
Page | 1

 Unix and Linux compact tutorial

 Alex. Gerbessiotis
 CS Department

 NJIT

November 24, 2023

AVG-24-02

Page | 2

1. Introduction

The implicit assumption is that you are familiar with the use
and requirements of a VPN connection and the use of an open
ssh client (generically referred to as ssh). These might be
needed if you plan to connect to a Unix or Linux machine from
outside of NJIT (VPN and then ssh) or from within NJIT (ssh)
but from a non *nix machine (e.g. a windows computer).

A secure shell client for Windows is MobaXterm; NJIT’s
software repository allows you to download a copy of it.
Windows also provides a command-line ssh client as well (it is
possible that some versions of Windows do not have it). OSX
(Mac) also has a command line ssh client available through a
Terminal application. An naturally *nix has both a client and
a server SSH; the client allows users to connect to other
machines.

If you need more information on how to use VPN or the
MobaXterm client read document AVG-24-01 “Connecting to
Unix/Linux at NJIT”.

Linux machines at NJIT have DOMAIN names oslX.njit.edu or
oslXY.njit.edu, where X,Y are digits mapping to integers from
1 to around 31.

A given domain name maps to a unique IP address starting with
128.234.44.51 for osl1.njit.edu, but note that osl31.njit.edu
might map to 128.234.44.47, which is non-intuitive.

In this document, for the sake of the discussion to follow I
will be using example machines osl7.njit.edu and
osl21.njit.edu. Therefore, X=7 in the former case and X=2 and
Y=1 in the latter case. By the way OSL stands for Open
Systems Laboratory. The machines are physically located on the
2nd floor of the GITC building.

An NJIT URL (Uniform resourse locator) with info on *nix
commands is shown below.

https://ist.njit.edu/common-UNIX-commands

Page | 3

2. Opening a session to *nix

From a Windows machine (referred to as client) one can first
open (run) on the client the MobaXterm application. A window
similar to the following one will pop up. One can then click
on the button Start local terminal. The layour of this window
defers from users to users and also after recent uses of it as
prior sessions’ information is displayed.

 Figure 1.

Following the clicking of the button “Start local terminal”
the following window gets displayed (black background)

Page | 4

 Figure 2.
A secure shell connection will be established to a linux
machine with hostname osl7.njit.edu. We will refer to it as
the remote machine. Authentication to the linux machine
will be done with certain credentials. For this example the
login name for the remote machine would be myUCID, that has
a corrsponding password associated with it. The login name
and the password are referred to as the credentials.

The command that would be typed for starting an ssh session
would be.
 ssh myUCID@osl7.njit.edu

One types the text ssh myUCID@osl7.njit.edu

At least one space is required after ssh. When the text is
completely written, the user on the client machine presses
the ENTER key. The command “ssh myUCID@osl7.njit.edu” is
then interpreted by the client machine and executed
(realized). A connection would be established with the
remote machine but before it becomes available to the user
on the client machine authentication needs to take place.

Page | 5

The steps described are shown on the following figure.

A connection has been established for user myUCID; the
remote machine needs to authenticate the user and the
password associated with myUCID is requested. The user on
the client machine needs to provide the password for myUCID
(the password is not displayed). An ENTER is required to be
typed when the use types in the password in the window
below.

Page | 6

 Figure 3.

If everything went fine a connection has been established
and we view a window similar to the one shown below.

From this point on the user would by typing ``commands’’ or
text on the client (Windows computer) but the typed
commands or text would be transmitted to the remote machine
and interpreted by it and not the client!

Page | 7

 Figure 4.

At this point you are ready to start interacting with the
remote host.

Type in Unix/Linux commands, when done typing them, press
the ENTER button and observe the output.

Finally, to terminate the session type exit. You will
‘logout’ from the remote host, and you will the move back
to the familiar screen of Figure 2.

If you are done with MobaXterm, terminate it by clicking on
its top right corner the X symbol that will ‘kill’ the
window.

Page | 8

3. Unix and Linux
Linux is based on the Unix operating system (OS) and
environment. The Unix operating system consists of a kernel (the
part of the OS that is in main memory all of the time along with
the data structures required for its proper operation) plus a
variety of services that the operating system provides.

Unix was introduced in the late 60s/early 70s in the then AT&T
Bell Labs by K. Thompson and D. Ritchie and was originally
developed for a DEC PDP-11 minicomputer. It was originally
written in assembly. In 1973 it was rewritten in the programming
language known as C. The OS initial interaction with a user is
done with some teletype terminals (also known as Video Display
Units) to which a keyboard is attached. Thus interaction with a
user was done through a device accepting and displaying 80
characters per line of fixed width ASCII output (and a total of
24 such lines). Think of this Courier font being the only option
for terminal input (through the keyboard) and output (through
the small 8-10inch screen of the terminal).

The UNIX operating system supported timeshared multitasking of
user processes. A program in execution is known as a process and
the OS's kernel is actively managing processes in main memory as
opposed to a program that resides passively in secondary memory,
i.e. a hard disk drive for which the OS knows nothing about its
contents.

Timesharing means that multiple user’s processes have shared
access of the CPU (processor) for a limited amount of time in a
round-robin fashion. Thus over a period of roughly eight
seconds, five users have access to the CPU for roughly 1 second
per user at a time in a round-robin fashion (1-2-3-4-5-1-2-3-
etc). The period of 1second is known as the quantum or
timeslice. The operating system's kernel is responsible for
efficiently switching from one user to another user's
process(es). If a user process has no activity during its
timeslice/quantum in timeshared multitasking the OS would switch
the usage of the CPU to another process of the same user or some
other user. And if one process had to stop using the CPU to do
an I/O operation (e.g. printing) then another user's process or
another process of the same user could take over the CPU since
multitasking is also supported. Whereas the objective of
timesharing is to minimize CPU response time for processes, and
the objective of multitasking is just to increase CPU

Page | 9

utilization (fraction of CPU time used to execute user
processes), the objective of timeshared multitasking is to both
minimize CPU response time and maximize CPU utilization.

In a Unix system, a user is logged on to the system by providing
a set of credentials (login name and an associated password), a
process already familiar to you from the earlier sections of
this document. At NJIT we call the credentials MyUCID
credentials consisting of a MyUCID (login name) and a MyUCID
password. (In our prior examples we used for a MyUCID login name
the name myUCID.)

Immediately after the login has been completed successfully the
Unix environment would become available to the logged on user
and a program (process) would start executing in the user's
environment after the user's login: the Unix shell process.

The UNIX shell process would allow the user to interact with the
operating system and start, stop, suspend and resume the
execution of services provided by the OS or create and manage
user created processes. These services are programs and when
run, those programs become processes. The definition of a
process is ‘a program in execution’. All interaction is done
through the terminal and its associated keyboard that was used
by the user to gain access to the system: the user types in
commands to the shell and after the shell interprets these
commands, it invokes services of the OS to execute/realize those
user commands as needed and as privileged. The OS might decline
to execute some of these commands for safety or security reasons
based on the credentials (privileges) of the user.

To keep interaction short UNIX commands to the shell are short
and sometimes intuitive. For example command ls is short for
list (the contents of a directory), cat for catenate (list
contents), mkdir for making/creating a directory, ps for process
status, cd for changing directory, pwd for printing the name of
the (current) working directoy, mv for move, and cp for copy.

Moreover, the UNIX shell provides command line editing, and
history of interactions with the shell thus allowing for editing
a previously lengthy command instead of retyping it before re-
execution or repeating a frequently executed command by easily
recalling it from a history of prior interactions. This is
faciliated by the arrow keys. Autocompletion of commands is
possible by using the TAB key.

Page | 10

Every command of the shell such as ls, ps, mv, cp, pwd, cat, cd,
is an executable program residing in secondary memory (disk). It
was originally written in C and compiled and assembled
subsequently into the executable file named ls, ps, etc. Thus
typing a command such as

% ls

would cause the shell (an OS process) to load the program named
ls from secondary memory into main memory, thus turning it into
a process and then the process created executes the code of (the
program) ls.

A reminder: the % is the shell prompt. You do not type it. It is
output by the shell to remind you that 'I, the shell, have your
full attention: please type in your request'. Moreover when you
do so and type your request (ls in this case) do not forget to
tell the shell that you are done when you are done typing your
command. You do so by pressing the ENTER key of the keyboard at
the end.

At that moment the shell interprets your input (in the example
above it is an ls), the text between the prompt and the ENTER,

Page | 11

and executes it as needed. Every execution of a process in linux
(in this case ls) by default creates and interacts with three
files associated and connected with (two or) three devices:

(a) standard input also known to the user as the file with fd
(file descriptor) 0,

(b) standard output with fd equal to 1, and

(c) standard error with fd equal to 2.

Unless the shell is instructed otherwise by you, standard input
is associated with your terminal's keyboard, and standard output
and standard error are both associated with the terminal's
screen. Terminal in modern computing refers to your laptop or
desktop!

When a user logs on the system the location of the user in the
filesystem is the user's home directory. The user can identify
this location in two different ways either by typing

 % pwd

(The other way is to type echo ~.)

Moreover in Linux, multiple commands can be executed one after
the other in the command line. It is therefore possible to

% ls ; date ; echo "Hi"

Thus in the above example after ls is executed, the current date
and time is printed, and afterwards a message gets printed on
the standard output, the terminal/screen used by the user.

Commands can have options. An option is preceded by a dash. An
option is usually a single (english language) letter. The option
in the invocation of the shell below is an ell (not a numeric
one) and the request to ls is for a long output or listing

% ls -l

In addition to options a command can have one or more argument
list usually after the option(s) and separated by at least one
space character.

% ls -l filename1 dir2 filename3

In the example above we are requesting a long listing of a
variety of names that map to filenames or directories. So we
have provided three arguments to ls above. Note that in a Unix
or Linux filesystem everything is a file. Every file has a type.

Page | 12

A directory is a file of type directory; an (ordinary) file is a
file of type (regular) file. Other types include a character
device file type, a block device file type, named pipe, socket,
and symbolic link.

A little secret that is about to be revealed. The request
(command)

% ls -l

has an implicit argument. The request is equivalent to

% ls -l .

The indicated period is the argument and it is an alias to the
“current working directory”. This is the directory of the
filesystem the current user (activity) is residing at the moment
of invocation. Thus all the files of the current working
directory would be listed. Note that in Unix, every directory
has a parent directory. The alias to it is .. (two periods next
to each other).

% ls -l ..

If you are interested in printing the current working directory,
as noted earlier the command to do so is pwd.

Moreover in Linux, multiple commands can interact with each
other with a mechanism known as an unnamed pipe. A pipe is a
FIFO (First In First Out) queue that accepts input from the
output of one command and generates output that will become the
input of another command. Thus

% ls | egrep filename

consists of the command ls that outputs the contents of the
current directory (this description makes sense after you read
the next section if you are not familiar with any operating
system's structure) and directs this output not on standard
output (screen) but to the unnamed pipe indicated by the pipe |
symbol. The unnamed pipe indicated receives as input the
transmitted by ls output and then it generates its own output
that is to become the input of the command egrep. The command
egrep filters its input by discarding all lines that do not

Page | 13

contain the string/word filename and thus preserving to the
output that it will generate the lines that contain the string
filename. The combined execution thus prints the output lines of
ls that contain the string filename.

Pipes can allow multiple cascade communication such as the
following one.

% ls –l | egrep filename | sort | less

Let us conclude this section on a different note. Linux is the
Linux kernel (written in the programming language known as C
though it includes a bit of assembly as well) plus all the other
services provided by the operating system (such as the GNU’s
utilities). The combination of kernel + OS services is known as
the Linux operating system. Android consists of a Linux kernel
plus all the services made available by Android. The combination
of the Linux kernel and the OS services is known as the Android
operating system. Kernel is the part of the OS that is expected
to be in main memory ALL the time. A PASCAL or FORTRAN compiler
is not part of the kernel!

Page | 14

4. Unix filesystem hierarchy
The Unix file system structure is hierarchical. This extends to
Linux. The term file system has not been defined yet and it is
thus being used generically at this point. In fact there are
more than one types of a filesystem in Unix (and Linux) yet the
discussion is generic and applies to all of them. The same
interface is being used even if internally the systems are
different. Moreover, on the osl machines at NJIT, to this
hierarchical structure an external file system is further
attached (mounted) that is known as AFS (for Andrew File
System). It is a distributed file system with certain advanced
features that we will not describe here. In summary AFS allows
you to access your files independently on whether you are logged
on to osl10.njit.edu or osl20.njit.edu or some other machine at
NJIT that has access to AFS (including Windows or OSX machines
but also Linux or Unix machines).

A Unix filesystem (or its structure) resembles a rooted acyclic
directed graph (some people might view it as a tree) whose nodes
are files: a filesystem of files! Since at this point we get on
into discrete math territory, we won't pursue further those
terms.

If there is a term overload let us start from scratch defining
them in sequence.

A hard disk drive (HDD) can be split into logical subdivisions
that are known as partitions. We won't disk the hardware
subdivisions of a hard disk drive: sectors, track, clusters,
cylinders or other logical formations such as volumes.

A partition can be assigned a format. The format of a partition
of a hard disk drive is known as a filesystem.

A filesystem (on a partition) can be created, mounted (to the OS
and thus activated and its files and structure can be revealed
and viewed through the OS) or unmounted. One can not destroy
(delete) a filesystem directly: creating a new one on top of an
older one overwrites the older one. The filesystem describes how
a partition is organized logically into files and also describes
the areas of the partition that stores information on those
files and their data (metadata).

A filesystem contains files of different types.

Page | 15

A file is a collection of data on external memory (also known as
secondary memory, and coloquially referred to as a disk drive).
Several time by abuse of notation or slip of the tongue a disk
drive becomes a hard disk drive (HDD) even if it is a solid
state drive (SSD). The generic term drive include FDD (floppy
disk drives) or CD-ROM drive or DVD drives! To cut a long story
short a file is a collection (organized form) of data on a disk
drive’s formated partition (i.e. a filesystem).

Unix and Linux currently support several common file types. The
most common ones are listed below. Associated with the file
type's name we use a single character to represent and describe
the file's type. Types of files in Unix and Linux are as
follows.

- :(regular) file,

d :directory,

l :symbolic link, also known as soft-link,

p :named pipe,

b :block device file,

c :character device file, and

s :socket (used in networked communication).

In Unix every file is identified by a numeric identifier (value)
known as the file’s inode (number). Inode stands for index node.
The inode (or inode number) is an index on a table that is also
known as the inode table. Thus the index to the table is the
inode (aka inode number).

An inode value 10 indicates that the information for a specific
file (the one with inode value or inode number 10) is available
at index 10 of a table that is known as the inode table. The
inode table was created when a filesystem was created on a
partition of a HDD through the formatting process. Index 10 of
that table contains information about the file identified with
inode value 10 such as the size of the file in bytes, its file
type, and other useful information including the locations on
the hard disk drive that contain the data (contents) of the
file.

Users do not like numbers (inodes) to reference files. An inode
number such as 315156789 is difficult to memorize. Users prefer
names. The term filename would then be established.

Page | 16

A filename is a mnemonic name that is associated with a given
inode number. The association is effected inside a directory and
the pair (filename,inode number) is recorded in the data area of
the directory, i.e. its data contents. Be reminded that a
directory is a file of type directory. In a given directory
there can be only one pair with a given filename and given inode
number (filename, inode number). Different directories can
however contain the same pair: say dir1 and dir2 both
contain(filename, inode number). Furthermore, it is possible
that in the same directory we have another association of the
the same inode number but with a different file name such as
(filename2, inode number). In other words the same file
(inodenumber) has two distinct names (filename and filename2)
for a total of three aliases (filename appears in dir1 and
dir2). We call these aliases links or hard links. The latter
term hard link is to distinguish from the filetype symbolic link
(also known as soft link)!

We furthermore prefer to say that a directory contains a
filename rather than it contains a filename and inode number
association. And sometimes two different filenames in the such
directory such as filename and filename2 map to the same file of
the same HDD.

In Unix and Linux we create a regular file by typing

 % touch myfile

Several things happen with this 'command'

(a) A file in the HDD is created by assigning a currently
available inode number say N to the file that is to be
established and the space in the inode table index N is
initialized appropriately, for example setting the type
of the new file to – (regular file), and

(b) an entry is made in the directory into which the command
touch was typed establishing the relationship (myfile,N).

Subsequently the file creation process of myfile is continued
and gets completed.(Note that the size of the created file
would be zero bytes.)

Implicit in all this discussion is the fact that we, the user,
know where we are in the hierarchical structure of the
filesystem with which we interact. Thus "in the directory into
which the command was typed" needs some explanation.

Page | 17

When a user logs on the system the location of the user in the
filesystem is the user's home directory. The user can identify
this location in two diffrent ways either by typing

 % pwd

for print working directory (which immediately after login is
the user's home directory) or by typing

 % echo ~

where tilde ~ is an alias for the user's home directory
location. The command echo prints the value of the cryptic
tilde. Tilde is an alias to ‘current user’s home directory’. If
a user is lost in the filesystem hierarchy a user can do a

 % cd ~

and this moves him to the user's home directory, the starting
location immediately after login. The command cd ~ literally
means change (the current) directory to become the home
directory (of mine).

The hierarchical top of a Unix or Linux filesystem is the root
of the filesystem. It is depicted by a slash symbol / and it is
a directory, i.e. a file of type directory. It can contain files
of any type including directories. The latter can be referred to
as subdirectories since they are subordinate to the root
directory /. A parent-child hierarchical relationship can then
be established. The root is the parent of its subdirectories,
and the subdirectories are the root's children.

Every file in the filesystem is associated with an absolute path
that describes its location in the hierarchy relative to the
root /, the common ancestor of all files (and of all types of
files) in existence in the filesystem.

Thus the file with name filename might be associated with the
absolute path

/afs/cad.njit.edu/u/u/s/user5/filename

This is to be read as follows.

(a) start with the root / directory and read its data, and
locate in the data of directory / a filename and inode
number association for a file named afs,

Page | 18

(b) then use the inode number of filename afs, to retrieve
information about the file, confirm it is a directory
(type) and access its data by reading its data contents
and locating in it a filename and inode number
association for a file named cad.njit.edu,

(c) then use the inode number of filename cad.njit.edu, to
retrieve information about the file, confirm it is a
directory (type) and access its data by reading its data
contents and locating in it a filename and inode number
association for a file named u,

(d) do the same for u and its file of type directory also
named u, and

(e) do the same for u and its file of type directory s, and
(f) do the same for s and its file of type directory user5,

and
(g) in directory user5 find the file named filename through

the association (filename,inode number). This is the file
in question. The inode of filename say 315156789 allows
us to determine the type of file with inode 315156789 by
going to the inode table and retrieving information about
index 315156789.

The absolute path also provides us with some other hierarchical
information. For example a 'child' of user5 is filename, or the
parent of filename is user5. The parent of user5 is s. The
parent of a file is always a directory that contains the file.
By the way, the parent of the root / is the root itself, a
directory. The root / is the only element of the hierarchy that
is the parent of itself! A file with no children is a non-
directory file (a file of a type other than directory) or an
empty directory (without files i.e. children).

In the absolute path we observe two usages of the slash symbol.

The slash symbol is being used to denote the root (directory) of
the file system. Subsequently the slash symbol is being used to
separate directories (and arbitrary files) in the absolute path
of a file. The absence of a slash symbol at the end of the
absolute path for filename also indicates that filename is a
file of type OTHER than directory. If it was a directory a slash
would have been the last character of the path. (But different
programs/commands use this inconsistently.)

A relative path can also describe a file such as the one known
as filename. First by using the command cd (change directory) we
move ourselves (the logged on user) to a specific (directory)

Page | 19

location in the hierarchical structure of the filesystem. For
example,

 % cd /afs/cad.njit.edu/u/u/s/user5/

We can the confirm the current location with the command pwd
(print working directory)

 % pwd

/afs/cad.njit.edu/u/u/s/user5

and then file inquiries are relative to this directory

 % ls filename

is then equivalent to an

 % ls /afs/cad.njit.edu/u/u/s/user5/filename

in other words we are looking for information on filename in
directory user5.

The current directory is denoted by (or aliased to) a dot. Thus

 % ls .

and

 % ls /afs/cad.njit.edu/u/u/s/user5/

are equivalent. The parent of the current directory is denoted
by (or aliased to) two dots (no space in between) Thus

 % ls ..

is equivalent to

 % ls /afs/cad.njit.edu/u/u/s/

And of course

 % cd .

has no effect as we request that we move to the current
directory even if we are in it already. Note that relative paths
are allowed when we use cd. Thus

 % cd ..

moves to the parent of the current directory thus

 % pwd

prints

Page | 20

/afs/cad.njit.edu/u/u/s

and then a relative

 % cd user5

moves us back to the original location.

If your myUCID is user5, the OS the moment you login into a
remote host and the shell starts running, it automatically does
(by itself) a

% cd /afs/cad.njit.edu/u/u/s/user5/

for you. The indicated path (directory) is your home directory.
The tilde symbol ~ is aliased to your home directory: it saves
time typing it!

But beware of the following nuance.

Your home directory is not user5.

Your home directory is user5 of directory s of directory u of
directory u of directory cad.njit.edu of directory afs of the
root file system!

This is because it is possible that there are multiple user5
directories elsewhere in the file system hierarchy for example

/usr/local/user5/

/user5/

/bin/user5/

/user/local/bin/user5

/afs/cad.njit.edu/u/u/s/user5/user5/my.txt

In the last line above you might have observed that the home
directory contains a (sub) directory user5 that contains a file
named my.txt! (And the ! is an exclamation mark not part of the
file name!)

In order to find information about the file with name filename
we can type

Page | 21

 % ls –l filename

and the output might look like as follows.

-rw-r--rw- 1 user5 group 1178078 Apr 26 12:14 filename

If we type the following the inode number of filename is also
output.

% ls –li filename

315156789 -rw-r----- 1 user5 group 1178078 Apr 26 12:14 filename

If you want information about the inode number 315156789 stored
in the inode table with index 315156789, this can be obtained
through filename as follows.

 % stat filename

The –l or -li is an option: the dash - alerts the operating
system's shell that an option would be presented, and the ell
indicates the long option (details about filanme). The left most
character of the output of ls -l is the dash (left of the rw)
that indicates that the file type is a (regular) file. When –li
is typed two options follow the dash symbol one after the other
with out space in between: the l option and the i option
indicating a request to obtain the inode number associated with
filename. The order does not ordinarily matter: we might have
typed –il.

The nine character rw-r----- are the three triads that describe
permissions for three entities associated with filename: the
user owner of the file, the group of the user owner of the file,
and everybody else. We refer to these entities generically as
u,g, and o respectively. In this example u is user5, g is the
group named group, and o everybody else i.e. neither user5 nor
anyone in the group named group. The permissions assigned by a
triad to an entity are read (r), write (w), and execute(x) in
the presence of the corresponding letter and are positionally
dependent (r on the left of w on the left of x). The dash
indicates the absence of the corresponding privilege/perfmission
for the corresponding entity for filename. Thus user5 has r and
w privileges it can read and edit (write) the file named
filename. The group (users other than user5 of the group group)
has only r privileges, and everybody else has none.

 Observe another output below.

% ls -ld 2021linux

Page | 22

drwxrwxrwx 3 user5 afs 2048 Oct 14 2021 2021linux

It is clear that 2021linux is a file of type directory. Note
that the term folder is being used in Windows as an alternative
to the term directory. This is not the case in Unix. Do not use
the term folder in Unix (including Linux). There is no file of
type folder. In fact in Windows a folder can be a non-directory
structure. The meaning of privilege x for a directory is
different from that a file. All (user5, afs, and everybody else)
are allowed to cd into directory 2021linux because of the x
privilege. All can delete the directory or write into it i.e.
create files (of any type) or delete files. Thus the dangerous

% rm –rf 2021linux

if executed would delete everything in 2021linux including
directory 2021linux and all of its file recursively and
completely. The OS won't ask you to confirm your recklessness.
You explicitly specified f as an option in –rf to indicate
"don't ask". Moreover the r of –rf is 'recursively'!

Directory user5 contains in the data of file/directory user5 a
line

filename 315156789.

Thus the only way to find the alias to 315156789 is by looking
inside the directory that contains the relationship between the
alias (filename) and the actual name (inode) of the file
(315156789). A file (such as 315156789) can have multiple
aliases known as hard links. Thus it is possible inside user5 to
have another entry

myfile 315156789

In fact somewhere else (in some other directory) it is possible
to have the same. However we do know that this is not the case:
this is because in the output of ls –l filename on the left side
of user5 we see a 1. The 1 indicates one alias exists for
315156789 and that is filename. The operating system keeps track
of all the associations with file 315156789.

If you do however a

Page | 23

% ln filename myfile

and then do a

% ls –l filename

or an

% ls –l myfile

or

% ls –li filename

or

% ls –li myfile

things would become interesting.

Below we use the symbol sharp #. The # indicates a comment for
the shell and thus the remainder of the line is ignored by the
shell when it tries to interpret and execute the line.

Page | 24

The commands (in fact executable files) we introduced that
manipulate files of a filesystem or traverse the hierarchy of a
filesystem are as follows.

% pwd #print current working directory

% cd path # change the current working directory to path

 # path name path can be an absolute path name

 # starting with the root / of the filesystem or

 # a relative path name and starts with a file of

 # current directory

% ls path # list contents of directory path

% ls file # list contents of directory file is

 # directory or confirms file exists otherwise

% ls # list contents of current working directory

% ls . # equivalent to ls ; same as above

% ls –l # long list ; equivalent to ls -l .

% ls –la # detailed long list including . and ..

% ls –lai # the inode (numeric name/ID of the file) is also

listed on the extreme left side.

% rm file # delete a file

or

% rm pathTofile

but

% rmdir dir # remove an empty directory dir

% rmdir path2dir # remove an empty directory described in

the path2dir

% rm –rf file # A pretty dangerous command... Avoid it.

% rm –rf directory # A pretty dangerous command... Avoid it.

% mkdir directory # Create a directory

% mv old new # rename filename old into new

Page | 25

5. Connecting to a remote host

Connecting to a remote host (osl7.njit.edu). The remote host
has a user with login name myUCID whose credentials are known
to you (e.g. you identify yourslelf as myUCID on
osl7.njit.edu). Open a window on the client (eg through
MobaXterm, see Figure 2) and type in the command (as explained
earlier).

% ssh myUCID@osl7.njit.edu

 Transferring (copying) a file from the local (client) host
to the remote host. File local.tar is in the current directory
of the client. It will be copied to the remot host in the
directory cs332 residing inside the home directory of the remote
host. Note that we do not write the home directory (absolute
path) of user myUCID in the remote host but we use the tilde
alias instead followed by directory cs332 that already exists in
the home directory. In another MobaXterm window on the client
(see Figure 2) type instead

% scp local.tar myUCID@osl7.njit.edu:~/cs332

The command scp stands for secure copy. The first argument is
the local file name. The second argument describes first the
details of the remote machine: first the login name of a the
user in question in the remote machine then the at sign (@)
followed by the host name of the remote sign followed by a
colon(:) and after that the absolute path to the directory into
which the file will get copied. If a regular file is specified
the remote file will be overwritten by the client file
(local.tar). Authentication will be requested by the remote
host in every invocation of scp. The command scp stands for
secure copy. When the command completes the transfer of the
file, the prompt reappears on the client host machine and the
host machine is read to receive more input. Note that MobaXterm
allows for the same operation (upload) to be performed through a
graphical interface. This is described in document AVG-24-01.

Page | 26

6. Shell interaction
The moment we login to the remote host a shell starts running.
The default shell used in this discussion is the bash shell.
The shell expects input from the remote use interacting
through the client machine’s keyboard and screen (terminal
display). The remote host shell’s declares its existence by a
prompt that is user (remote user myUCID) defined. The remote
user myUCID has chosen the prompt to be the percent sign (%).

%

Every time a user types a command, the user must end the
command by pressing the ENTER key. Then and only then will the
typed text transmitted to the shell of the remote host and
interpreted by it and then acted upon its interpretation. The
remote host will create a process to realize the command
requrest typed in by the user of the client machine.

Options and arguments.

In the example(s) below the command is ls (list).

The argument is a filename. It might refer to a file of any
type including a directory or a (regular) file. It might be an
alias such as dot (.) or dot dot (..) or ~ for the current
directory, parent directory or home directory respectively.
The option specified is i to indicate that the inode (number)
associated with the filename is to be output. Naturally a – to
indicate an option preceded the option itself (no space
between the – and the option). An alternative is to specify
the long name of the option. For option i the long name is
inode. In the latter case two dashes are to precede the long
name of the option. The two invocations below are equivalent

% ls -i filename
 315204012 filename

% ls --inode filename
 315204012 filename

Some additional commands include the following.

Page | 27

man cmd # print manual page of cmd

info cmd # more elaborate version of man

man man # man on cmd man

help # inside bash a help re bash

who # users in system

whoami # login name of user

hostname # hostname of computer

date # current date and time information

echo # print on standard output (terminal screen)

echo ~ # print home directory of user

echo $EDITOR # default editor (env var $EDITOR)

printenv # all environment(shell’s) variables+values

echo $(cmd) # print output of cmd

echo $$ # print process ID of current process

which is by the way the bash shell

echo $? # print return value of last executed cmd

echo $0 # print name of shell (bash)

echo $- # detech interactive shell

bash # run an instance of bash within bash!

exit # exit bash

exit n # exit bash with return value integer n

cal # calendar

var = “value” # variable var defined and assigned a value

echo $var # print value of variable var

export var # make it visible to other

programs/processes (use reference $var)

 #ls # is the comment character ; rest is ignored

Page | 28

% whoami
myucid

% hostname
osl7.njit.edu

% date
Tue Nov 14 12:00:08 EST 2023

% echo “hello world”
hello world

% echo ~
/afs/cad/u/m/y/myucid

% echo $EDITOR
/bin/vi

% echo $(date)
Tue Nov 14 12:12:47 EST 2023

% var=”this is a value”
% echo $var
this is a value
% export var

% cal
 November 2023
Su Mo Tu We Th Fr Sa
 1 2 3 4
 5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25

Page | 29

26 27 28 29 30

% echo $$
11903
% bash
% echo $$
12789
% exit 123
exit
% echo $?
123
% echo $$
11903

If in doubt

 % man command

provides a manual page for a given command.

Page | 30

COMMAND line history

history # history of user commands ; each prior

 # command is numbered

(higher numbered more recent)

!50 # execute command number 50

!! # redo last command

UP arrow key # move UP in history

DOWN arrow key # move down in history (if possible)

<Backspace> # delete a character from command

CTRL-A # move to the start of command in line

CTRL-E # move to the end of command in line

CTRL-B CTRL-F # move to previous , to next word resp.

CTRL-K # delete/kill text from cursor position to

 # the end of line

CTRL-U # cuts to start of line

CTRL-Y # yank/paste killed text

CTRL-L # clear (terminal) screen

CTRL-P # list / browse previous commands

TAB # autocomplete command or file name

!cmd # recall and execute more recent command

 # starting with text cmd

Page | 31

 COMMAND OPTIONS

[applicable to man/less/more]

Space # move forward by one page

f # same as Space

b # move backwards by one page

< # go to first line

> # go to last line

/ # search forward

 # /string searches for string

? # search backward

n # repeats /

N # repeats ?

h # help

q # quit help

q # quit man (outside of help) or less or more

Page | 32

7. Filesystem commands
A Unix or Linux filesystem (generic reference) is a rooted
acyclic directed graph that sometimes it is erroneously
depicted as a tree. The usual view is with the root of the
filesystem at the top (rather than at the bottom of a
biological tree).

The filesystem contains files of different types.

A type of a file is a regular file. We may omit regular from
the file type description.

A type of a file is a directory. A directory is a file that
contains other files of any type including of course
directories. The latter ones are sometimes called
subdirectories i.e. a directory that is subordinate to the
directory into which it was created.

A folder sometimes is used as an alternative to the word
directory in operating systems other than Unix or Linux. This
is to be avoided in Unix and Linux. In Windows folder refers
to a directory but also to a collection of information that is
not mapped to a file of type directory.

There is a parent child relationship between directories.

If inside directory dir1 a directory dir2 is created, dir1 is
the parent and dir2 is the child of dir1. Directory dir2 is
subordinate to dir1 i.e. it is a subdirectory of dir1.

The root of a filesystem is a directory. We refer to it as the
root directory as well or the root of the given file system.
The root directory is named / (slash or forward slash). The
parent of the root (directory) is the root (directory). It is
the only directory whose parent is itself!

In the root structure of a Unix or Linux filesystem a node
that has children is a directory and sometimes it is called an
internal node.

Page | 33

A node with no children can be an empty directory or a file of
type other than directory. It is sometimes called an external
node or a leaf.

The directory view below was created using a command available
in a posting of stackoverflow. The command is

find example | sed -e "s/[^-][^\/]*\// |/g" -e "s/|\([^]\)/|-\1/"

example
 |-dir1
 | |-file1
 | |-dir3
 | |-dir2
 |-dir2
 |-file1

Directory example has files dir1, dir2, file1

 dir1 is an internal node

 dir2 is an external node (leaf);

it is an empty directory

 file1 is an external node (leaf); it is a regular file

Directory dir1 of examples has files dir2, dir3, file1.

 file1 is an external node and a regular file

 dir2 is an external node and an empty directory

 dir3 is an external node and an empty directory

The name of a file should never be used to determine if two
file are the same or not. The inode number should be used
instead. For the sake of an example, example/dir2 has inode
number 315165133 and example/dir1/dir2 has inode number
315165139. Those two files are distinct from each other; they
are empty directories.

Page | 34

Likewise example/file1 has inode number 315211770 and
example/dir1/file1 has inode number 315211796. They are
different, yet they are empty files.

% ls -lRi example/
example/:
total 4
315165127 drwx------ 4 alexg users 2048 Nov 14 13:20
dir1
315165133 drwx------ 2 alexg users 2048 Nov 14 13:19
dir2
315211770 -rw------- 1 alexg users 0 Nov 14 13:19
file1

example/dir1:
total 4
315165139 drwx------ 2 alexg users 2048 Nov 14 13:20
dir2
315165135 drwx------ 2 alexg users 2048 Nov 14 13:19
dir3
315211796 -rw------- 1 alexg users 0 Nov 14 13:19
file1

example/dir1/dir2:
total 0

example/dir1/dir3:
total 0

example/dir2:
total 0total 0
%

Directory example contains files dir1, dir2 and file1.

Files dir2 and file1 are external nodes (leaves)

Page | 35

 FILESYSTEM NAVIGATION
Absolute path names An absolute path name identifies a file
starting with the root of the filesystem.

Relative path names A relative path name identifies a file
relative to the current working directory.

Special characters.

 ~ : Home directory

 . : (dot) is current directory

 .. : (dot)(dot) is parent directory

 * : (star) matches any filename of any file

 ? : matches any one character

 abcTAB : abcTAB will attempt to match to a file

 whose filename starts with abcd;

 note that TAB is the Tab character not T A B.

Example. For the directory example used earlier the absolute
path name of dir2 within dir1 within example is

 /afs/cad/u/m/y/myucid/example/dir1/dir2

We then move (cd ~/example) to directory example whose absolute
path name is

 /afs/cad/u/m/y/myucid/example

We can reach the same location (of dir2 in dir1 in example)
afterwards with a cd command that described a relative path
(relative to the current working directory that currently is
/afs/cad/u/m/y/myucid/example) Thus a

 cd dir1/dir2

brings us back to our original location and thus a pwd

with output

 /afs/cad/u/m/y/myucid/example/dir1/dir2

Page | 36

confirms that!

Moreover a cd ../.. brings us back two levels up!

% pwd
/afs/cad/u/m/y/myucid/example/dir1/dir2
% cd ~/example
% pwd
/afs/cad/u/m/y/myucid/example
% cd dir1/dir2
% pwd
/afs/cad/u/m/y/myucid/example/dir1/dir2
% cd ../..
% pwd
/afs/cad/u/m/y/myucid/example

A file system navigation command summary is available below.
Several of the commands can accept more than one argument that
is a file. Thus ls file1 can become ls file1 file2 file3 file4.

% pwd # print working directory
% man pwd # manual page for pwd
% man man # manual page for man
% cd path # change to directory path
 # path is an absolute path name
 # or a relative path name
% cd / # go to the root of the file system
% cd # go to the home directory of user.
% cd ~ # same as cd
% cd . # go the current directory
 # no effect already there
% cd .. # go one directory up
 # to parent directory
% cd ../.. # go two levels up (grandaparent)

Page | 37

 FILE VIEW
% ls . # list contents of current dir.
% ls # same effect as ls
% ls path # list contents if path is
 # directory or confirm file exists
 # otherwise
% ls directory # list directory’s files
% ls file # confirm file exists
% ls ~ # list files at home directory
% ls . # same as ls
% ls .. # ls of parent directory
% ls -l # detailed long listing
% ls -d # list directories not their
 # contents
% ls -a # show hidden files as well
 # hidden files start with .
% ls -F # put a / at end of directory name
% ls -li # inode information included
% ls -lia # hidden files included
% ls -liaR # also recursively follow
% ls file* # list files that start with file
% ls *file # list files that end with file
% ls file{1,2} # list file1 and/or file2
% ls file[0-9].txt # list files file0.txt,…,file9.txt
% ls -d dir? # list directories that start with
 # dir and have one additional char
 # in the filename
% ls -d *1 # list files ending with 1
% ls -lS # sort by file size
% ls -lt # sort by modication time/date

 FILE INFO
% stat filename # info about file
% ls -l filename # info about file
% file file1 # type of file1

Page | 38

 FILE MANAGEMENT
 CREATE FILES or DIRECTORIES

% touch file1 # creates regular file
 # with 0 size of name file1
 # if file1 exists updates
 # modification time
% mkdir dir1 # creates an empty directory
 # named dir1 inside current
 # directory

COPY or MOVE FILES or DIRECTORIES

% cp file1 file2 # makes a copy of file1;
 # new file named file2
% cp -r dir1 dir2 # copies a full directory

% mv dir1 dir2 # rename dir1 into dir2
% mv file1 file2 # rename file1 into file2
% mv file1 dir2 # mv file1 into dir2

 DELETE FILES or DIRECTORIES

% rm filename # delete filename in directory
 # name disappears from current
 # directory that contains
 # the command does NOT ERASE
 # the contents of the file
% shred filename # contents erased if on HDD;
 # file not deleted,
% shred -u filename # contents erased if on HDD;
 # and file deleted.
% rmdir dir1 # deletes(removes) empty
 # directory dir1
 # if not empty delete its
 # files first or see below!

 DANGEROUS COMMANDS!!
% rm -f file1 # silent removal of file1 !!!
% rm -rf dir1 # silent removal of all files
 # in directory dir1 including
 # files in subdirectories of
 # it

Page | 39

(HARD) LINK to a file

Linux and Unix Definition of file equlity.

Two files are identical if and only ifthey have the same inode#.
This means the same location of the filesystem stores
information about the two ‘files’ and this is the inode table at
offset the inode#. Moreover the contents are also the same.

What makes a file a file is the inode# not the filename. The
filename is an alias to the inode#; humans cannot memorize long
integers they prefer (English) words that are shorter.

Hard link creation syntax

 % ln existingfile newhardlink

Semantics

Precondition: An existing file with alias existingfile that
maps to a file of the filesystem with inode# (inode number) N.

There are no other aliases to inode# N other than existingfile.
This can be confirmed by examining the inodetable entry for N
and confirming that the (hard) link count is a 1.

Postcondition: A new alias newhardlink is created for the file
with inode# N. Thus in the same directory we have two entries

 (existingfile, N)

and

 (newhardlink, N)

both pointing to the same file with inode# N. Thus there are two
files with different file names that are identical in the sense
that their inode# are the same. They both point to the same
location of the inode table and by way of the latter to the same
sectors of the disk that store the date (contents) of the file
itself (and not the files themselves). The inode table stores an
inode (hard link) count. It used to be 1 but after the command
ln successfully completed is now a 2. Command stat can confirm
it.

Page | 40

Sometimes one can call the inode# namefile to distinguish it
from the two filenames that map to it! What makes a file unique
is its inode number. A file with inode number 315211796 can
exist under multiple filename. See an example below.

(Step 1) We create an empty file named a.

(Step 2) We add some content to a

(Step 3) The current directory into which a created has
absolute path

 /afs/cad/u/m/y/myucid/example

(Step 4) Creating a added into the contents of directory
example a pair

 (a, 315211796)

 This establishes the name a as an alias to

 the file with inode number 315211796.

 The hard disk drive only know file 315211796

 and so does the filesystem

(Step 5) We generate additional pairs i.e. aliases

 (b, 315211796)

 (c, 315211796)

 (d, 315211796)

 There is no difference in doing ln a c vs ln b d.

 Both aliases c and d are to the same inode number as

 a and b map to inode number 315211796.

(Step 6) We verify that all a,b,c, are the same with a

 % ls -i

 or

 % ls -I a b c d

 and the hardlink count of 315211796 is 4 to match the
number of aliases (a,b,c,d) as it can be revealed either by
executing a stat command (eg stat a) or an ls -li command as
shown below for both cases.

Page | 41

 HARD LINK EXAMPLE SETUP
% touch a # create file a of size 0
% echo “Hello world” >>a # add some content into a
% gvim a # edit a to add content as
% vi a # well (vi vs gvim)
 # use vi if you know how!
% ls -i a # inode# of a is 315211796
315211796 a
% ln a b # create a hard link b of a
% ln a c # create a hard link c of a
% ln b d # create a hard link d of b
% ls -i
315211796 a 315211796 b 315211796 c 315211796 d
% cat a
Hello world
% cat b
Hello world
% stat a
 File: ‘a’
 Size: 12 Blocks: 2 IO Block: 4096 regular
file

Device: 28h/40d Inode: 315211796 Links: 4
Access: (0600/-rw-------) Uid: (32252/ myucid) Gid: (100/
users)
Access: 2023-11-14 15:26:35.000000000 -0500
Modify: 2023-11-14 15:26:35.000000001 -0500
Change: 2023-11-14 15:26:35.000000000 -0500
 Birth: -
% ls -li
total 4
315211796 -rw------- 4 myucid users 12 Nov 14 15:26 a
315211796 -rw------- 4 myucid users 12 Nov 14 15:26 b
315211796 -rw------- 4 myucid users 12 Nov 14 15:26 c
315211796 -rw------- 4 myucid users 12 Nov 14 15:26 d

We then start a systematic delete of some of the aliases also
called colloquially ‘files’.

Page | 42

% rm a # alias a is gone
% ls -li
total 3
315211796 -rw------- 3 myucid users 12 Nov 14 15:26 b
315211796 -rw------- 3 myucid users 12 Nov 14 15:26 c
315211796 -rw------- 3 myucid users 12 Nov 14 15:26 d
% cat b
Hello world
% cat c
Hello world
% rm c
% rm d
% ls -li
total 1
315211796 -rw------- 3 myucid users 12 Nov 14 15:26 b
% cat b
Hello world
% cat a
cat: a: No such file or directory

Deleting a file using an alias such as a, c, and d has no
effect on the inode# associated with a, c and d while the hard
link count is greater than 0.

After the rm a, the hard link count of inode# 315211796 went
down from 4 into a 3. After them rm b it went further down into
a 2. And after the third rm involving d it went down into 1.

The OS DOES NOT USE the filename to access the file itself. It
uses the inode# associated with the filename. Even if we cannot
use the name (alias) a,c,d to access it we can still use the
remaining name (alias) b to do so and we did so.

If we remove a file with hard link count 1, first the filename
and inode# association (eg (b, 315211796)) gets wiped out from
the directory in which it was established, then the hard link
count is decremented by one to reach a 0 and when this link
count of 0 is detected then and only then the inode number is
freed from the inode table (become available for reassignment)
and the file is thus ‘removed’ from the table. The file is not
deleted in the sense that the contents are still etched on a
sector of the hard disk drive. The rm command does not touch or
access the data of the file, but only the METADATA that are

Page | 43

available in the inode table entry of offset (or index or
number) 315211796.

Conclusion: rm removes only
METADA of its file
argument(s) and DOES NOT
ERASE the DATA of the
respective file arguments(s).

Page | 44

 SYMBOLIC LINKS to a file

Symbolic link (or equivalently soft link) creation syntax

 % ln -s existingfile newsoftlink

Semantics

Precondition: An existing file with alias existingfile that
maps to a file of the filesystem with inode# (inode number) N.

There are no aliases to inode# N other than existingfile. This
can be confirmed by examining the inodetable entry for N and
confirming that the (hard) link count is a 1.

Postcondition: A new file is created and thus a new entry in the
inode table is to be used up. Let the new file has inode# M. The
type of the file would be flagged as a symbolic link (and not a
regular file). Its hard link count would be 1.

In the current directory a pair

 (newsoftlink, M)

would be created.

The data contents of the file with inode# M would be

 newsoftlink -> existingfile

If we attempt to perform a

 cat newsoftlink

the OS realizes that the newsoftlink is a symbolic link,

it find from the contents newsoftlink -> existingfile

of newsoftlink that it needs to read file existingfile and
provided existing file still exists its contents would be
displayed through the cata command.

Page | 45

We provide a comprehensive example below

(Step 1) Using the leftover file b of the hard link example we

 rename b into a (mv b a) and thus our original set up

 exists.

(Step 2) We issue a

 ln -s a newsoftlink

(Step 3) and then we perform a

 ls -li

 to realize that a and newsoftlink have different

 inode numbers.

(Step 4) A

 cat a

 or

 cat newsoftlink

 displays the same contents.

(Step 6) We then issue a

 rm a

 The contents are destroyed and the

 newsoftlink -> a cannot be resolved

 as file a with inode# 315211796 is gone (and the

inode number 315211796 has been released to the

filesystem for future usage/allocation.

Page | 46

 SYMBOLIC LINK EXAMPLE SETUP
% mv b a # leftover from hard link
 # example generates initial
 # base case as in other
 # example
% ls -i a # inode# of a is 315211796
315211796 a
% cat a
Hello world
% ln -s a newsoftlink
% cat b
Hello world
% ls -li
total 2
315211796 -rw------- 1 myucid users 12 Nov 14 15:26 a
315211770 lrwxr-xr-x 1 myucid users 1 Nov 14 16:27 newsoftlink ->
a
% rm a
rm: remove regular file ‘a’? y
% ls -l
total 1
lrwxr-xr-x 1 myucid users 1 Nov 14 16:27 newsoftlink -> a
% ls -li
total 1
315211770 lrwxr-xr-x 1 myucid users 1 Nov 14 16:27 newsoftlink -> a
% cat newsoftlink
cat: newsoftlink: No such file or directory
% stat newsoftlink
 File: ‘newsoftlink’ -> ‘a’
 Size: 1 Blocks: 2 IO Block: 4096
symbolic link
Device: 28h/40d Inode: 315211770 Links: 1
Access: (0755/lrwxr-xr-x) Uid: (32252/ myucid) Gid: (100/
users)
Access: 2023-11-14 16:27:52.000000000 -0500
Modify: 2023-11-14 16:27:52.000000001 -0500
Change: 2023-11-14 16:27:52.000000000 -0500
 Birth: -

We then start a systematic delete of some of the aliases also
called colloquially ‘files’.

Page | 47

8. Text processing commands
 LISTING of CONTENTS of FILES

% cat file1 # catenate (display) contents of
 # file1
% tac file1 # end to start display (reversal)
% cat file1 file2 # multiple file content display
 # join two files vertically
% cat file1 file2 >> file3 # add file1 and file 2
 # contents at end of file3
 # if file3 does not exist it is
 # created (contains file1, file2)
% more file1 # controlled display of contents
% less file1 # alternative controlled display
 # of contents
% head -n N file1 # display first N lines of file1
% tail -n N file1 # display last N lines of file2
% od -c file1 # display contents in detail
% od -h file1 # in hexadecimal
% od -o file1 # in octal

COMMAND OPTIONS for less or more

Space # move forward by one page
f # same as Space
b # move backwards by one page
< # go to first line
> # go to last line
/ # search forward
 # /string searches for string
? # search backward
n # repeats /
N # repeats ?
h # help
q # quit help
q # quit man (outside of help) or less or more

Page | 48

 MANIPULATION of FILES

% diff file1 file2 # compare two files
% egrep string file1 # find lines of file1 that contain
 # string and display them
% sort file1 # sort the lines of file1
% sort -r file1 # reverse sort the lines of file1
% sort -nr file1 # treat lines as numbers
% sort -n file1
% tr l q <file1 >file2 # change l in file1
 # into q and store result in file2
% wc file1 # word count of file file1
% split file1 -l 3 # split file file into multiple
 # files 3 lines per file
% md5sum file1 # MD5 fingerprint (crypto) of
 # file1

 IDIOSYNCRATIC BEHAVIOR of BASH

% date # explained earlier

% echo \$date # $ is a special character!
% echo “`date`” # similar to date
% echo $(date) # think! also echo $(ls) ?
% sort -nr file1 # treat lines as numbers
% sort -n file1
% tr l q <file1 >file2 # change l in file1
 # into q and store result in file2

SEARCHING FILES

% egrep string file1 # searching the contents of a file

% find ~ -name f # search home directory for f
% find ~ -name f1 # search home directory for
directory f1!
% find ~ -name f -print # also print location found
% find ~ -name `*.txt’ # for all .txt file

Page | 49

9. FILE PERMISSIONS
In Unix and by extension to Linux access permissions are
assigned to every file of the filesystem.

This corresponds to traditional file access permisions. Moden
version of Unix and Linux support POSIX permissions. In
addition, NJIT’s AFS supports AFS permissions as well. Whereas
traditional file permissions are used for non-directory file
types, AFS permissions are used for files of type directory
(i.e directories).

In this section we discuss only traditional file access
permissions. We might also call them access privileges.

How to find out the (current) access permissions of a file?
One way to obtain them is to use the command ls -l followed by
the name of the file in question. An alternative is to use the
command stat followed by the file name (see earlier sections).

Page | 50

 OBTAININING PERMISIONS
% ls -l filename # obtain file permisions
% stat filename # alternative approach

Example

% ls -l fname
-rwxr-xr-- 1 myucid users 0 Nov 16 10:05 fname

In this example we obtain the access privileges of file fname.
Note that the file is of type regular file and this is
indicated by the -, the leftmost character of the output.

In the output of ls -l the privileges start from the second
and extend to the 10th character of the output. They are
rwxr-xr-- and they describe access privileges for three
entities. We rewrite them below by adding some space to
distinguish the three entity separate access privileges.

entity u entity g entity o #privileges

rwx r-x r--
 u triad g triad o triad

u: user owner of file # myucid of numericID 32252
g: group of user owner of file # users of numericID 100
o: others (neither entity u nor users of entity g)

Positional importance
r is always the leftmost of three privileges in a triad
absence of r privilege is indicate by a dash in leftmost position

w is always th middlemost of three privileges in a triad
absence of w privilege is indicated by a dash in middlemost position

x is always th rightmost of three privileges in a triad
absence of x privilege is indicated by a dash in rightmost position

The left-most group (left triad i.e. triplet of characters)
describes the access privileges assigned to entity u. Entity u

Page | 51

is the user owner of the file. In this example the user owner
of the file is the user with userID myucid.

The middle group (middle triad) describes the access
privileges assigned to entity g. Entity g is the group of the
user owner of the file. A group is a collection of userID. In
this example the group of the user owner of the file is the
group with groupID users.

Finally the right-most group (right triad) describes the
access privileges assigned to entity o. Entity o is the Other
users. Other means other than the user-owner of the file and
the collection of users that form the group of the user owner
of the file. Thus in this example entity o describes all the
users other than myucid and the collection of user belonging
to group users.

Both the userID and the groupID are identified in the output
of ls -l, but also the output of the stat command and of
course through the command id. Both the numeric ID and the
symbolic ID are shown for some of thos commands. Thus the user
owner has symbolic ID the noted myucid; its numeric id is
32252.

% ls -l fname
-rwxr-xr-- 1 myucid users 0 Nov 16 10:05 fname
% stat fname
 File: ‘fname’
 Size: 0 Blocks: 0 IO Block:
4096 regular empty file
Device: 27h/39d Inode: 315211770 Links: 1
Access: (0754/-rwxr-xr--) Uid: (32252/ myucid)
Gid: (100/ users)
Access: 2023-11-16 10:05:32.000000000 -0500
Modify: 2023-11-16 10:05:32.000000001 -0500
Change: 2023-11-16 10:05:32.000000000 -0500
 Birth: -
% id
uid=32252(myucid) gid=100(users)
groups=100(users),1096151802

Page | 52

(a) Permissions of user owner (entity u)

The permissions of the user owner of the file are described
positionally through the triad rwx. User owner is the user
with userID mycuid (numeric value 32252).

For a file of type (regular) file or in general a non-
directory file the triad rwx has the following meaning.

rwx : r stands for read privileges are allowed,

 w stands for write privileges are allowed, and

 x stands for execute privileges are allowed.

For a directory, and fname is a regular file and not a
directory, the read, write and execute privileges are
interpreted as follows.

read (r) means one is able to read the directory and list
its files.

write (w) means one is able to create or remove files from
the directory.

execute (x) means that one is able to search the directory
and its (subordinate) directories inside it.

(b) Permissions of group owner (entity g)

The permissions of the group owner of the file are described
positional through the triad r-x. Group owner is the group
with groupID users (numeric value 100).

The r-x indicates again that entity g (group owner) has read
and execute access privileges on fname. The absence of write
privileges is indicated by the w being replaced with a dash(-
).

(c) Permission of other users (entity o)

The permissions of entity o are described positional through
the triad r--.

The r-- indicates again that entity o has read but neither
write nor execute access privileges on fname. The absence of

Page | 53

write and execute privileges is indicated by both the w and x
being replaced with a dash(-).

(d) Numerical view of triad privileges

The character view of the access privileges of a triad (rwx,
r-x and r-- of our examples) can be converted into an octal
digit (0-7 range) in two possible ways

 [i] Binary number view

 The presence of a r,w,x is mapped onto a 1; the presence of a
dash(-) is mapper onto a 0. Then the three-bit binary number is
converted into denary (base-10, radix-10) or octal (radix-8).

Example: rwx becomes 111 that is 7 in denary or octal.

 r-x becomes 101 that is 5 in denary or octal

 r—- becomes 100 that is 4 in denary or octal.

[ii] Denary number view

 The presence of a r is mapped onto a 4; a w is mapped onto
a 2 and an x is mapped onto a 1. A dash(-) is mapped onto a
zero. The three numeric values generated for a triad are then
added up to generate a digit from 0 through 7.

Example rwx maps onto 4,2,1 and the sum 4+2+1 gives a 7.

 r-x maps onto 4,0,1 and the sum 4+0+1 gives a 5.

 r-- maps onto 4,0,0 and ths sum 4+0+0 gives a 4.

Page | 54

 Changing permissions

% chmod ent=lperm filename # set permissions
% chmod ent+lperm filename # add permisions
% chmod ent-lperm filename # remove permissions
 # to/from file filename
% chmod nperm filename # set a new set of
 # permissions to filename

ent is an entity such as u, g, o or
 entity a to indicate all and equivalent to ugo, or
 a combination of u,g,o such as uo, go, ug, etc.
lperm describes letter based permissions
 the new set of permissions (= precedes lperm),
 the added permissions(+ precedes lperm), or
 the to be removed permisions(- precedes lperm)
 lperm can be r,w,x or combination of eg rw,
 rx,etc
nperm are the new permissions for the three entities
 one denary(or octal) digit per entity/triad.
 For example,765 indicates a 7 for entity u (rwx),
 a 6 for entity g (rw-), and
 a 5 for entity o (r-x)

 Examples.

% ls -l fname
-rwxr-xr-- 1 myucid users 0 Nov 16 10:05 fname
% chmod 500 fname
% ls -l
-r-x------ 1 myucid users 0 Nov 16 10:05 fname
% chmod 755 fname ; ls -l
-rwxr-xr-x 1 myucid users 0 Nov 16 10:05 fname
% chmod g+w fname ; ls -l
-rwxrwxr-x 1 myucid users 0 Nov 16 10:05 fname
% chmod a-x fname ; ls -l
-rw-rw-r-- 1 myucid users 0 Nov 16 10:05 fname

Page | 55

 AFS Permissions
 We only provide some elementary information about AFS
permissions. The AFS access privileges are known as ACL (access
control list).

ACLs apply to directories and not to files. It ignores standard
Unix (Linux) permissions. A directory created inherits by
default the ACLs of its parent directory. (If the parent
directory’s ACLS are subsequently changed the new changes do not
progagate to subdirectories.)

One can access a subdirectory if ACL privilege l (lookup) is
available to all parent directories.

ACL permission are normal or negative. A normal permission
grants a privilege; a negative removes a privilege.

Thus if an r permission is both granted and negated, the system
first includes r when it examine the normal permissions, but
when later on examine the negative permission r is removed from
the available permission list.

ACL Permissions
 DIRECTORY PERMISSIONS
l (lookup) listing of directory contents allowed
i (insert) creating new file in directory allowed
 (copying of files in directory allowed).
d (delete) removal of files from directory allowed
a (admin) allows one to change a directory’s ACL
 (other than the owner of the directory
 who can do so by default or member of
 system:administrators)
 FILE PERMISSIONS
r (read) read contents of files in directory
 and issue ls -l
w (write) modify contents of files in direcoty and
 allowed to use chmod on those files
k (lock) allows program to lock files in directoy
 UNDEFINED MEANING PERMISSIONS :A B C D E F G H
SHORTCUTS Meaning
all rlidwka
read rl
write rlidwk
none remove all assigned privileges

Page | 56

Command Explanation
fs listacl dir1 list permission of directory dir1
fs la dir1 shortcut for listacl is la

Assistance
fs help listacl

Example
% fs la example
Access list for example is
Normal rights:
 arcsnewstaff rlidwk
 homer l
 system:administrators rlidwka
 myucid rlidwka
 http l

 SPECIAL USER (groups)

 system:anyuser Must never have write privileges

 system:authuser Some systems differentiate by providing

 defining such a group (eg NJIT users)

 system:administrators

Page | 57

Command Explanation
fs setacl -dir dirname -acl aclentries Add to an ACL
fs sa -dir dirname -acl aclentries
fs sa -dir dirname -acl aclentries -negative
fs sa dirname user permisions aclentries is a
 user permissions pair
 Remove from an ACL
fs sa dirname aclentries Must use order as above
fs sa dirname user none Negate privileges
 for user user
fsr sa -dir dname -acl aclentries Recurive set on all
 subdirectories of dname
fs sa -dir dname system:anyuser none
fs sa -dir dname myucid all -clear Remove all other users
Assistance except mycid
fs help setacl

Example
% fs sa -dir . -acl homer w or fs sa . homer w
Access list for example is
Normal rights:
 arcsnewstaff rlidwk
 homer w
 system:administrators rlidwka
 myucid rlidwka
 http l
% fs sa . homer rw
Access list for example is
Normal rights:
 arcsnewstaff rlidwk
 homer rw
 system:administrators rlidwka
 myucid rlidwka
 http l

Page | 58

Additional example for fs setacl
% fs sa . homer none ; fs la
Access list for example is
Normal ri%ghts:
 arcsnewstaff rlidwk
 system:administrators rlidwka
 myucid rlidwka
 http l
% fs sa -dir . -acl arcsnewstaff dwk -negative ;fs la
Access list for example is
Normal ri%ghts:
 arcsnewstaff rlidwk
 system:administrators rlidwka
 myucid rlidwka
 http l
Negative rights:
 arcsnewstaff dwk
% fa sa . mycid all -clear ; fs la
Access list for . is
Normal rights:
 myucid rlidwka

Command Explanation
fs copyacl -fromdir d1 -todir d2 copy acl
fs ca -fromdir d1 -todir d2 alternative
fs ca -clear -fromdir d1 -todir d2 clears d2 before copying

Assistance
fs help copyacl

Caution
Keeps d2 privileges that are not in conflict with d1’s

Command Explanation
fs listquota List quota
fs lq Alternative

Assistance
fs help lq
fs help

Page | 59

10. System status
Command Explanation
hostname Name of host
who List of users in host
whoami Logged on user information
id Detailed id of logged on user
date Current date and time
cal Calendar of current month
cal mo ye Calendar of month mo (1-12) and year (yyyy)
cal year Calendar of year (yyyy)
which command absolute path to exe file of command
locate string Find all dirs containing string
lsof List of Open Files
uname -a System limits

Command Redirection Explanation
ls Output on standard output
ls > x1 Output on file x1 ; if x1 exists it
 is overwritten or error file exists
ls >>x1 Output appended on file x1

Page | 60

 BASH shell
Bash file Purpose
~/.bash_profile Configuration file ; it reads ~/.bashrc

~/.bashrc No login bash terminal configuration file

/etc/profile System wide config

1. When bash is invoked as interactive login shell or as a
non-interactive login shell (--login option) it first reads
and executes /etc/profile

2. Then it checks in sequence the following files. The first
one that exists/is readable is read and executed.

~/.bash_profile
~/.bash_login
~/.profile

 If shell is started with –noprofile then step 2 is skipped.

3. When an interactive shell is started that is not a login
shell then
 ~/.bashrc
is read and commands in it executed.

4. Several time a ~/.bash_profile that exists (step 2)
enforces the read and execution of the commands in .bashrc
with the following command in ~/.bash_profile
 if [-f ~/.bashrc]; then . ~/.bashrc; fi

5. Moreover a ~/.bashrc file might have a line
 if [-f /etc/bashrc]; then . /etc/bashrc; fi

Most frequent setup interactive login

1. /etc/profile
2. ~/bash_profile that call ~/.bashrc
3. with ~/.bashrc calling /etc/bashrc as well

An interactive non-login shell invocation calls

4. ~/.bashrc (which also calls /etc/bashrc)

On exit

5. ~/bash_logout

Page | 61

OSX
OSX: No interactive non-login; ~/.bash_profile the latter might
call ~/.bashrc [only then is the latter being used]

NJIT setup: interactive login
1. /etc/profile used first [STEP-1]
2. File /etc/.bash_profile does not exist
3. /afs/cad/linux/local/etc/std-bash_profile

sources ~/.bashrc [STEP-2a]
4. /afs/cad/linux/local/etc/std-bashrc [STEP-3a]

sources /etc/bashrc
5. ~/.bash_profile [STEP-2]

sources /afs/cad … /std-bash_profile [STEP-2a]
sources ~/.bashrc [STEP-2a repeat]

6. ~/.bashrc [STEP-3]
 sources /afs/cad … /std-bashrc [STEP-3a]
 source ~/…myaliases …

7. ~/.profile is a Bourne Shell relic and does not exist
8. On exit ~/.bash_logout

NJIT setup: interactive non-login
1. ~/.bashrc [STEP-1]
2. with ~/.bashrc sourcing …/std-bashrc
3. with …/std-bashrc sourcing /etc/bashrc

[another alternative : /etc/bash.bashrc]
4. On exist ~/.bash_logout

NJIT invocation : sh (not bash)
1. /etc/profile and then ~/.profile

NJIT : bash invoked by ssh
1. ~/.bashrc and see interactive non-login

% echo $- #shows shell

Page | 62

 TCSH SHELL : interactive login
1. Either ~/.cshrc or ~/.login

[/etc/csh.cshrc or /etc/csh.login are executed]

2. OR ~/.tcshrc
3. At logout ~/.logout [/etc/csh.logout]

TCSH SHELL : non-interactive login

1. ~/.cshrc
2. At logout ~/.logout

 PID below stands for ProcessID

 PPID below stands for Parent ProcessID

 UID below stands for UID (eg myucid)

PROCESS STATUS Meaning
w what is going on in system (Load info shown)
finger
ps Current login (terminal) process status (ps)
ps ef More informative compared to ps
ps -f PID and PPID displayed
ps aux All processes in system (BSD syntax)
ps -aux Same

ps -ef |egrep myucid Find processes of user myucid
ps -ef |egrep bash Find all bash instances + commands with
 word bash
kill -9 PID Kill(Terminate) a process with ID PID
 (eg kill -9 12345) 9 is signal SIGKILL
man 7 signal List of all signals including SIGKILL
top List of all processes (scree nview)

cat /proc/cpuinfo CPU info
cat /proc/cmdline Kernel command line invocationinfo
cat /proc/partitions Partition info
ls /proc/pid Information about process with PID pid

Page | 63

11. Process management
A process is a program in execution. An executable program,
the result usually of the compilation process of a source code
file written in a high-level compiled programming language,
resides on secondary memory. Let for the sake of an example am
executable program be name prx.

A user intents to start running prx. The user needs to locate
prx in the filesystem hierarchy. On a visual (graphical
system) it suffices to click on the icon that is associate
with the executable file named prx. In a command line mode,
the users needs to describe and write the name of the
executable file. This way the user preceded the name prx of
the file with a ./ to indicate that the location of the file
is in the current directory (the dot preceding the slash). If
the ./ is omitted the OS would search for prx in a predefined
collection of directories. This collection does not include
the current directory (.) unless the user has explicitly done
so in advance.

As soon as typing ./prx followed by an ENTER is completed
control goes to the OS (kernel) and its long term scheduler
(sometimes known as the JOB scheduler). More often than not
the long term scheduler would OK the execution request, and
then the loader would load the executable prx in main memory
as needed (and instructed) by the OS kernel and kernel data
structures would be updated accordingly. Three files would be
opened by default in UNIX (and Linux): standard input,
standard output and standard error mapped to the keyabord,
terminal/screen and terminal/screen of the user’s device used
to connect to the host. At that point execution of prx would
eventually start. In rare cases the system is fully loaded and
./prx ‘s invocation would trigger no reaction as if the system
is frozen. The user can wait or kill the invocation with a
CTRL-C. In the setup as described the parent process of the
process associated with prx is the shell that is going to
create the process prx. The (bash) shell presence is denoted
by the prompt %. So there is an intermediary between the
program prx and the kernel and this is the shell process.

Page | 64

PROCESS STATUS Meaning
% ./prx Run process (program) prx
% CTRL-Z while prx is running CTRL-Z suspends execution
 of prx
% jobs A list of processes in the background is shown
% jobs A jobs show the process STOPPED
% bg The suspended process (prx) is reinstated and
 resume execution in the background
% fg A suspended process resume execution in the
 foregound
% bg %n n a numeric value associated with process
% fg %n pick a given among multiply available processes
% kill %n Terminates / kill process in the background
% fg %m Bring process in the foreground
% CTRL-C and then terminate it : a two step equivalent
 to a kill %m

Page | 65

12. Tar, zip and gzip usa

Tar/Untar, Zip, gzip Meaning
tar cvf x.tar a.txt a.txt Pack a.txt,b.txt into x.tar
tar xvf x.tar Unpack x.tar into its contents
 x: extract, v: verbose
 f: tar file follows (x.tar)
 c: create
zip f.zip a.txt b.txt Pack a.txt,b.txt into f.zip
unzip f.zip Unpack f.zip

gzip x.tar Compress x.tar
gzip -d x.tar.gz Uncompress x.tar.gz

Page | 66

13. Compilation processes

Program module Meaning
management
module avail gcc List all gcc versions available
module load gcc/9.1.0 Load version 9.1.0 of gcc
module list List currently loaded module files

GCC compiler Meaning
invocation
gcc -v List gcc version
gcc pr1.c Compile + Assemble +Link into a.out
 Compile : from C to Assembly
 Assemble: from Assembly to Object code
 Link: from Object code link with
 other libraries to eventually an exec
 code
gcc pr1.o -o pr1 Override default: use pr1 instead
gcc pr1.c -lm -o pr1 Link also with math library
 (eg your code has sin, cos, exp etc)
 -l : link with library
 m of -lm is libm.a (static) or
 libm.so (dynamically linked)
gcc pr1.c -S Compile only (assembly output generated
 is file pr1.s)
gcc pr1.s -o pr1s Assemble + Link ; output is pr1s
gcc pr1.s -c Compile + Assemble : object code pr1.o
gcc pr1.o -o pr1so Link + generate executable pr1so
objdump -D pr1s

Page | 67

Program Execution Management Meaning
./pr1 Run program from current dir.
echo $? For C/C++/Java program on
 completion print return value
 of main function returned to
 shell program
export PATH=.: $PATH Add current directory to the
 PATH (of directories) the shell
 will be exploring to find an
 executable file such as pr1;
 then pr1 can be used rather
 than ./pr1
pr1 Might work then

export PATH=.:$PATH Add it to ~/.profile and
 activate it in current session
source ~/.profile If it does not work
echo “PATH=.:$PATH” >> ~/.bash_profile
echo “PATH=.:$PATH” >> ~/.bashrc

Task1: Generate named executable file from C source code file

 Input: source code file exe.c (resides in SM)

 Output: executable file myexe (resides in SM)

 % gcc exe.c -o myexe

Task2: Generate default-named executable file from C source code
file

 Input: source code file exe.c (resides in SM)

 Output: By default in file a.out (resides in SM)

 % gcc exe.c

Page | 68

Task3: Generate default-named object file from C source code
file

 Input: source code file exe.c (resides in SM)

 Output: object code file exe.o (resides in SM)

 % gcc -c exe.c

Task4: Generate named executable file from object code file

 Input: object code file exe.o (resides in SM)

 Output: executable file oexe (resides in SM)

 % gcc exe.o -o oexe

Note that myexe, a.out and oexe are the same structured
executable file but have different filenames. You may verify
that by doing a

 % md5sum myexe oexe a.out

When i did so i got an output

c004edff4c972e24106370a2acbebbb0 myexe

c004edff4c972e24106370a2acbebbb0 oexe

c004edff4c972e24106370a2acbebbb0 a.out

The long string of hexadecimal characters is the fingerprint of
the corresponding file name listed to its right. The three files
have identical fingerprints. It is highly unlikely to be
different.

If you are curious in finding out what is going on, replace gcc
in the previous commands with gcc -v

Page | 69

For example

 % gcc exe.c -o myexe

would become

 % gcc -v exe.c -o myexe

You execute an (executable) file by invoking the file's namefile
from the directory it is located. The OS's loader will load the
progam into main memory(MM) and thus turn the program into a
program in execution, i.e. a process.

For the bash commands (eg date,ls, rm, cp) everytime you issue a
command you in fact request bash to run the corresponding
identically named executable file (i.e. date, ls, rm, cp). You
do not need to go the directory these exe files (short for
executable files) are located. Bash know they are in /bin. Thus

 % date

 or

 % /bin/date

both run the same exe file i.e. date. You do not need to do

 % cd /bin

 % ./date

Task 5: Execute i.e. run an executable file

 Input: Executable file myexe

 Effect: myexe is being run

 % ./myexe

A program resides in secondary memory (SM). A program in
execution (process) resides in Main Memory (MM) all of it or
part of it. We need to move the program from SM into MM. The
'loader' moves myexe from SM into MM using the loader invocation
./myexe. The ./ means "in the current directory
find a file named as indicated afterwards". Thus ./myexe means
"in the current directory find a file named myexe and load/run

Page | 70

it". The actor that will find the file and run it is an
operating system (kernel) program known as the UNIX/LINUX
loader. Subsequently the execution of myexe starts.

 Task 6: Entry point of C or C++ or Java programs.

ENTRY POINT of a C/C++/Java program. The entry point of myexe is
indicated in exe.c by a function of a special name: main.

RETURN VALUE OF MAIN (C or C++).When the main function completes
its execution it returns a value: 0 means regular termination,
no errors detected or reported. Another value might indicate
something else: an error and its error code is then returned.
The prototype for main should be in C or C+

int main(...

and never

void main(...

CAPTURING the RETURN VALUE of main in UNIX or LINUX. In the
shell (command prompt, terminal) after the invocation ./myexe,
if you type the following line, you can capture the return
value of main with the following bash shell command.

 % echo $?

Note that % is the bash prompt. You do not type it. And of
course you press ENTER at the end to submit the request echo $?
to the bash shell. If the value returned by a main function is
more than 255 then only the (unsigned) integer value identified
by the rightmost 8 bit will be returned!

 Task 7: Generate assembly file from C source code file

 Input: source code file exe.c [in SM]

 Output: assempy file file exe.s [in SM]

 % gcc -S exe.c

You may view the assembly file by typing one of the following

Page | 71

 % cat exe.s

 % more exe.s

Task 8: Generate from assembly file an object code file

 Input: assembly file exe.c [in SM]

 Output: object code file asexe.o or gccexe.o [in SM]

 % as exe.s -o asexe.o

 or by using the gcc compile infrastructure

 % gcc -c exe.s -o gccexe.o

void main(...

CAPTURING the RETURN VALUE of main in UNIX or LINUX. In the
shell (command prompt, terminal) after the invocation ./myexe,
if you type the following line, you can capture the return
value of main with the following bash shell command.

 % echo $?

Note that % is the bash prompt. You do not type it. And of
course you press ENTER at the end to submit the request echo $?
to the bash shell. If the value returned by a main function is
more than 255 then only the (unsigned) integer value identified
by the rightmost 8 bit will be returned!

 Task 7: Generate assembly file from C source code file

 Input: source code file exe.c [in SM]

 Output: assempy file file exe.s [in SM]

 % gcc -S exe.c

You may view the assembly file by typing one of the following

 % cat exe.s

Page | 72

 % more exe.s

Task 8: Generate from assembly file an object code file

 Input: assembly file exe.c [in SM]

 Output: object code file asexe.o or gccexe.o [in SM]

 % as exe.s -o asexe.o

 or by using the gcc compile infrastructure

 % gcc -c exe.s -o gccexe.o

You may observe that all the files exe.o asexe.o gccexe.o have
the same content by doing a

 % md5sum asexe.o exe.o gccexe.o

(When i did so i got the following output

02662f47e95ce03fd2a7faff2c6a6b35 asexe.o

02662f47e95ce03fd2a7faff2c6a6b35 exe.o

02662f47e95ce03fd2a7faff2c6a6b35 gccexe.o

Task 9: Generate from object code file an executable file

 Input: object code file asexe.o or gccexe.o [in SM]

 Output: executable file exeas or exegcc [in SM]

 % gcc gccexe.o -o exegcc

 % gcc asexe.o -o exeas

 The object code contains machine code for the user defined
functions. System functions maps to operating system supplied
code that resides elsewhere (not in your current directory).
The next step links you object code file (eg asexe.o) to the

Page | 73

system code files (eg the ones realizing function printf) and
the combination become the executable file (eg exeas).

Task 10: Object file in readable form

 Input: object code file exe.o [in SM]

 Output: object dump file dexe.txt [in SM]

 % objdump -D exe.o >dexe.txt

Task 11: Executable file in readable form

 Input: executable file myexe [in SM]

 Output: exe dump file dmyexe.txt [in SM]

% objdump -D myexe >dmyexe.txt

 You may observe the difference in size between the two dump
files.If the >dexe.txt or >dmyexe.txt part of the command is
missing the output is displayed on screen (stdout).

Objdump Meaning
objdump -f pr1 File header info
objdump -h pr1 Section header info
objdump -d pr1 Assembler content of exec section of pr1
objdump -D pr1 Assembler content of all sections
objdump -s pr1 All content printed
objdump --help Help : -h is section header info option

