the ASCII representation of all 128 ASCII
symbols arranged in 8 rows (0-7 in octal or hexadecimal) of 16 columns (0-F in hexadecimal). The ASCII
code (ordinal value) for a character in hexadecimal notation can be retrieved by concatenating the row
index (code) with the column index code.

For example A is in row 4 and column 1 i.e. its hexadecimal code is 0x41. Converting radix-16 into
radix-10 we get 65 the ordinal value for A. Its row index 4 in 4-bit binary is 0100 and 1 in 4-bit binary
is 0001. Thus the code for A is 01000001 which is 65 in decimal or 0x41 in hexadecimal. Rows 0 and 1
contain Control Characters represented by the corresponding mnemonic code/symbol. Code 32 or 0x20 is
the space symbol (empty field).

Fact 8.3 (Unicode Standard). The Unicode Standard uses two or more bytes to represent one symbol (char-
acter). Ordinal values in Unicode are known as code-points. The characters from U+0000 to U+FFFF form
the Unicode Standard basic multilingual plane (BMP). Characters with code-points higher than U+FFFF

are called supplementary characters. The Unicode character for an ASCII character remains the same if
one adds extra zeroes (padding). Thus the Unicode representation for an ASCII character is a zero-bit byte
followed by a byte of the ASCII representation.

Example 8.2 shows the Unicode representation of letter A. The first byte is a zero-bit byte followed es-
sentially by the ASCII byte for A. Likewise, symbol DEL which is 0x7F in ASCII has Unicode representation
(code) 0x007F. We also write this as U+007F.

Fact 8.4 (Java char). In Java the char data type has size 2B; java uses UTF-16 representation. It can
only reprent and represents the Unicode Standard basic multilingual plane (BMP) that is the characters
from U+0000 to U+FFFF. Its minimum code-point is ’\u0000’ (or U+0000) and its maximum code-point is
’\uFFFF’ (or U+FFFF).

There are several encoding to represent Unicode symbols. One of them is UTF-8 where symbols are encoded
using 1 to 6 bytes. The UTF-8 representation of an ASCII symbol is the ASCII representation of that symbol
for compatibility reasons and also for space efficiency. Another one is UTF-16 employed by Java.

Fact 8.5 (UTF-8). UTF-8 encodes characters in 1 to 6 bytes.

• ASCII symbols with ordinal values 0-127 are also Unicode symbols U+0000 to U+007F and are repre-
sented in UTF-8 encoded as byte 0x00 to 0x7F; the seven least-significant bits of a byte is the ASCII
code for the symbol with the most-siginificant bit being a zero.

• Unicode symbols with ordinal values larger than U+007F use two or more bytes each of which has the
most significant bit set to 1.

• The first byte of a non-ASCII character is one of 110xxxxx, 1110xxxx, 11110xxx, 111110xx,

1111110x and it indicates how many bytes there are altogether or the number of 1s following the first
1 and before the first 0 indicates the number of bytes in the rest of the sequence. All remaining bytes
other than the first start with 10yyyyyy.

Example 8.7 (UTF-8, ASCII, Unicode). • ASCII and UTF-8 encoding look the same.

• No ASCII code can appear as part of any other UTF-8 encoded Unicode symbol since only ASCII
characters have a 0 in the most-significant bit position of a byte.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 21 Handout 3

Fact 8.6 (UTF-16). UTF-16 is a character encoding that use one or two 16-bit binary sequences to encode
all 1,112,604 code points of Unicode. The characters from BMP are presented with 2B (i.e. one 16-bit
binary sequence), the surrogates with 4B.

========================

ASCII CHARACTER SET

========================

==

\ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS TAB LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 ! " # $ % & ’ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ‘ a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

==

NUL = null BS = Backspace DLE = Datalink escape CAN = cancel

SOH = start of heading TAB = horizontal tab DC1 = Device control 1 EM = end of medium

STX = start of text LF = linefeed/newline DC2 SUB = substitute

ETX = end of text VT = vertical TAB DC3 ESC = escape

EOT = end of transmission FF = form feed/newpage DC4 FS = file separator

ENQ = enquiry CR = carriage return NAK = negative ACK GS = group separator

ACK = acknowledge SO = shift out SYN = synchronous idle RS = record separator

BEL = bell SI = shift in ETB = end of trans. blockUS = unit separator

===

UTF-8 ENCODING

===

UTF-8 Number of bits in code point Range

0xxxxxxx 7 00000000-0000007F

110xxxxx 10xxxxxx 11 00000080-000007FF

1110xxxx 10xxxxxx 10xxxxxx 16 00000800-0000FFFF

11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 21 00010000-001FFFFF

111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 26 00200000-03FFFFFF

1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 31 04000000-FFFFFFFF

===

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 22 Handout 3

9 Signed Integers and Floating-point numbers: binary notation

As we mentioned earlier in the previous section, a byte or a collection of bytes (e.g. a word) can be viewed
as the binary representation of a natural number or an ASCII symbol, or a Unicode Standard symbol, or
UTF-8 or UTF-16 that encodes Unicode symbols. (And ASCII symbols are part of Unicode as well.)

Of interest in this section is the representation of not just natural numbers (positive or non-negative
integer numbers) but of integer numbers in general: positive, negative, or zero. We call the latter signed
integers to stress that they include all three groups.
Fixed-width. We describe some fixed width methods that represent signed integers with one, two, or four
bytes: they can be extended to any fixed number of bytes, e.g. eight.

Fact 9.1 (N byte signed integers). If we were given N bytes i.e. 8N binary digits the number of positive,
negative and zero values that can be represented is an even number and equal to 28N . If the number of
positive integer values that can be represented is p, the number of negative values is n and there is a single
zero, then n+ p+1 = 28N implies that n+ p must be an odd number: we cannot represent the same number
of positive and negative values, unless we have more than one representation of zero.

Example 9.1 (N = 1: 8-bit representation). If we use 1B, which is 8 bit, to represent a natural number (i.e.
unsigned integer), we can represent with that byte 28 = 256 consecutive numbers from 0 to 255.
If we try to represent an integer (i.e. signed integer) we need to think about the representation of the
sign (positive or negative in one bit) and the representation itself. If we attempt to represent in binary
27 = 28/2= 128 negative values, the remaining values must represent the zero and no more that 127 positive
values.

8-bit unsigned All integers from 0 to 255

8-bit signed (two’s complement) All integers from -128 to -1 , 0 , 1 to 127

We present three representations of signed integers: signed mantissa, one’s complement, and two’s
complement. All three of them use the leftmost bit as a sign bit indicator: one indicates a negative number
and a zero a positive number.

Caution: We shall use the term leftmost bit and most-significant bit very carefully. In signed integer
representation, the leftmost bit is a sign bit. The most significant bit of the number is the one to the right of
the sign bit i.e. the second from left bit.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 23 Handout 3

9.1 Unsigned Integers

Fact 9.2 (n-bit unsigned integer). An n-bit unsigned integer N has

• (i) no sign bit

• (ii) all n bits represent the magnitude of the integer that is |N|.

2n positive values and zero can be represented. The range of integers is 0,1, . . . ,2n−1, that is 0 ≤ N < 2n

or |N|< 2n.

Fact 9.3 (Multiplication by a power of two). If n-bit integer N is multiplied by 2k for some integer k > 1,
then the result M = N×2k has (n+ k) bits. The binary representation of M is N shifted left k bit positions
(and filling them with zeroes). In other words, the binary representation of M is the concatenation of the
binary representation of N with a bit sequence of k zero bits.

Example 9.2. Let N = 5 whose binary representation in n = 3 is 101. The M = N× 25 = 5× 32 = 160.
Its binary representation is the concatenation of N’s 101 and the five zeroes implied by 25 i.e. 00000. The
result is 10100000 as needed. Note that 25 = 32 has binary representation 100000 i.e. a one followed by
five zeroes.

Fact 9.4 (Integer division by a power of two). If n-bit integer N is divided by 2k for some integer k > 1, then
the result M = bN/2kc has (n− k) bits. The binary representation of M is the binary representation of N
after shifting N to the right k bit positions and discarding the k bits past the righmostbit position, or in other
words by isolating the n− k bits of N.

Example 9.3. Let N = 160 whose binary representation in n = 8 is 10100000. Then M = bN/26c =
b160× 64c = 2. If N 10100000 is shifted right 6 positions 100000 gets discarded and we are left with
10. Equivalently the n− k = 8−6 = 2 leftmost bit position are extracted. In either case we are left with 10
which is 2 in radix-10, as needed.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 24 Handout 3

9.2 Signed Mantissa

Fact 9.5 (n-bit Signed Mantissa). An n-bit integer N in signed mantissa representation has

• (i) a sign bit that is its leftmost bit, and

• (ii) the remaining n−1 bits represent the magnitude of the integer that is |N|.

2n−1 positive and as many negative integer numbers can be represented including zeroes (a positive and a
negative one). The range of integers is −2n−1 +1, . . . ,−1,−0,+0,+1, . . . ,+2n−1−1, that is,
−2n−1 < N < 2n−1 or |N|< 2n−1.

Example 9.4 (8-bit Signed Mantissa). In 8-bit signed mantissa, the leftmost bit is the sign and the remaining
7 bits the magnitude of the signed integer. Thus 28 = 256 integer values can be represented, 128 positive
and 128 negative. One of those positive and one of those negative values is +0 and −0 shown below.

01234567

0 0 0 0 0 0 0 0
}

Signed Mantissa of positive zero +0
01234567

1 0 0 0 0 0 0 0
}

Signed Mantissa of negative zero −0
01234567

0 0 1 0 1 0 1 1
}

Signed Mantissa of +43
01234567

1 0 1 0 1 0 1 1
}

Signed Mantissa of −43

For the +43 and −43 represenation, the leftmost of the 8 bits is the sign and varies. The remaining 7
righmost bits is the magnitude: |−43|= |43|= 43 and both signed integers have the same magnitude. If we
convert the 8-bit sequence from radix-2 to radix-10 we get 43 for +43 obviously, but 171 for −43’s binary
representation. Note that 171 = 128+43 and 128 accounts for the sign bit contribution.

Thus if N is a positive integer number that is N > 0 and such that N < 2n−1 the signed mantissa repre-
sentation of N is the same as the 8-bit unsigned integer binary representation of N: the two representation
are identical for positive numbers.

For −N, a negative number, the signed mantissa representation of −N is the same as the 8-bit unsigned
integer binary representation of 128+N = 27 +N.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 25 Handout 3

9.3 One’s Complement

Fact 9.6 (n-bit One’s complement). An n-bit integer N in one’s complement representation has

• (i) a sign bit that is its leftmost bit, and

• (ii) the remaining n−1 bits represent the magnitude of integer N >= 0 or its complement otherwise.

2n−1 positive and as many negative integer numbers can be represented including zeroes (a positive and a
negative one). The range of integers is −2n−1 +1, . . . ,−1,−0,+0,+1, . . . ,+2n−1−1, that is,
−2n−1 < N < 2n−1 or |N|< 2n−1.

Signed mantissa and one’s complement represent differently the negative integers including the negative
zero.

Example 9.5 (8-bit One’s complement). In 8-bit one’s complement, the leftmost bit is the sign and the
remaining 7 bits the magnitude of the signed integer or the complement of the magnitude. By complement
we mean flipping ones into zeroes and zeroes into ones. Thus 28 = 256 integer values can be represented,
128 positive and 128 negative. One of those positive and one of those negative values is +0 and −0 shown
below. The positive zero, as before is represented as 00000000. The negative zero is 11111111. This is
because in the bit sequence the sign bit is 1 indicating a negative number is represented. In order to retrieve
the magnitude of this number, we first extract the 7 righmost bits 1111111 and then we flip them and they
become 0000000. Thus the negative number represented has magnitude 0 and this is −0.

01234567

0 0 0 0 0 0 0 0
}

One’s complement : positive zero +0
01234567

1 1 1 1 1 1 1 1
}

One’s complement : negative zero −0
01234567

0 1 1 1 1 1 1 1
}

One’s complement : +127
01234567

1 0 0 0 0 0 0 0
}

One’s complement : −127
01234567

0 0 1 0 1 0 1 1
}

One’s complement : +43
01234567

1 1 0 1 0 1 0 0
}

One’s complement : −43

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 26 Handout 3

9.4 Two’s Complement

Fact 9.7 (n-bit Two’s complement). An n-bit integer N in two’s complement representation has

• (i) a sign bit that is its leftmost bit, and

• (ii) If N = 0 its representations is n zero bits.

• (iii) If 2n−1 > N > 0 the binary representation of N is the same as the unsigned (and also the one’s
complement) representation of N.

• (v) If −2n−1 ≤ N < 0 the binary represenation of N is derived by writing down the unsigned bit
representation of |N| in n bits, flipping all n bits and adding one to the result.

2n−1− 1 positive and 2n−1 negative integer numbers can be represented including one zero (a 0-bit se-
quence). The range of integers is −2n−1, . . . ,−1,0,+1, . . . ,+2n−1−1, that is, −2n−1 ≤ N < 2n−1.

Example 9.6 (8-bit Two’s complement). In 8-bit Two’s complement, the leftmost bit is the sign and the
remaining 7 bits can be used to determine the magnitude of the integer. Thus 28 = 256 integer values can be
represented, 127 positive and 128 negative; a zero which is an 8-bit all zero sequence has the same sign bit
as the positive numbers. The zero is represented as 00000000.

01234567

0 0 0 0 0 0 0 0
}

Two’s complement : zero 0
01234567

0 1 1 1 1 1 1 1
}

Two’s complement MAXINT: +127
01234567

1 0 0 0 0 0 0 0
}

Two’s complement MININT: −128
01234567

1 0 0 0 0 0 0 1
}

Two’s complement : −127
01234567

0 0 0 0 0 0 0 1
}

Two’s complement : +1
01234567

1 1 1 1 1 1 1 1
}

Two’s complement : −1
01234567

0 0 1 0 1 0 1 1
}

Two’s complement : +43
01234567

1 1 0 1 0 1 0 1
}

Two’s complement : −43

From radix-10 to two’s complement. If we start with a negative integer say −128 we find its two’s
complement representation as follows. Its magnitude is | − 128| = 128. We write down the magnitude in
8-bit as 10000000. We first flip the bits to get 01111111 and then add one to the result to get 10000000.
This is the two’s complement of −128, also shown above. For −43 we start with its magnitude |−43|= 43
in 8-bit binary i.e. 00101011. We then flip it to get 11010100 and add one to the result to get 11010101.
The latter’s is two’s complement of −43.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 27 Handout 3

From two’s complement to radix-10. Given the two’s complement representation of an integer say in
8-bit we can retrieve the value of the integer as follows. Let the 8-bit two’s complement be 11111111. The
leftmost bit is the sign bit and it is one. This means we have a negative integer. We first flip all the bits to get
00000000 and then add one to the result. We get 00000001. This is the magnitude of the negative integer
in unsigned representation, which is one. Thus 11111111 is the binary representation of −1.

For the two’s complement bit sequence 10000000 we note that it represents a negative number, after
flipping we get 01111111 and adding one we get 10000000. The latter in unsigned representation is a 128.
This means that the original 10000000 is −128.

For the two’s complement bit sequence 10000001 we note that it represents a negative number, after
flipping we get 01111110 and adding one we get 01111111. The latter in unsigned representation is a 127.
This means that the original 10000001 is −127.

Method. Thus the same method works both ways: for a negative number (either because it has a − in
its radix-10 representation or a sign bit of 1 in its two’s complement representation) flip and add one to the
result.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 28 Handout 3

9.5 Fixed-point real numbers

Fact 9.8 (n-bit fixed-point real numbers). One easy way to deal with real numbers is to assume that ni of
the n bits represent the integer part of the real number and nd of the n bits represent the decimal part of it,
where ni +nd = n.

Example 9.7 (8-bit fixed-point real number).
The 8-bit binary sequence represents a fixed-point real number R with ni = nd = 4. The decimal point is
implied after the first four leftmost bit positions and thus the integer part of R is in binary the four leftmost
bits i.e. 0001 or in radix-10, Ri = 0× 23 + 0× 22 + 0× 21 + 1× 20 = 1. For the decimal part we first
isolate the bit sequence to the right of decimal point 1100 and then convert it to radix-10 according to
Rd = 1×2−1 +1×2−2 +0×2−3 +0×2−4 = 0.75. Thus R = Ri +Rd = 1.00+0.75 = 1.75.

01234567

0 0 0 1 1 1 0 0
}

n-bit fixed point with ni = 4

If we have ni = 5 and nd = 3, the same bit sequence implies a decimal point after the first five leftmost
bit positions and thus the integer part of R is in binary the five leftmost bits i.e. 00011 or in radix-10, Ri =
0×24+0×23+0×22+1×21+1×20 = 3. For the decimal part we first isolate the bit sequence to the right
of decimal point 100 and then convert it to radix-10 according to Rd = 1×2−1 +0×2−2 +0×2−3 = 0.50.
Thus R = Ri +Rd = 3.00+0.50 = 3.50.

01234567

0 0 0 1 1 1 0 0
}

n-bit fixed point with ni = 5

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 29 Handout 3

9.6 Floating-Point real numbers

Definition 9.1 (Normalized real numbers). A normalized real number has a bit that is one to the immediate
left of the decimal point or has only one bit on the left of the decimal point.

Fact 9.9 (Division by a power of two). If n-bit real number N is divided by 2k for some integer k > 1, then
the result M = N/2k has (n− k) integer bits and k additional decimal bits. The binary representation of M
is the binary representation of N after shifting N to the right k bit positions.

Example 9.8. Real number 100. is not normalized (first part of the definition). There is a period to the right
of the second zero bit. Because of this, on the left of the decimal point there is a zero. Moreover there are
three bits to the left of the decimal point.

Example 9.9. Let N = 160 whose binary representation in n= 8 is 10100000. Then M =N/26 = 160×64=
2.50. If N 10100000 or 1010000. is shifted right 6 positions and we are left with 10.10000 in binary. (The
implied decimal points is beteen the second and third leftmost bit, if the real number is viewed as fixed-point.)
Viewing the result in fixed point it gives 1×21 +0×20 +1×2−1 = 2.5 as needed.

Example 9.10 (Normalizing a real or integer number). Real number N= 100. is not normalized. However
M =N/22 is normalized. In other words, N =M×22. Given that M = 1.00 or just 1., the N can be rewritten
as N = 1.0× 22. We have normalized N. It consists of an integer part 1 that is on the left of the decimal
point, a mantissa .0 that is on the right of the decimal point, and an exmponent 2 (not the base).

Example 9.11 (Normalization resolved). Real number N= 101. is not normalized according to the refined
definition requiring only one bit on the left of the decimal point. However M = N/22 is normalized, or
N = M×22. Then N = 1.01×22. The integer part is 1, the mantissa is 01 and the exponent is 2.

Theorem 9.1 (Properties of real numbers and integers). Let a,b,c be integer or real numbers. The following
properties are true.
(The last or is disjunctive, not exclusive.)

a+b = b+a (commutative addition)
(a+b)+ c = a+(b+ c) (associative addition)
a+0 = 0+a = a (identity element for addition is zero)
a+(−a) = (−a)+a = 0 (inverse of every element exists for addition)
ab = ba (commutative multiplication)
(ab)c = a(bc) (associative multiplication)
a ·1 = 1 ·a = a (identity element for multiplication is one)
a(b+ c) = ab+ac (multiplication is distributive over addition)
ab = 0 ⇐⇒ a = 0 or b = 0 (integral domain).

Definition 9.2 (IEEE 754-1985 Standard). Real numbers in floating-point are represented using the IEEE
754-1985 standard. Be reminded that in IEEE 754-1985 neither addition nor multiplication are associative
operations. Thus it is possible that (a+b)+ c 6= a+(b+ c). Thus errors can accumulate when we add.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 30 Handout 3

9.7 IEEE-754: Single Precision

Fact 9.10 (Normalized real numbers: Mantissa, Exponent, Significand). A (fully) normalized real number R
is (or can be converted into) of the binary notation form R =±1.xxxx×2yyyy, where the integer part is one,
xxxx is the fraction or mantissa and yyyy is the exponent. The fraction plus one i.e. 1.xxxx is known as
the significand D. The significand by definition is always a small real number between 1 and 2. or multiply
values! Do not forget that!

Definition 9.3.
S:1 E:8 Mantissa:23

}
SP: 32-bit

Fact 9.11 (IEEE-754 Single Precision(SP)). In IEEE-754, single precision floating-point numbers are de-
rived from a normalized input of the form R =±1.F×2E , where the significand (1.X) is always between 1.0
and 2.0. They have three given parts, a sign bit, an exponent and a mantissa also known as fraction, and an
implied part known as the bias B.

• S is the one-bit sign bit that is the leftmost bit with 0 indicating non-negative and 1 indicating negative,

• E is the 8-bit exponent,

• F is the 23-bit fraction,

• B is the bias (and set B = 127).

There are two zeroes in the representation. A zero E and F has sign the sign of the sign bit S. Exponents that
all-0 and all-1 are reserved. The quadraplet (S,E,F,B) determines the quintuplet (S,E,F,B,D = 1+F).
The floating-point number represented by (S,E,F,B,D) is

R = (1−2S)× (1+F)×2E−B

The relative precision in SP with a 23-bit fraction is roughly 2−23, thus 23log10 (2) ≈ 6 decimal digits of
precision.

Example 9.12 (Smallest SP value). Smallest E = 1 and then E−B= 1−127=−126. The smallest fraction
F = all−0, and then 1.F = (1+F) = 1.0. The smallest numbers are then ±1.0×2−126.

Example 9.13 (Largest SP value). Largest E in binary is 1111110 and thus E = 254. Then E − B =
254−127 = 127. The largest fraction F = all−1, and then 1.F = (1+F)≈ 2.0. The largest numbers are
then ±2.0×2127.

Example 9.14 (Radix-10 to SP). Let R = −0.875 with the fractional part being .111. Then R = (−1)1×
1.11×2−1. We obviously have S = 1, the fraction is F= 110 . . . 0. We also have E =−1+B =−1+127 =
126. The exponent E in 8-bit binary is E= 01111110.

S E F

10111111 01000000 00000000 00000000 = 1 | 01111110 | 1000000 00000000 00000000

012345678910111213141516171819202122232425262728293031

1 0 1 1 1 1 1 1 0 1 1 0
}

R =−0.75 in SP

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 31 Handout 3

9.8 IEEE-754: Double Precision

Definition 9.4.
S:1 Exponent:11 Mantissa:52

}
DP: 64-bit

Fact 9.12 (IEEE-754 Single Precision(DP)). In IEEE-754, double precision floating-point numbers are
derived from a normalized input of the form R =±1.X ×2Y , where the significand (1.X) is always between
1.0 and 2.0. They have three given parts, a sign bit, an exponent and a mantissa also known as fraction, and
an implied part known as the bias B.

• S is the one-bit sign bit that is the leftmost bit with 0 indicating non-negative and 1 indicating negative,

• E is the 11-bit exponent,

• F is the 52-bit fraction,

• B is the bias (and set B = 1023).

There are two zeroes in the representation. A zero E and F has sign the sign of the sign bit S. Exponents that
all-0 and all-1 are reserved. The quadraplet (S,E,F,B) determines the quintuplet (S,E,F,B,D = 1+F).
The floating-point number represented by (S,E,F,B,D) is

R = (1−2S)× (1+F)×2E−B

The relative precision in SP with a 52-bit fraction is roughly 2−52, thus 52log10 (2) ≈ 13 decimal digits of
precision.

Example 9.15 (Smallest DP value). Smallest E = 1 and then E −B = 1− 1023 = −1022. The smallest
fraction F = all−0, and then 1.F = (1+F) = 1.0. The smallest numbers are then ±1.0×2−1022.

Example 9.16 (Largest DP value). Largest E in binary is 111111111110 and thus E = 2046. Then E−B =
2046−1023 = 1023. The largest fraction F = all−1, and then 1.F = (1+F)≈ 2.0. The largest numbers
are then ±2.0×21023.

Example 9.17 (Radix-10 to DP). Let R = −0.875 with the fractional part being .111. Then R = (−1)1×
1.11×2−1. We obviously have S = 1, the fraction is F= 110 . . . 0. We also have E =−1+B =−1+1023 =
1022. The exponent E in 11-bit binary is E= 01111111110.

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

1011111111101100
}

R =−0.75 in SP

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 32 Handout 3

Example 9.18. What number is the 32-bit real number in IEEE-754 110000001010....0? Since the sign
bit is S = 1 we know the number is negative. The following 8 bits are the exponent E 10000001 i.e. they
represent E +B = 129. Then the exponent is E = 129− 127 = 2. The fractional part is F=010 . . .0 and
thus D = 1.010 . . .0. Converting D into denary we get d = 1+1/4 = 1.25. Thus the number reprsented is
(1−2S)×1.25×22 =−5.0

Example 9.19 (Patriot missile bug). Then represent 1/10 in SP. The one-tenth representation caused prob-
lems in the 1991 Patriot missile defense system that failed to intercept a Scud missile in the first Iraq war
resulting to 28 fatalities.

Fact 9.13 (Smallest real greater than one). The first single precision number greater than 1 is 1+ 2−23 in
SP. The first double precision number greater than 1 is 1+2−52 in DP.

Note 9.1 (Same algebraic expression, two results). The evaluation of an algebraic expression when com-
mutative, distributive and associative cancellation laws have been applied can yield at most two resulting
values; if two values are resulted one must be a NaN. Thus 2/(1+1/x) for x = ∞ is a 2, but 2x/(x+1) is a
NaN.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 33 Handout 3

9.9 IEEE-754: Double Extended Precision

Definition 9.5 (Double Extended Precision).
In Double Extended Precision the exponent E is at least 15-bit, and fraction F is at least 64-bit. At least
10B are used for a long double.

S:1 Exponent:15 Mantissa:64
}

Double Extended Precision: 80-bit

single precision (SP) 32-bit double precision (DP) 64-bit

Bias B=127 Bias B=1023

------------------------------ ------------------------------

|S| E 8-bit | F 23-bit | |S| E 11-bit | F 52-bit |

Reserved Values

E F s E F

00000000 0..0 0 0..0 0..0 is positive zero +0.0

00000000 0..0 1 0..0 0..0 is negative zero -0.0

00000000 X..X NotNormalized (1-2S) x 0.F x 2**-126

11111111 0..0 0 1..1 0..0 is positive Infinity

11111111 0..0 1 1..1 0..0 is negative Infinity

11111111 X..X NaN Not-a-Number (eg 0/Inf, 0/0, Inf/Inf)

Smallest E: 0000 0001 = 1 - B = -126

Smallest F: 0000 ... 0000 implies Smallest D: 1.0000 ... 0000 = 1.0 [normalized]

Smallest Nmbr= 0 00000001 0....0 = (1-2S) x 1.0 x 2**-126 ~ (1-2S) 1.2e-38 [normalized]

Largest E: 1111 1110 = 254 - B = 127

Largest F: 1111 ... 1111 implies Largest D: 1.1111 ... 1111 ~ 2.0 [normalized]

Largest Nmbr= 0 11111110 1....1 = (1-2S) x 2.0 x 2**127 ~ (1-2S) 3.4e38 [normalized]

Smallest E: 0000 0000 reserved to mean 2**-126 for nonzero F

Smallest F: 0000 ... 0001 implies Smallest D: 0.0000 ... 0001 = 2**-23 [unnormalized]

Smallest Nmbr= 0 00000000 0....1 = (1-2S) x 2**-23 x 2**-126 = 2**-149 [unnormalized]

Largest E: 0000 0000 reserved to mean 2**-126 for nonzero F

Largest F: 1111 ... 1111 implies Largest D: 0.1111 ... 1111 ~ 1-2**-23 [Unnormalized]

Largest Nmbr= 0 00000000 1....1 = (1-2S) x 1-2**-23 x 2**-126 ~ 2**-126(1-2**-23)[Unnormalized]

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 34 Handout 3

10 Computer Architectures: von-Neumann and Harvard

10.1 Von-Neuman model of computation

Fact 10.1 (Von-Neumann model: Program and Data in Same Memory). Under this architectural model,
a central processing unit, also known as the CPU, is responsible for computations. A CPU has access to
a program that is being executed and the data that it modifies. The program that is being executed and
its relevant data both reside in the same memory usually called main memory. Thus main memory stores
both program and data, at every cycle the CPU retrieves from memory either program (in the form of an
instruction) or data, performs a computation, and then writes back into memory data that were computed at
the CPU by one of its units in a current or prior cycle.

10.2 Harvard model of computation

Fact 10.2 (Harvard model: Program and Data in Different Memories). An alternative architecture,
the so called Harvard model of computation or architecture as influenced by (or implemented into) the
Harvard Mark IV computer for USAF (1952) was also prevalent in the early days of computing. In the
Harvard architecture, programs and data are stored separately into two different memories and the CPU
maintains distinct access paths to obtain pieces of a program or its associated data. In that model, a
concurrent access of a piece of a program and its associated data is possible. This way in one cycle an
instruction and its relevant data can both and simultaneously reach the CPU as they utilize different data
paths.

Fact 10.3 (Hybrid Architectures). The concepts of pipelining, instruction and data-level caches can
be considered Harvard-architecture intrusions into von-Neumann models. Most modern microprocessor
architectures are using them.

10.3 CPU, Microprocessor, Chip and Die

Fact 10.4 (CPU vs Microprocessor). CPU is an acronym for Central Processing Unit. Decades ago all
the units that formed the CPU required multiple cabinets, rooms or building. When all this functionality was
accommodated by a single microchip, it became known as the microprocessor. The number of transistors
in modern processor architectures can range from about a billion to 5 billion or more (Intel Xeon E5, Intel
Xeon Phi, Oracle/Sun Sparc M7).

Fact 10.5 (Chip vs Die). A chip is the package containing one or more dies (actual silicon IC) that are
mounted and connected on a processor carrier and possibly covered with epoxy inside a plastic or ceramic
housing with gold plated connectors. A die contains or might contain multiple cores, a next level of cache
memory adjacent to the cores (eg. L3), graphics, memory, and I/O controllers.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 35 Handout 3

10.4 More than one

Fact 10.6 (Multi-core, Many-core, GPU and more). In the past 10-15 years uni-processor (aka single
core aka unicore) performance has barely improved. The limitations of CPU clock speeds (around 2-3GHz),
power consumption, and heating issues have significantly impacted the improvement in performance by just
increasing the CPU clock speed. An alternative that has been pursued is the increase of the number of
“processors” on a processor die (computer chip). Each such “processor” is called a core. Thus in order
to increase performance, instead or relying to increasing the clock speed of a single processor, we utilize
multiple cores that work at the same clock speed (boost speed), or in several instances at a lower (clock)
speeds (regular speed). Thus we now have multiple-core (or multi-core) or many-core processors.

Example 10.1 (Dual-core and Quad-core). Dual-core or Quad-core refer to systems with specifically 2 or 4
cores. The number of cores is usually (2019) less than 30 (eg Intel’s generic Xeon processors), with Intel’s
Xeon Phi reaching 57-72 cores. Intel’s Phi processor is attached to the CPU and work in ’parallel’ with the
CPU or independetly of it. In such a case a many-core system is called a coprocessor.

Fact 10.7 (GPU). A GPU (Graphics Processing Unit) is used primarily for graphics processing. CUDA
(Compute Unified Device Architecture) is an application programming interface (API) and programming
model created by NVIDIA (TM). It allows CUDA-enabled GPU units to be used for General Purpose pro-
cessing, sequential or massively paprallel. Such GPUs are also known as GPGPU (General Purpose GPU)
when provided with API (Application Programming Interface) for general purpose work. A GPU processor
(GK110) contains a small number (up to 16 or so) of Streaming Multiprocessors (SM, SMX, or SMM). Each
streaming multiprocessor has up to 192 32-bit cores supporting single-precision floating-point operations
and up to 64 64-bit cores supporting double-precisions operations. Other cores support other operations
(eg. transendental functions). Thus the effective ”core count” is in the thousands.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 36 Handout 3

11 Computer Architectures: Memory Hierarchies

Fact 11.1 (CPU and Main Memory Speed.). A CPU rated at 2GHz can execute 2G or 4G operations per
second or roughly two-four operations per nanosecond, or roughly one operation every 0.25-0.5ns. A CPU
can fetch one word from maim memory (”RAM”) every 80-100ns. Thus there is a differential in performance
between memory and CPU. To alleviate such problems, multiple memory hierarchies are inserted between
the CPU (fast) and Main Memory (slow): the closer the memory to the CPU is the faster it is (low access
times) but also the costlier it becomes and the scarcier/less of it also is. A cache is a very fast memory.
Its physical proximity to the CPU (or core) determines its level. Thus we have L1 (closest to the CPU, in
fact ”inside” the CPU), L2, L3, and L4 caches. Whereas L2 and L3 are ”static RAM/ SRAM”, L4 can
be ”dynamic RAM / DRAM” (same composition as the main ”RAM” memory) attached to a graphics unit
(GPU) on the CPU die (Intel Iris).

Fact 11.2 (Level-1 cache.). A level-1 cache is traditionally on-die (same chip) within the CPU and exclusive
to a core. Otherwise performance may deteriorate if it is shared by multiple cores. It operates at the speed
of the CPU (i.e. at ns or less, currently). Level-1 caches are traditionally Harvard-hybrid architectures.
There is an instruction (i.e. program) cache, and a separate data-cache. Its size is very limited to few tens of
kilobytes per core (eg. 32KiB) and a processor can have separate jevel-1 caches for data and instructions.
In Intel architectures there is a separate L1 Data cache (L1D) and a L1 Instruction cache (L1I) each one of
them 32KiB for a total of 64KiB. They are implemented using SDRAM (3GHz typical speed) and latency to
L1D is 4 cycles in the best of cases (typical 0.5-2ns range for accessing an L1 cache) and 32-64B/cycle can
be transferred (for a cumulative bandwidth over all cores as high as 2000GB/s). Note that if L1D data is to
be copied to other cores this might take 40-64 cycles.

Fact 11.3 (Level-2 cache.). Since roughly the early 90s several microprocessors have become available
utilizing secondary level-2 caches. In the early years those level-2 caches were available on the motherboard
or on a chip next to the CPU core (the microprocessor core along with the level-2 cache memory were
sometimes referred to as the microprocessor slot or socket). Several more recent microprocessors have
level-2 caches on-die as well. In early designs with no L3 cache, L2 was large in size (several Megabytes)
and shared by several cores. L2 caches are usually coherent; changes in one are reflected in the other ones.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 37 Handout 3

An L2 cache is usually larger than L1 and in recent Intel architectures 256KiB and exclusive to a core.
They are referred to as ”static RAM”. The Its size is small because a larger L3 cache is shared among the
cores of a processor. An L2 cache can be inclusive (older Intel architectures such as Intel’s Nehalem) or
exclusive (AMD Barcelona) or neither inclusive nor exclusive (Intel Haswell). Inclusive means that the
same data will be in L1, L2, and L3. Exclusive means that if data is in L2, it can’t be in L1 and L3. Then
if it is needed in L1, a cache ”line” of L1 will be swapped with the cache line of L2 containing it, so that
exclusivity can be maintained: this is a disadvantage of exclusive caches. Inclusive caches contain fewer
data because of replication. In order to remove a cache line in inclusive caches we need only check the
highest level cache (say L3). For exclusive caches all (possibly three) levels need to be checked in turn.
Eviction from one requires eviction from the other caches in inclusive caches. In some architectures (Intel
Phi), in the absence of an L3 cache, the L2 caches are connected in a ring configuration thus serving the
purpose of an L3. The latency of an L2 cache is approximately 12-16 cycles (3-7ns), and up to 64B/cycle
can be transferred (for a cumulative bandwidth over all cores as high as 1000-1500GB/s). Note that if L2
data is to be copied to other cores this might take 40-64 cycles.

Fact 11.4 (Level-3 cache.). Level-3 caches are not unheard of nowadays in multiple-core systems/architectures.
They contain data and program and typical sizes are in the 16-32MiB range. They are available on the moth-
erboard or microprocessor socket. They are shared by all cores. In Intel’s Haswell architecture, there is
2.5MiB of L3 cache per core (and it is write-back for all three levels and also inclusive). In Intel’s Nehalem
architecture L3 contained all the data of L1 and L2 (i.e. (64+256)∗4KiB in L3 are redundantly available
in L1 and L2). Thus a cache miss on L3 implies a cache miss on L1 and L2 over all cores! It is also called
LLC (Last Level Cache) in the absence of an L4 of course. It is also exclusive or somewhat exclusive cache
(AMD Barcelona/Shanghai, Intel Haswell). An L3 is a victim cache. Data evicted from the L1 cache can be
spilled over to the L2 cache (victim’s cache). Likewise data evicted from L2 can be spilled over to the L3
cache. Thus either L2 or L3 can satisfy an L1 hit (or an access to the main memory is required otherwise).
In AMD Barcelona and Shanghai architectures L3 is a victim’s cache; if data is evicted from L1 and L2 then
and only then will it go to L3. Then L3 behaves as in inclusive cache: if L3 has a copy of the data it means
2 or more cores need it. Otherwise only one core needs the data and L3 might send it to the L1 of the single
core that might ask for it and thus L3 has more room for L2 evictions. The latency of an L3 cache varies
from 25 to 64 cycles and as much as 128-256cycles depending on whether a datum is shared or not by cores
or modified and 16-32B/cycle. The bandwidth of L3 can be as high 250-500GB/s (indicative values).

Fact 11.5 (Level-4 cache.). It is application specific, graphics-oriented cache. It is available in some
architecture (Intel Haswell) as auxiliary graphics memory on a discrete die. It runs to 128MiB in size,
with peak throughput of 108GiB/sec (half of it for read, half for write). It is a victim cache for L3 and not
inclusive of the core caches (L1, L2). It has three times the bandwidth of main memory and roughly one
tenth its memory consumption. A memory request to L3 is realized in parallel with a request to L4.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 38 Handout 3

Fact 11.6 (Main memory.). It still remains relatively slow of 60-110ns speed. Latency is 32-128cycles
(60-110ns) and bandwidth 20-128GB/s (DDR3 is 32GiB/sec). It is available on the motherboard and in rel-
atively close proximity to the CPU. Typical machines have 4-512GiB of memory nowadays. It is sometimes
referred to as ”RAM”. As noted earlier, random access memory refers to the fact that there is no difference
in speed when accessing the first or the billionth byte of this memory. The cost is uniformly the same.

Definition 11.1 (Linearity of computer memory). Memory is a linear vector. A memory is an array of
bytes, i.e. a sequence of bytes. In memory M, the first byte is the one stored at M[0], the second one at M[1]
and so on. A byte is also a sequence of 8 binary digits (bit).

Big Endian vs Little Endian. If we plan to store the 16-bit (i.e. 2B) integer 0101010111110000 in memory
locations 10 and 11, how do we do it? Left-part first or right-part first (in memory location 10)? This is
what we call byte-order and we have big-endian and little-endian. The latter is being used by Intel and
the formed in powerPC architectures.

BigEndian LittleEndian(Intel architecture)

10: 01010101 11110000

11: 11110000 01010101

Fact 11.7 (Multi-cores and Memory.). To support a multi-core or many-core architecture, traditional L1
and L2 memory hierarchies (aka cache memory) are not enough. They are usually local to a processor or a
single core. A higher memory hierarchy is needed to allow cores to share memory ”locally”. An L3 cache
has been available to support multi-core and more recently (around 2015) L4 caches have started appearing
in roles similar to L3 but for specific (graphics-related) purposes. When the number of cores increases
beyond 20, we talk about many-core architectures (such as Intel’s Phi). Such architectures sacrifice the L3
for more control logic (processors). To allow inter-core communication the L2 caches are linked together to
form a sort of shared cache.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 39 Handout 3

12 Hard-Disk Drives (HDD)

Figure 7: Source: https://www.tldp.org/LDP/sag/html/hard-disk.html

Figure 8: Source: https://superuser.com/questions/974581/chs-to-lba-mapping-disk-storage

Figure 9: Track and Sector

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 40 Handout 3

12.1 Definitions related to HDD

• Platter (or just disk) It is ia circular disk. It consists of two surfaces also known as sides:
up and down. Both sides (surfaces) can be read/written into. Thus every side of every platter has an
associated mechanism known as head to facilitate the reading/writing of information on it. All platters
rotate in unison. Usually, one platter or one side of one platter is for control purposes and unused by
the user. The remaining ones are utilized for data preservation.

• Arm and Heads The Arm contains the disk controller. Attached to the arm are the heads. The
number of heads is equal to the number of platters times two. Heads move in unison assisted by the
arm. Arms/Head move parallel to surface of platters. If you view a platter as a circular surface the arm
and its attached heads moves from the outside periphery to the inside or from the inside to the ouside
periphery of a (the) platter(s). Note that only ONE head is active for read and write even though all of
them might be over a platter area.

• Track It is a concentric circular band (region) on a platter’s surface or side. Tracks might be num-
bered from the outside periphery to the inside or the other way around for ease of reference. The
density of tracks is expressed in KTPI (thousands of tracks per inch)

• Cylinder All tracks of the same radius from the center of a platter, over all sides of all platters
form a cylinder. The number of tracks (over a platter) is thus equal to the number of cylinders (of the
HDD).

• Sector A sector is a piece of a track at a given arc range. Every track has the same fixed number of
sectors as any other track even if tracks on the outside are longer than tracks on othe inside. Thus if
tracks have 60 sectors, the first track is between degree 0 and 6, the next one between 6 and 12 and so
on. A head reads or writes a sector worth of data.

• Cluster A set of consecutive sectors of a track form a cluster.

• Spindle Speed / Rotation Platters (disks) rotate very fast. The spindle speed of a drive is the
rotational speed of its platters.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 41 Handout 3

12.2 HDD Operation

The hard disk controller receives a request for I/O to be performed on a particular sector number. The data
received by the disk controller are then mapped to a platter number, side of a platter (up or down), track
within a platter, and sector within a track.

12.3 Seek

The controller moves the arm and its heads horizontally and parallel to the surface of the platters to identify
the correct track. There is some initial delay due to controller overhead, then the arm/heads move, and then
the arm/heads brake before they settle over a given track. (Think of it as initial delay, acceleration, steady
move, and braking and settling.)

Seek Time is the time for arm/heads to move to the right track from their current position. Seek time
depends on the initial position (starting track of the heads) and the final/settline position of the heads (desti-
nation/target track). This time includes settling time (braking time) and might or might not include controller
overhead.

Maximum Seek Time is defined as the time to move the arm/heads to the most inside track from the
most outside track or the other way around.

In the 1950s and 1960s maximum seek time was 600ms. In the 1970s it went down to 25ms. First
PC-based HDD in the 1980s has maximum seek time around 120ms and nowadays this is around 20-30ms
for laptop or desktop drives and 10-12ms for server drives.

The Average Seek Time is a better measure of performance. The average seek time is defined as one-
third of max seek time. A proof is to be shown later. (Think of it that you figure seek time for every possible
initial position and every possible ending position of the heads.) The average seek time for a typical HDD
is 8-9ms for a read and 9-10ms for a write operation. Server HDD might have average seek time as low as
4ms.

A Track-to-Track Seek Time refers to the time it takes for heads to move minimally by one track.
Most of this time is settling time and possibly controller overhead if it is not accounted separately. Typical
Track-to-Track seek time is 1 to 1.2ms.

Controller Overhead is less than 2ms for typical drives.
After settling the heads are over the appropriate track. At this point the controller activates one head

for the relevant platter and the relevant surface (up or down) involved in the I/O. One and only one head is
active in the remainder.

12.4 Rotational Delay or Latency

The active head waits for the appropriate sector to appear under or over the head. (A surface/side can be
under a head if it is an up surface; it can be over the head if it is a down surface.) This is because the
platters (i.e. disks) rotate at spindle speed also known as rotational speed that varies from 3600RPM to
5400RPM (laptop drives) to 7200RPM (some desktop and regular server drives). The unit RPM refers to
Rotations/Revolutions Per Minute.

Rotational delay or Latency Time refers to the time it takes for the appropriate sector be under or over
the relevant head positioned under or over the active head. A 7200RPM drive completes one rotation in
approximately 8.33ms.

Time
Rotation

=
1mn

7200R
=

60s
7200R

=
60,000ms

7200R
= 8.33ms/Rotation = 8.33ms/R R = Rotation

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 42 Handout 3

Because a head might just have missed a specific sector or might just catch a specific sector of a track a
more relevant measure of rotational delay is Average Latency or Average Rotational delay.

Average Latency Time or Average Rotational Delay is defined to be one-half of the rotational delay.
Thus for a 7200RPM disk this is (1/2)×8.33 = 4.17ms/R.

12.5 Transfer Time

The active head has made contact with the appropriate sector. Data get transferred from the sector (read
operation) or transferred into the sector (write operation).

Sector size is 512B. Modern hard disk drives support 4KiB (4096B) sectors. In the latter case the term
logical sector size is defined as 512B and the term physical sector size is defined as 4KiB (4096B).

Transfer data speed for modern HDD is expressed in bytes/s or multiples of bytes/s. Rarely in bits/s.
Beware of dubious multiples of bytes such KB and MB and their definitions. Typical data transfer speed
rates are in the aread of 200,000KiB/s.

Transfer time is the time it takes for the head to transfer data to/from the disk.
This time is quite straightforward to figure out if the operation involves one sector (of one track of one

cylinder of one side of one platter). Multi-sector I/O on different tracks are more complicated to analyze.
In most cases when the transfer involves more that sector size worth of data, we ignore additional access,
latency costs.

12.6 More on Sectors

A sector of a track stores not only data but also additional information. Some of it relates to the data directly:
it is error correcting information in the form of error correcting codes (ECC) that can be used to retrieve or
recover information from minor accidents (eg scratches). Additional information is available to prepare the
head to read information or synchronize with the sector underneath or over it.

Therefore, a 512B sector is preceded by 15B of gap, sync, and sector address data, followed by 50B
of ECC (Error Correcting Code) data (40 10-bit).Therefore a head effectively reads 15+512+50 = 577B
when it reads a (logical) sector. In other words 512/577 = 88% of the sector data read is sector data for the
application.

For a 4096B sector, things change slightly after the sector: the 15B of gap, sync and sector address data
still appear before the 4096B sector data. They are followed by 100B of ECC (80 10-bit).

12.7 An Example: HDD around 2019

A modern 7200RPM server hard disk drive with capacity (10TB or 10TiB?) usually has 7 platters (disks)
with 14 heads. One of the 14 sides is used for controlling the disk, the remaining 13 sides for data storage.
Data density nowadays is approximately 1.5TiB per platter or equivalently 0.75TiB per side. (Logical) sector
size is defined as 512B, and thus a (Physical) sector size is defined as 4KiB (4096B) as already mentioned.
A physical sector emulates 8 logical sector (8x512=4096) Average seek time is 8-9ms depending on whether
a read or write is performed, wih average rotational delay (average latency) being 4.16-4.17ms which is one
half of the rotational speed of 8.33ms/R of a 7200RPM HDD. Controller overhead is no more than 2ms. I/O
transfer rate is approximately 200,000 KiB/s.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 43 Handout 3

Step 1. The time to read one logical sector (512B) is the sum of disk access time plus transfer time.
Step 2. Disk access time includes controller overhead, average seek time and average rotational

delay / average latency. Contoller overhead is about 2ms, average seek time is roughly 8ms, and average
rotational dealy is 4.17ms. The total disk access time is 14.17ms.

Step 3. Transfer rate is 200,000KiB/s. Thus the transfer time for a 512B sector is negligible at 0.002ms.
Step 4. Thus the time to read one logical sector (512B) is 14.17ms.

Effective Transfer Rate is determined by actual byte transferred in the unit of time. If we use the time
to read one logical sector, we have 512B transferred in 14.17ms, which gives an effective transfer rate of

512B
14.17ms

=
512B

14.17×10−3s
= 36132B/s≈ 35KiB/s

13 Average Seek Time vs Maximum Seek Time

Fact 13.1. Assume a Hard-Disk Drive (HDD) contains N + 1 tracks indexed 0 through N. The maximum
seek time of an arm/heads movement, expressed in number of tracks, is N, when the heads move from track 0
to track N or the other way around. The average seek time, expressed in number of tracks, is approximately
N/3+1/3≈ N/3.

Proof. If the arm/heads move from track i to track j, the distance in track covered is |i− j|. Thus the average
seek time A, in terms of number of tracks, is the average over all initial and over all final positions of the
arm/heads. The number of choices for i is N +1 (i.e. 0 through N) and likewise for j. Therefore Therefore

A =
∑

N
i=0 ∑

N
j=0 |i− j|

(N +1)2 =
1

(N +1)2 ·
N

∑
i=0

N

∑
j=0
|i− j|= 1

(N +1)2 ·S.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 44 Handout 3

We compute next the sum S.

S =
N

∑
i=0

N

∑
j=0
|i− j|

=
N

∑
i=0

[
i

∑
j=0
|i− j|+

N

∑
j=i+1

|i− j|

]

=
N

∑
i=0

[
i

∑
j=0

(i− j)+
N

∑
j=i+1

(j− i)

]

=
N

∑
i=0

[
i

∑
j=0

i−
i

∑
j=0

j+
N

∑
j=i+1

j−
N

∑
j=i+1

i

]

=
N

∑
i=0

[
i(i+1)− i(i+1)/2+

N

∑
j=0

j−
i

∑
j=0

j− i(N− i)

]

=
N

∑
i=0

[i(i+1)− i(i+1)/2+N(N +1)/2− i(i+1)/2− i(N− i)]

=
N

∑
i=0

[N(N +1)/2− i(N− i)]

=
N

∑
i=0

N(N +1)/2−N ·
N

∑
i=0

i+
N

∑
i=0

i2

= N(N +1)2/2−N2(N +1)/2+N(N +1)(2N +1)/6

After some minor calculations we obtain the following

S =
N

∑
i=0

N

∑
j=0
|i− j|

=
3N(N2 +2N +1)−3N3−3N2 +2N3 +3N2 +N

6

=
3N3 +6N2 +3N−3N3−3N2 +2N3 +3N2 +N

6

=
2N3 +6N2 +4N

6
=

N3 +3N2 +2N
3

= N(N +1)(N +2)/3.

Therefore from Equation 1 by replacing into Equation 1 we obtain the following.

A =
1

(N +1)2 ·S =
1

(N +1)2 ·
N(N +1)(N +2)

3
=

N
3
+

N
3(N +1)

=
N
3
+

N +1−1
3(N +1)

=
N
3
+

1
3
− 1

3(N +1)
→ N

3
+

1
3
.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 45 Handout 3

14 Constants, Variables, Data-Types

Fact 14.1 (Constant.). If the value of an object can never get modified, then it’s called a constant. 5 is a
constant, its value never changes (ie. a 5 will never have a value of 6).

Fact 14.2 (Variable.). In computer programs we also use objects (names, aliases) whose values can change.
Those objects are known as a variable.

Fact 14.3 (Data-type.). In a programming language, every variable has a data-type, which is the set of
values the variable takes. Moreover, the data-type defines the operations that are allowable on it.

Example 14.1. What are data types supported by C, C++, or Java?

In mathematics, an integer or a natural number is implicitly defined to be of arbitrary precision.

Fact 14.4 (Built-in or primitive data-types. Composite data-types.). Computers and computer languages
have built-in (also called primitive) data-types for integers of finite precision. These primitive integer data-
types can represent integers with 8-, 16-, 32- or (in some cases) 64-bits or more. An integer data-type of
much higher precision is only available not as a primitive data-type but as a composite data-type through
aggregation and composition and built on top of primitive data-types. Thus a composite data-type is built
on top of primitive data types.

Fact 14.5 (Java’s integer primitive data types). Java’s (primitive) (signed) integer data types include byte,
short, int, and long.

• In java a byte is an 8-bit signed two’complement integer whose range is −27 . . .27−1.

• In java a short is a 16-bit signed two’complement integer whose range is −215 . . .215−1.

• In java an int is a 32-bit signed two’complement integer whose range is −231 . . .231−1.

• In java a long is a 64-bit signed two’complement integer whose range is −263 . . .263−1.

The default value of a variable for byte, short, int is 0, and for long it is a 0L.

Fact 14.6 (Java’s other primitive data types). Java’s other data types include float, double, boolean, and
char.

• In java a float is a 32-bit IEEE 754 floating-point number.

• In java a double is a 64-bit IEEE 754 floating-point number.

• In java an boolean has only two possible values: true and false.

• In java a char is a 16-bit Unicode character.

The default value of a variable for float, double, boolean, and char is 0.0f, 0.0d, false and ’\u0000’ i.e
U+0000.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 46 Handout 3

Example 14.2 (Composition : Arrays). One way to build a composite data-type is through an aggregation
called an array: an array is a sequence of objects of (usually) the same data-type. Thus we can view
memory as a vector of bytes. But if those bytes are organized in the form of a data-type a sequence of
elements of the same data-type becomes known as an array (rather than a plain vector).

Sometimes the data type of a variable is assigned by default, depending on the value assigned to the
variable. The data-type of the right-hand side determines the data-type of x in x = 10: in this case it is of
”number data type”. In some other cases we explicitly define the data type of a variable. A programming
language such as C++ consists of primitive data-types such as int, char, double and also composite
data types that can be built on top of them such as array, struct and class.

Example 14.3. What are the primitive data types of C, C++, or Java? What are the composite data types
of C, C++, or Java?

Fact 14.7 (What is a Data Model (DM)?). It is an abstraction that describes how data are represented and
used.

Example 14.4. What is the data model of C, C++, or Java. Do they differ from each other? The whole
set of data types and the mechanisms that allow for the aggregation of them define the data model of each
programming language.

Fact 14.8 (Weakly-typed and strongly-typed languages.). In a weaky-typed language the data type of a
variable can change during the course of a program’s execution. In a strongly-type language as soon as
the variable is introduced its data-type is explicitly defined, and it cannot change from that point on. For
example

Weakly Typed Language such as MATLAB

x=int8(10); % x is integer (data type)

x=10.12; % x is real number (data type)

x=’abcd’; % x is a string of 4 characters (data type)

Strongly Typed Language such as C, C++, or Java

int x ; % x is a 32-bit (4B) integer whose data type can not change in the program

x=10;x=2; % ok

x=10.10 ; % Error or unexpected behavior: right hand-side is not an integer.

A. V. GERBESSIOTIS
CS332-102

Spring 2020 Jan 03, 2020
Computer Science: Fundamentals
Page 47 Handout 3

Fact 14.9 (Definition vs Declaration.). In computing we use the term definition of a variable to signify
where space is allocated for it and its data-type explicitly defined for the first time, and declaration of a
variable to signify our intend to use it. A declaration assumes that there is also a definition somewhere
else, does not allocate space and serves as a reminder. For a variable there can be only ONE definition
but MULTIPLE declarations. This discussion makes sense for compiled languages and thus int x serves
above as a definition of variable x. For interpreted languages, separate definitions are usually not available
and declarations coincide with the use of a variable. Thus we have three declarations that also serve as
definitions of x in the weakly-typed example each one changing the data type of x. In the latter example
variable x is defined once and used twice (correctly) after that definition.

Fact 14.10 (What is an abstract data type (ADT)?). An abstract data type (ADT) is a mathematical model
and a collection of operations defined on this model.

Fact 14.11 (The ADT Dictionary.). For example a Dictionary is an asbtract data type consisting of a
collection of words on which a set of operations are defined such as Insert, Delete, Search.

Fact 14.12 (What is a data-structure?). A data structure is a representation of the mathematical model
underlying an ADT, or, it is a systematic way of organizing and accessing data.

Fact 14.13 (Does it matter what data structures we use?). For the Dictionary ADT we might use arrays,
sorted arrays, linked lists, binary search trees, balanced binary search trees, or hash tables to represent the
mathematical model of the ADT as expressed by its operations. What data structure we use, it matters if
economy of space and easiness of programming are important. As running/execution time is paramount
in some applications, we would like to access/retrieve/store data as fast as possible. For one or the other
among those data structures, one operation is more efficient than the other.

Fact 14.14 (Mathematical Function: Input and Output Interface.). When we write a function such as
f (x) = x∗x in Mathematics we mean that x is the unknown or parameter or ideterminate of the function.
The function is defined in terms of x. The computation performed is x2 i.e. x ∗ x. The value ’returned’ or
’computed’ is exactly that x ∗ x. When we call a function with a specific input argument we write f (5). In
this case 5 is the input argument or just argument. Then the 5 substitutes for x i.e. it becomes the value of
parameter x and the function is evaluated with that value of x. The result is a 25 and thus the value of ’ f (5)’
becomes ’25’. If we write a = f (5), the value of f (5) is also assigned to the value of variable a. Sometimes
we call s the output argument, which is provided by the caller of the function to retrieve the value of the
function computed.

Fact 14.15 (Algorithms.). We call algorithms the methods that we use to operate on a data structure. An
algorithm is a well-defined sequence of computational steps that performs a task by converting an (or a set
of) input value(s) into an (or a set of) output value(s).

Fact 14.16 (Computational Problem.). A (computational) problem defines an input-output relationship.
It has an input, and an output and describes how the output can be derived from the input.

Fact 14.17 (Computational Problems and (their) Algorithms.). An algorithm describes a specific pro-
cedure for achieving this relationship, i.e. for each problem we may have more than one algorithms.

