Subject 3
Fall 2014

(GOOGLE SEARCH ENGINE ARCHITECTURE

1998@Stanford

Paper L1

DisCLAIMER: These abbreviated notes DO NO'T substitute the textbook for this class. They should be
used IN CONJUNCTION with the textbook and the material presented in class. If there is a discrepancy between these
notes and the textbook, ALWAYS consider the textbook to be correct. Report such a discrepancy to the instructor so that
he resolves it. These notes are only distributed to the students taking this class with A. Gerbessiotis in Fall 2014 ;
distribution outside this group of students is NOT allowed.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2014 . All rights reserved. 1

Google in 1997/ 1998
Overview

The main statistics of the Google Search Engine Architecture in its original incarnation at Stanford can be summarized in the
stats available in Figure 1. Google could index 24 million pages of total size 147GB in uncompressed form (zlib compressed
down to 54GB), index size was 62GB giving a total of 116GB, close 80% of the web-based corpus size (of 147GB). Of those
62GB of the index 4GB is the short index stored in the short barrels, 37GB the full index and the lexicon is less than 1GB,
with temporary anchor data using 6.6GB, the docindex 10GB and the link close to 4GB.

A. Google’s Search Engine Performance in 1998@Stanford
[circa 1998]

Active crawlers : 3-4 typically
Open Connections : 300
Web-page read : 100 concurrently
Data : 600Kbytes/second
B. Google@Stanford size statistics (in millions)
of Web pages : 25 (9 days per crawl)
(Or just 63 hrs to retrieve 11mil of preexisting pages)
of URLs 1 76
of Email addresses : 1.7
of 404 messages : 1.6
C. Google Indexer Performance
Indexer Speed : 54 pages/second
Sorter Speed : 24 hours on 4 PCs
D. Google Query Speed : 1-10 seconds/query
E. Data Collected from Web-pages
Link Data : fromURL, toURL, anchor-text
[25million URLs, 260mil anchors]
Short Barrel (4.1GB) : [title and anchor text only]
Long Barrel (37GB) : [alll
F. Google Index Data
Fetched Information : 147Gbytes
Compressed : 53Gbytes (3 to 1)
Inverted Index Full : 41Gbytes
Short Barrel : 4.1Gbytes
Long Barrel : 37.0Gbytes
Anchors : 6.6Gbytes [260mil]
Links : 3.9Gbytes
Lexicon : .3Gbytes [14mil words]
DocIndex : 9.7Gbytes

G. Source: Brin & Page [http://www-db.stanford.edu/ backrub/google.html]

Figure 1: Google Search Engine 1998

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2014 . All rights reserved. 2

Google in 1998
Some general statistics

The table below shows the search engine development in the past 15-20 years. For the remainder be reminded that 1MB
is 1,000,000B and B stands for a Byte when it denotes hard-disk drive space and may be 1,048,576B when it refers to main
memory. We shall use bit for a bit. A lower-case b means nothing. If you want to specify 1,048,576B i.e (2% bytes) use the
SI system appropriate 1MiB notation for a mebi-byte, and 1GiB for a gibi-byte.

Pages indexed/Corpus size Queries/day
WWW worm Mar/Apr 1994 110,000 1,500
Web Crawler Nov 1997 2,000,000-10,000,000 20,000,000
2000 1,000,000,000 severalx100,000,000
2010 1trillion but < 30billion 400,000,000
indexed
2013 about the same 4,500,000,000

1.Corpus size (Google@1998) and URLs. In Google@1998, the corpus was 24million pages and included 80 million
URLs. Although the 24 million were approximately 150GB in size and one third of it in compressed form, the index (all data
structures) was approximately 62GB.
2. Performance (Google@1998). Google’s crawler used to crawl on the average 50 pages per second and fetch all 24
million pages in roughly 9 days. The indexer and sorter used to index 54 pages per second sustained over a 24 hour period
using only 4 workstations. The PageRank computation could be completed in few hours.
3. Link information (Google@1998). The 24 million pages included more than 259,000,000 anchors that were indexed,
and close to 518,000,000 hyperlinks (some might point to inside a given page), and a total of 322,000,000 links were stored in
the LINKS structures.
4. Google@1998: Search, sort, and select. Do not forget that the three action performed by Google relate to the
problems of searching, sorting and selection discussed in data structures classes. The search component in Google is
associated with the crawling process. The indexing process performs two fundamental opeations: indexing performed
by the indexer and sorting performed by the sorter. The selection procedure requires the actions of the query engine
or what is known in Google terminology (see bottom right of Figure 2) as the searcher.

The crawler was implemented in Python but the indexer mainly in C and C++-.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2014 . All rights reserved. 3

Search Engines
Google System Architecture

The architecture of a search engine has evolved relative to the simplified view of the previous Subject. The original Google
System Architecture is depicted in Figure 2 and we describe below the major components of the Google High-level Architecture.

URL server. Provides a list of URLSs to be sent to and retrieved by the crawler.
Crawler. A distributed crawler is used with 3-4 instances running at any time (in 1998-2000).
StoreServer. Compresses Web-pages (using zlib) and then stores them into the

Repository, that holds all retrieved pages. The indexer can use the Repository and the error log of the Crawler to
restore the index.

Indexer. Parses documents and generates Google’s index.

Anchors. Contains a list of (possibly relative) URLs retrieved by the Indexer.

URLresolver. Converts Anchors-related data into absolute URLs and uses this information to generate the
Links, data that show how URLs reference each other (i.e. depict the link structure of the Web).

Lexicon. Contains a list of unique words found (14million, 256 MBytes of data in 2000). Resides in main memory (and
the size of the main memory determines its size).

Doclndex. Contains information about documents. Every document has a docID which is a hash of its contents, a
pointer to its location to the Repository along with other useful information (eg. URL and title).

Barrels. Contain all hitlists generated by the indexer from the Repository. Google originally used 64 Barrels, one
barrel for a group of consecutive words. It contains information about hits i.e. is an inverted index of all words
in all documents (every word records also positional, font and TITLE/ANCHOR relative indexing information).

Sorter. It’s the program that sorts the Barrels based on word (actually wordID) to generate the hitlists.

PageRank. It’s the ranking method used by Google to rank documents based on ”popularity”. Such information is
based solely on the graph structure available in Links.

Searcher. It’s the search interface for Google. It parses queries, converts them into a form google understands (e.g.
converts words into wordIDs using the Lexicon), accesses the Barrels to determine the documents. The ranking
of the output documents is a combination of PageRank and an evaluation of the results of the hits according to
the query.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2014 . All rights reserved.

Search Engines
Google System Architecture

Store Server

Anchors Repository

\.

)) [Lexicon

ks [J G

d
index BARRELS

Figure 2: Google System Architecture.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2014 . All rights reserved.

Google Search Engine Architecture
A-D : URL Server, Crawler, StoreServer, Repository

A. URLserver. The URLserver sends list of URLs to the active crawlers (up to 4 at a time in 1997/1998). The URLserver
is implemented in Python.(Action 1.)

B. Crawler. Google’s crawler (1998 edition) was a distributed one written mainly in Python, with 3-4 instances of it running
at any time, maintaining 300 connection and using a visit policy based on Depth First Search. In 9 days it could crawl and
visit the 24-26 million pages indexed at that time, but after the first run, it could visit 11 million pages in 63 hours. The 24
million pages indexed included 76 million URLs and 1.7 million email addresses. All 4 instances could work on 100 pages per
second, feteching roughly 600KiB of data for approximately 6KiB per page.

Action 2 (Crawler) The crawler fetches lists of URLs from the URLserver and then goes to the Web to visit pages and on
receipt it sends these pages to the StoreServer.

C. StoreServer. The storeserver compressed the pages received from the crawler using zlib and stores them into the
Repository. (Action 3.) Google made the decision of using zlib (compressed ratio of 3 to 1) over bzip (ratio of 4 to 1) based
on speed considerations than compression performance.

D. Repository. The Repository stores compressed pages received from the STORESERVER and such pages are then made
available to the Indexer. (Action 4.)

Note: All of Google’s index can be built from information stored in the Repository, without accessing the
Web or interacting with the crawler.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2014 . All rights reserved. 6

Google Search Engine Architecture
E. Indexer (indexing functions)

The indexing functions in Google@1998 are performed by the (a) the Indexer, and (b) the Sorter.

E. Indexer (description). The Indexer performs two tasks: indexing and sorting. Every URL has a checksum (hash) and
a docID which is assigned to it by the URLresolver whenever a URL is parsed out of a web-page by the indexer.

TASK A of Indexer.

i. reads information from the Repository,
ii. and uncompresses it,
iii. then parses it,

iv. and generates hitlists that are tuples including the word pasrsed, positional information in document, count information,
fontsize, and capitalization, and

v. assigns those hitlists to the (a) the sort barrels that deal with words appearing in titles and anchors (fancy hitlists),
and (b) the long/full barrels that deals with words appearing elsewhere in the text.

A.1 Hitlists. A A.1 hitlist is a word occurrence and thus a document is converted into a set of word occurrences
consisting of tuples that are of the form (docID, word, Info). The hitlists form a partially sorted forward index.

A.2 Forward index. The Indexer distributes the hit lists into a partially sorted forward index distributed into long and
short barrels. The short barrels contain the hitlists (i.e. words) appearing in anchor or title text, whereas the long/full barrels
contain words appearing anywhere else in the text/document parsed.

TASK B of Indexer. The second task of the indexer is to parse out all links of every page and store the full URL, or
partial URL and accompanying anchor text into Anchors. Thus a tuple of the form
(fromURL, toURL, AnchorText)
is stored in Anchors.

Note: All of Google’s index can be built from (a) information stored in the Repository, without accessing the
Web or interacting with the crawler, (b) by the Indexer, (c) using only the error log of the crawler to filter
the information in the Repository that is incomplete or of no use.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2014 . All rights reserved. 7

Google Search Engine Architecture
F. Sorter (indexing functions)

F. Sorter (TASK C). The Sorter takes information from the barrels (long/full or short) in the form of a partially sorted
forward index and sorts this information. The output is sent back to the barrels in the form of an inverted index. In
addition it generates a list of wordID. (Action 9 part of TASK C of the indexing functions.) Thus both the input and the
output of the sorter is available in the barrels. The input is usually sorted by possibly docID, and offset, and the output by
wordID, possibly docID, and offset.

DumpLexicon (TASK D). The list of wordID generated by the Sorter (Action 9) and the current list of wordIDs maintained
in the LEXICON that were generated by the INDEXER are being used to generate a new LEXICON that is up-to-date.
(Action 10 part of TASK D of the indexing functions.)

Sorter connectivity. Figure 2 shows the Sorter connected to the barrels only.

Indexer connectivity. The Indexer, however, is connected to the barrels, anchors, repository, docindex, and lexicon.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2014 . All rights reserved. 8

Google Search Engine Architecture
G. URL Resolver, H. Links, I. PageRank, J. Searcher

G. URL Resolver. It reads the ANCHORS data structure that was created by the Indexer and (i) converts relative URL into
absolute URLs, and (ii) absolute URLs into docIDs. (Action 6.)

Action 7 by URL Resolver. It uses the anchor text to associate it with the destination URL/docID not with the URL/docID
of the page containing it. Thus it puts into the SHORT BARRELS a tuple (to_.docID, AnchorText) generated from text
available in from_URL / from_docID . This involves converting URL into docIDs.

Action 8 by URL Resolver. It generates from (from URL,to URL, AnchorText) a link pair that will be stored in
LINKS: (from_docID, to_docID).

H. Links. It stores pairs of docIDs (not URLSs) generated by the URL resolver through Action 8.

I. PageRank. It computes PageRank number for every docID stored in the LINKS using the LINKS information. It will
provide this information to the Searcher for the set of documents submitted by the Searcher to PageRank.

J. Searcher. It uses the lexicon and the inverted index to answer queries. It uses PageRank to rank results (docID) of
queries. It uses DocIndex to convert doclD back into URLs, and retrieves files from the Repository to display readable result
information (URL, title of result document, context information). The Searcher performs the merging of information that
merges the sorted list of word/wordIDs generated by the Sorter and a list of word/wordID available in the current Lexicon
and maintained by the indexer into a new Lexicon.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2014 . All rights reserved. 9

Google@1998
Some data structures

The motivation behind the data structures used by Google is to reduce disk accesses since all of the information maintained
by the Index can not be stored in main memory. Whether it is 1990 or 2010, one disc access still takes 8-10msecs i.e. it is
slow.

DS1. BigFiles. It is virtual files spanning multiple disks and filesystems that store Google index-related information (web-
pages, indexes, etc). They use 64-bit addressing.

DS2. Repository. The Repository stores web-pages retrieved by the crawler in compressed zlib format in the form of packets
that maintain a docID, URL length and the URL, and of the page itself in compressed form (along with the length of it).

DS3. DoclIndex. The Doclndex contains information about pages in fixed width ISAM (Indexed Sequential Access Method)
indexed by docID. This facilitates indexing by docID.

One file maintained includes for each document its docID, current status information, pointers to the Repository for the
document, a document checksum and other statistics.

In addition for a crawled document it contains the URL and title information of it. For non-crawled documents it contains
a pointer to a data structure that is a URLIist, a list of all URLs not crawled yet.

A second file is maintained that is sorted by URL checksum and contains this URL checksum and the corresponding docID.
This is used to convert a URL into the corresponding docID. When Google wants to find the docID of a URL, the URL is
first converted into its checksum, and then because this second file is sorted by the checksum, a binary search is performed to
determine its docID. The URL resolver periodically merges this sorted by URL checksum file with a list of URLs whose docID
is to be computed.

DS4. Lexicon. The lexicon is maintained so that it fits in main memory. Its size is thus kept down by not maintaining rare
words in main memory. Google’s lexicon in 1998 used to maintain in main memory roughly 14 million words. Rare words are
attached to the lexicon and maintained in a separate disk file. The lexicon

is organized as a hash table of pointers to a list of words separated by nulls (i.e. \0 in Unix/C parlance). The indexer
generates lists of words, and the sorter creates a new one merging it with the current lexicon to generate a new lexicon.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2014 . All rights reserved. 10

Google@1998
Lexicon size and an empirical Law

Heaps’ Law. This empirical law states for a corpus containing n word, the number of distinct words v forming its dictio-
nary /vocabulary/lexicon can be approximated by a formula

v =knP

wher (3 varies between 0.4 and 0.6 and a typical value if § = 0.5, and k is a constant that varies between 10 and 100.
Example. For a text with 16 billion words, £ = 100, 8 = 1/2, and thus v = 1004/n we obtain a v = 14,000, 000. This is

consistent with the size of Google’s lexicon in 1998.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2014 . All rights reserved. 11

Google@1998
More data structures: Hitlists

DS5. Hitlists. The hitlists are built by the Indexer while parsing pages stored in compressed form in the Repository. A
hitlist is the list of occurrences of words in a given document (and incorporates word offset and other information about a
word). Most of the space in the forward or the inverted index deals with hitlist information. In Google a hitlist is stored in
hand-optimized form. For a given word a hit is stored in 2 bytes of memory. There are two types of hits: (i) fancy hits and
(ii) plain hits.

Fancy hits. A fancy hit is for words appearing in a URL, title, anchor text or meta tags. For such hits 1 bit is a
capitalization bit, 3 bits are set to the pattern 111 to indicate it is a fancy hit, and 4 bits show the type of a fancy hit. The
remaining 8 bits have one of two interpretations: (a) normal that uses those 8 bits for positional information, and (b) anchor
interpretation that uses 4 of those 8 bits as anchor position within an anchor and the remaining 4 bits as a hash of the docID
of the document containing the anchor.

Plain hits. A plain hit contains words appearing anywhere in the document/text (including title and anchor). Again 1
bit is a capitalization bit, 3 bits indicate 7 states (other than 111) of the font-size relative to the rest of the document, and
the remaining 12 bits indicate a word-based offset position starting with 1 and going all the way to 4095. If a word appears
in a position in the text higher than 4095 then the 4096 index is used to indicate this.

In a hitlist a hit count always precedes the hitlist, the list containing all the relevant hits.

Note that the hit count is 8 or 5 bits depending on whether it is available in the FORWARD index or the
INVERTED index.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2014 . All rights reserved. 12

Google@1998
More data structures: Forward Index and Inverted Index

DS6. Forward Index. The forwards index is distributed over 64 barrels. In each barrel a range of wordIDs is stored. For
wordIDs in a given barrel we don’t need to store all the bits of the wordID but only an offset from the first wordID stored in
that barrel. (Be reminded that the sorter generates such offsets from prior discussion.)

A forward index contains multiple variable-length tuples. A tuple will contain, a docID to identify the current document,
followed by multiple entries that consist of a wordID to identify the word whose hits will be recorded, an nhits record (8 bits)
that will record the number of occurrences of the word in docID followed by a variable length array of 2 x nhits bytes since a
hit (and there are nhits of them) is 2 bytes long. The last tuple for a given docID records a NULL wordID in the corresponding
field to indicate the end of the record related to this docID. Information related to the next docID is then made available.

DS7. Inverted Index. The same barrels that store the forward index store the inverted index except that in the latter the
tuples of the forward index are sorted by wordID.

The lexicon contains information for each wordID that includes not only its wordID and a pointer to an array that contains
the word itself, but also an ndocs entry that denotes the number of distinct documents (docIDs) containing wordID, and
also a pointer to the barrel associated with this wordID. The pointer points to a location of ndocs consecutive records. Each
such record is a tuple containing a docID, the document containing that word, an nhits field that records the number of
occurrences within docID of wordID, followed by a variable length record of 2xnhits bytes recording those nhits.

As we have mentioned, there are two sets of barrels, the short barrels storing information related to words appearing in
anchors and document titles and long barrels for words appearing anywhere in the document (including anchors and title).

The short barrel(s) is one-tenth of the size of the long barrel(s) and thus indexing takes ten-times longer to work on long
barrels than short barrels.

Because of this distinction between short and long barrels, the Google query engine and query process (see next page)
relies on the short barrels to generate doclIDs first, i.e it relies on title and anchor text; when this is exhausted, then the long
barrels are searched.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2014 . All rights reserved. 13

Google@1998
Google Query Evaluation

Google Query Evaluation Steps

1. Parse the query.

2. Convert words into wordIDs.

3. Seek to the start of the doclist in the short barrel
for every word.

Short Barrel: Title and Anchor text of web-pages
DocList : For every wordID list of docIDs containing.

4. Scan through the doclists until there is a document
that matches all the search terms.

5. Compute the rank of that document for the query.

6. If we are in the short barrels and at the end of any doclist,
seek to the start of the doclist in the full barrel for every
word and go to step 4.

Full Barrel : All of the page is indexed
(10x larger than Short Barrel in 1998).
7. If we are not at the end of any doclist go to step 4.
8. Sort the documents that have matched by rank,
and return the top k.

Source:http://www-db.stanford.edu/ backrub/google.html

Figure 3: Google Query Evaluation Process

An example of an information retrieval system is that used by Google. Figure 3 describes the steps undertaken by a Google
search engine in answering a query. Although it represents how Google worked in 1998, it is still relevant today. Several steps
may have been enhanced and highly optimized since then, but the fundamental underlying operations have little changed.

So far we have given an outline of what web-searching entails and is about. One might ask the following question. If
web-searching through a search engine is an information retrieval problem, that has been studied for more than 30 years, what
is left to be told about it? Is it an obvious problem or is there something that still needs to be told about it?

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2014 . All rights reserved. 14

Google@1998
Google Query valuation

For every query ¢ and document d; Google establishes an information retrieval based valuation that depends on five or so
factors that includes title, anchor, URL, large-font and small-font occurrence of a word in the query in the document. Each
such factor is assigned a weight (say a number between 0 and 1) and that weight is then multiplied by a count that shows how
often the word of the query appears in the document as factored. This determines the information-retrieval based value/rank
of the document relative to the query. This becomes in Google parlance the relevance score or the similarity s(g, d;) measure.
For the document in hand, its PageRank is also determined let us call it 7(d;). The sum of the two scores/ranks determines
the final rank of the document d; relative to query ¢ and is used to order the results in the form that will be presented to the
user: R(q,d;) = s(q,d;) + r(d;).

To be, or not to be, that is the question:
Whether ’tis Nobler in the mind to suffer
The Slings and Arrows of outrageous Fortune

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2014 . All rights reserved. 15

Exercises
Practice makes perfect

Exercise 1 Read the paper introduction the Google search engine also available from the following URL.

http://www-db.stanford.edu/~ backrub/google.html Try to answer after reading the paper the following questions whose
answers are in the paper or may need to be further searched upon. (a) What was the size of google’s dictionary/vocabulary
around 19987 Justify your answer. (b) What is the number of bits used for docID? You might need information beyond the
paper for that. (c) On the same one page you used for (a), (b) describe the data structures used by google for indexing. (d)
Does google (circa 1998) use a hash table for the dictionary? What do they use? Why ¢ What does Google call the dictionary?

