
A. V. Gerbessiotis CS 345-001 Fall 2013
HW 3 September 30, 2013 90 points

CS 345: Homework 3 (Due: Oct 14, 2013 before 10:01am)

Rules. This is to be completed no later than the start of class on the day it is due. Earlier submission is also
possible by email (read Handout 1).

Notation that will be enforced: Know your bits and Bytes. 1MB is usually 1,000,000B if it
refers to hard disk space; if you are not convinced, buy a hard disk drive and read the warranty information.
For main memory it is equal to 1MiB (mebi-byte, an SI notation). 1MiB is 1,048,576B. Nowadays we use 1TB
for disk space i.e. 1012B. The moment you format the hard disk and install a file system (or the PC manufacturer
does so for you) capacity gets stated by the OS in TiB or Gib even if they call it ”TB” or ”GB”. Note that during
formatting capacity goes down negligibly 1%. But a 1TB disk drive, will show up on a computer as having
space 0.91 ”TB” i.e. 0.91TiB since 1012/240 ≈ 0.91. If you express the 0.91TiB in GiB it is not 910GiB but
0.91*1024GiB or roughly 931GiB. And a capital B is a byte. A lower case b is nonsense; use bit for a bit. We are
going to use in the remainder the SI system (aka System Internationale). There we have kibi, mebi, gibi,
tebi in SI, but all characters other than the i in KiB,MiB,GiB,TiB are in capital case. And do not forget k is
the thousand multiple as in 1kgr = 1000gr.

Hard disk drive capacity SI system notation

1KB = 1000B 1KiB (kibi-byte) = 1024B = 2**10

1MB = 1,000,000B 1MiB (mebi-byte) = 1024*1024B = 1048576B = 2**20

1GB = 1,000,000,000B 1GiB (gibi-byte) = 2**30

1TB = 1,000,000,000,000B 1TiB (tebi-byte) = 2**40

1TB is 10**12 / 2**40 TiB i.e. 1TB = 0.91 TiB

1TiB = 1024 GiB 1TB = 0.91 * 1024 GiB ~ 931 GiB

Problem 1. (45 points) Paper by Brin and Page
Read the paper that describes Google as it was originally designed and answer some questions on the paper
(section C5, link L1, has the paper in URL and also a local copy of the paper in pdf P1.GoogleBrinPage.pdf).
They have some differences so read BOTH of them. If an answer is not in one it might in the other!
Subject 3 and a bit of Subject 4 might also prove useful as far as hash tables are concerned, if you are not familiar
with it from an elementary data structure course such as CS 114 or CS 435. Link
http://en.wikipedia.org/wiki/Hash table
might also help.
Answer the following questions after reading the paper. The answers you provide are and should be drawn from
the paper and thus justification will be to paper-available information.

(a) According to the paper, what was the size (bytes) of Google’s Lexicon around 1998?

(b) According to the paper how many bits for a docID? Quote the paper.

(c) Describe the data structures used by Google for indexing only (not all of them are listed in the architecture
figure).

(d) Does Google (1998) use a hash table for the dictionary? What do they use? Why ?

(e) How many bytes are assigned to each hit (of the hitlist)? How many types of hits? What are they (types of
hits)?

Problem 2. (45 points) Hash Table design ala Google/1998
You have 1GiB of main memory of which 124MiB are being used by the operating system plus related programs
such as those manipulating tables A and T below.

You are asked to organize the additional space to support a hash table along the lines of the paper where
words are stored in a contiguous table which is an array A of characters delimited by a null character \0. A
hash table T will store a wordID along with a reference (pointer or index) p to A. That way a wordID will be
associated with a specific word.

The average length of a word is given as 7 ASCII characters (1 ASCII is 7 bits but occupies one byte). A
wordID and p can only be in multiples of one byte (i.e. 1B, 2B, 3B but and thus 23bits won’t be an option) for
efficiency. Organize T and A for maximum efficiency.

In an efficient implementation

• (a) How many words n can the scheme support,

• (a) How big would the hash table size m (number of entries) be,

• (c) How many bits for a wordID,

• (d) How many bits for pointer p

• (e) How much space (bytes) will you scheme use for T ,

• (f) How much space (bytes) will you scheme use for A,

• (g) What is the total space A + T used by your scheme?

Justify your answers and choices. Round to nearest million for n, m, T, A but make sure you don’t exceed the
amount of available memory (i.e. A + T should be accommodated easily by the available memory). Make sure
that you fill the following table with data.

n =
m =
wordID =
p =
T =
A =

A+T =

