
Subject 3
Fall 2015

Google Search Engine Architecture

1998@Stanford

Paper L1 (pdf is long article, html shorter version)

Disclaimer: These abbreviated notes DO NOT substitute the textbook for this class. They should be
used IN CONJUNCTION with the textbook and the material presented in class. If there is a discrepancy between these

notes and the textbook, ALWAYS consider the textbook to be correct. Report such a discrepancy to the instructor so that
he resolves it. These notes are only distributed to the students taking this class with A. Gerbessiotis in Fall 2015 ;

distribution outside this group of students is NOT allowed.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 1

Google in 1998
General Statistics

The main statistics of the Google Search Engine Architecture in its original incarnation at Stanford can be summarized in
the stats available in Figure 1. Google’s view of the Web was a paltry 24M pages of total size 147GiB uncompressed (zlib
compressed down to 53GiB), index size was approximately 62GiB for a total of 116GB. This roughly 80% of the web-based
corpus size (of 147GiB). Of those 62GiB of the index roughly two-third or 41GiB was the size of the inverted index and the
remainder the size of other index-related data structures. As a point of reference in 2015, approximately 1T URLs are crawled,
around 30G pages indexed, and roughly 6G queries are satisfied daily (two-thirds of them just by Google).

A. Google’s Search Engine Performance in 1998@Stanford

Active crawlers : 3-4 typically with 300 open connections/crawler

Web-page read : 100/sec concurrently, 600KiB/sec

B. Google@Stanford size statistics

of Web pages : 24-25M

Crawling (New) : 9 days per crawl for 25M pages, 50pages/sec

Crawling (Existing) : 63hrs for 11M preexisting pages

of URLs/WebServers : 76M URLs and 500,000 Web Servers

of Email addresses : 1.7M Email addresses and 1.6M 404 messages

C. Google Indexer Performance

Indexer Speed : 54 pages/second, 2-4weeks total

Sorter Speed : 24 hours on 4 PCs

PageRank : < 1 day

D. Google Query Speed : 1-10 seconds/query, 1K/day

E. Data Collected from Web-pages

Link Data : fromURL, toURL, anchor-text

[25M URLs, 260M anchors, 322M links]

Short Barrel (4GiB) : [title and anchor text only]

Long Barrel (37GiB) : [all]

F. Google Index Data

Fetched Information : 147GiB

Compressed : 53GiB (3 to 1)

Inverted Index Full : 41GiB

Short Barrel : 4GiB

Long Barrel : 37GiB

Anchors : 6.6GiB [260M]

Links : 3.9GiB

Lexicon : .3GiB [14M words]

DocIndex : 9.7GiB

G. Source: Brin & Page [http://www-db.stanford.edu/~backrub/google.html]

Figure 1: Google Search Engine 1998

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 2

Google in 1998
Preliminaries

Note that B stands for byte, bit for bit, b for nothing/nonsense. 1MB may be 1,000,000B if it denotes hard-disk drive capacity
and 1,048,576B of main memory. Use instead SI’s 1MiB for 1,048,576B i.e 220B or 1GiB, 1TiB, 1PiB if you need more!

1.1 Corpus size (Google@1998) and URLs. In Google@1998, the corpus was 24-25M web-pages and approximately 80M
URLs. The cumulative size of the web-pages was 150GiB uncompressed, roughly 50GiB compressed; overal index size (all
data structures) was 62GiB.
1.2. Performance (Google@1998). Google’s crawler used to crawl on the average 50pages/sec and fetch all 25 million
pages in roughly 9 days. The indexer and sorter used to index 54pages/sec sustained over a 24 hour period using only 4
workstations. The PageRank computation could be completed in less than a day.
1.3. Link information (Google@1998). The 25 million pages included more than 260M anchors that were indexed, and
close to 520M hyperlinks (some might point to inside a given page) with a total of 322M links stored in the Links structures
of Google (to be explained).

Google@1998: Search, sort, and select.

1.4.1 Search. Google’s first action was to search i.e. crawl the web, locate 500K web-servers containing 25M pages and
fetch those pages at rates ranging from 50pages/sec, to 100pages/sec for the 3-4 instances of a crawler running at any time.
Such a task could be completed in less than 2 weeks (9 days) from scratch or in less than 3 days if preexisting (known) pages
were to be refetched.

1.4.2 Sort. The indexing process in Google is realized by the indexer and the sorter. The indexer deals with parsing
pages and generating the forward index at a speed of 54pages/sec in 1998 completing its task in roughly 2-4 weeks. The sorter
then inverts the forward index using sorting to generate the inverted index i.e. the index in 24 hours using 4PCs.

1.4.3 Select. The selection procedure requires the actions of the query engine or what is known in Google terminology
(see bottom right of Figure 2) as the searcher.

The crawler was implemented in Python but the indexer mainly in C and C++.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 3

Search Engines
Google System Architecture Components

The original Google System Architecture is depicted in Figure 2 and its major components are highlighted below. (A
component is a program or data structure.)

2.1 URL server. Provides a list of URLs to be sent to and retrieved by the crawler.

2.2 Crawler. A distributed crawler is used with 3-4 instances running at any time (in 1998-2000).

2.3 StoreServer. Compresses Web-pages (using zlib) and then stores them into the

2.4 Repository, that holds all retrieved pages. The indexer can use the Repository and the error log of the Crawler to
restore the index.

2.5 Indexer. Parses documents and generates Google’s index.

2.6 Anchors. Contains a list of (possibly relative) URLs retrieved by the Indexer.

2.7 URLresolver. Converts Anchors-related data into absolute URLs and uses this information to generate the

2.8 Links, data that show how URLs reference each other (i.e. depict the link structure of the Web).

2.9 Lexicon. Contains a list of unique words found (14million, 256MBytes of data in 2000). Resides in main memory
(and the size of the main memory determines its size).

2.10 DocIndex. Contains information about documents. Every document has a docID which is a hash of its contents,
a pointer to its location to the Repository along with other useful information (eg. URL and title).

2.11 Barrels. Contain all hitlists generated by the indexer from the Repository. Google originally used 64 Barrels, one
barrel for a group of consecutive words. It contains information about hits i.e. is an inverted index of all words
in all documents (every word records also positional, font and TITLE/ANCHOR relative indexing information).

2.12 Sorter. It’s the program that sorts the Barrels based on word (actually wordID) to generate the hitlists.

2.13 PageRank. It’s the ranking method used by Google to rank documents based on ”popularity”. Such information
is based solely on the graph structure available in Links.

2.14 Searcher. It’s the search interface for Google. It parses queries, converts them into a form google understands
(e.g. converts words into wordIDs using the Lexicon), accesses the Barrels to determine the documents. The
ranking of the output documents is a combination of PageRank and an evaluation of the results of the hits
according to the query.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 4

Search Engines
Google System Architecture

CRAWLER
Store Server

RepositoryAnchors

IndexerURL resolver

links
DOC
index

BARRELS

Lexicon

Searcher
PageRank

SORTER

URL Server

Figure 2: Google System Architecture.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 5

Google Search Engine Architecture
2.1-2.4: URL Server, Crawler, StoreServer, Repository

2.1. URLserver. The URL server maintains lists of URL that were supplied to it in previous runs of the crawler(s) by the
crawler(s). In subsequent runs, it is the URLserver that schedules what a crawler is going to crawl: it sends lists of URLs
to the active crawlers (3-4 active ones at a time in 1997/1998). The URLserver is implemented in Python. The URLserver
maintains metadata (data on the ”data”/URLs) on these URLs (eg. last time fetched, etc).

ACTION 2.1 (URLserver). The URL server supplies lists of URLs to the crawler(s).

2.2. Crawler. Google’s crawler (1998 edition) was a distributed one written mainly in Python, with 3-4 instances of it
running at any time, maintaining 300 connections and using a visit policy based on Depth First Search (DFS). In 9 days it
could crawl and visit roughly 26M arbitrary pages though it could visit and fetch 11M preexisting pages in 63 hours at a rate
of 100pages/sec for the 3-4 instances. The 24-25M pages indexed at the time included 76M URLs, and 1.7M email addresses.
All 4 instances of a crawler could work on 100pages/sec, fetching roughly 600KiB/sec.

ACTION 2.2 (Crawler) The crawler receives lists of URLs from the URLserver and then goes to the Web to visit those
pages, fetch its contents, and then sends these pages to the StoreServer. Metadata or other info may be transmitted to the
URLserver and subsequently stored into the Repository by the StoreServer.

2.3. StoreServer. The storeserver compresses the pages received from the crawler using zlib and stores them into the
Repository; metadata related to the files (i.e. data on those data) are also stored there. Google made the decision of using
zlib (compression ratio of 3 to 1) over bzip (ratio of 4 to 1) based on speed considerations than compression performance.

ACTION 2.3 (Storeserver) The Storeserver receives pages from the crawler(s), compresses them and stores them into
the Repository.

2.4. Repository. The Repository stores compressed pages received by the STORESERVER from the Crawler who fetched
them from the Web. They are stored in compressed zlib format in the form of packets that maintain a docID, URL length,
the URL, length/size of the compressed page itself, and the raw compressed page. Such pages are then made available to the
Indexer. (Action 2.4.)

ACTION 2.4 (Repository) The Repository data can be read directly by the Indexer during the indexing process. All
of Google’s index can be built from information stored in the Repository, without accessing the Web or interacting with the
crawler; the error log of the crawler is only used to discard incomplete pages that were not fetched due to errors.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 6

Google Search Engine Architecture
Indexing Process: Indexer, Sorter and Barrels

INDEXING PROCESS: 2.5 Indexer and 2.12 Sorter. The indexing process includes the indexing functions realized
by Google@1998 and which are performed by the (a) the Indexer, and (b) the Sorter. Through ACTION 2.4 the Indexer
first accesses the decompresses pages stored in the Repository, and using the Error Log of the crawler then generates the
forward index. The forward index is a hitlist, i.e. a list of hits, with a hit being an occurrence of a word in a document.
A partially sorted forward index generated by the Indexer is then stored into a data structure known as the Barrels (there
are long and short Barrels). Subsequently the Sorter would read and invert (i.e sort) the forward index from the Barrels to
generate the index also to be stored in the Barrels. Auxiliary functions are being performed by the URL resolver and the
PageRank component that ranks links (aka resolved pairs of URLs) and several data structures are created.

2.5 Indexer. The indexer performs two actions:
(a) ACTION 2.5.1 that generates the forward index stored in the long and short barrels using as input the Error Log of
the crawler, and the data in the Repository; these are the only two sources from which the Indexer accepts input; this action
creates/populates a variety of other structures including the Lexicon and Doc Index, and
(b) ACTION 2.5.2 that creates the Anchors data structure using the text information found inside a web-page.

Action 2.5.1:Forward Index. The indexer through ACTION 2.4

i. reads a compressed web-page and its metadata from the Repository,

ii. uncompresses and parses it, and

iii. generates the forward index that is hitlists which are tuples that include the word parsed, positional information (word
offset) in document, count information, fontsize, capitalization, location/context, and

iv. then assigns those hitlists to the (a) the short barrels that deal with words appearing in the title,meta tag of an
HTML document or the URL or the anchor text that points to another document (fancy hits of short barrels), and
(b) the long or full barrels that deal with words appearing everywhere (including the title and anchor related text).

The Forward index is partially ordered (by wordID and position).

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 7

Google Search Engine Architecture
Indexer and the Forward Index

ACTION 2.5.1 continued: Hitlist is a list of Hits. A hitlist consists of hits. A hit is a word occurrence of a word
in a document; a document is converted into a set of word occurrences consisting of tuples that are of the form (excluding
docID information a hit in Google used to be 2B long): 〈docID, wordID, offset, Info〉 . The Info field maintains
the fontsize of the word, its capitalization, context such as whether it is in the title of a document, anchor, emphasized, higher
font size, etc. The hitlists form a partially sorted forward index; for a given document its tuples are ordered by offset.

There are two types of hits: (a) fancy hits and (b) plain hits. A fancy hit is used for words appearing in a URL, title
text, anchor text and meta tag of an html document. One bit is used to indicate capitalization, 3 bits are set to the pattern
111, 4 bits to indicate the type of a fancy hit, and 8 bits are being used to either indicate position information (normal) or
anchor-related information: in the latter case 4 bits are indicative of position in the anchor text and the remaining 4 bits is a
4-bit hash of the docID containing the anchor/text. Plain hits use 1 bit for capitalization, 3 bits for fontsize encoding relative
to the fontsize of the rest of the document (7 of the 8 states used; the 8-th state is 111 to indicate a fancy hit) and 12 bits for
word position offset information (0 through 4094; value 4095 is for larger offsets). In a hitlist a hit count precedes the hitlist.
Note that a hit count is either 5 bits or 8 bits depending on whether it is available in the inverted index or the forward index.

ACTION 2.5.2: Anchors. The second action of the indexer is to parse out all links (i.e. anchors) of every page p and
store the full or partial URL associated with a page u pointed by p and the accompanying anchor text associated with u into
Anchors. Note that if page p contains a link to page u the anchor text will be associated with u not p. Thus a tuple of the
form
〈from URL p, to URL u, AnchorTextAssociatedwith u〉 is stored in Anchors. Moreover the text
AnchorTextAssociatedWith u will be included in the short barrels of document to URL u, not from URL p by the URL resolver
in ACTION 2.7.2 to be described later.

URL, URL checksum, docID, word, wordID. Every URL has a checksum (hash) which is considered a fingerprint of the
URL (a ”shorter and simpler” identifier of it; a URL can be 70 or more characters/bytes long but its unique checksum is just
16-32B long. In addition a docID is associated with a URL and its URL checksum: it is only 4-8B long. A mapping of one
to another is to be maintained somewhere in the index. The docID is assigned to the URL by the URLresolver whenever a
URL is parsed out of a web-page by the indexer. Note that the Indexer stores those URLs in incomplete form in the Anchors
first, and the URL resolver, resolves the full path to the corresponding URL and stores that finalized information in the DOC
index. Likewise, for every word of arbitrary length a shorter wordID is maintained that is few bytes long, usually 3-4B. The
mapping between the two is available in the Lexicon.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 8

Google Search Engine Architecture
Indexing Process: Sorter and Barrels

2.12 Sorter: Inversion and (Inverted) Index
The Sorter takes information from the barrels (short or long/full) in the form of a partially sorted forward index and

sorts this information. The sorting is by wordID, first, then for a given wordID by docID and then by offset for a given
(same) wordID and docID pair. This sorting operation is known as inversion. The output of this inversion is stored back
into the barrels in the form of an (inverted) index. In addition it generates a list of wordIDs. Thus both the input and the
output of the sorter is available in the barrels. (Figure 2 shows the Sorter connected to the barrels only.)

ACTION 2.12.1 : Inversion. The sorter uses the forward index of the Barrels as input to invert it (sort it) and the
output of this inversion is the (inverted) index also stored into the Barrels.

ACTION 2.12.2 : List of wordID. The sorter generates also a list of wordIDs as an output of the inversion process.

2.11 Barrels. The are 64 Barrels (short or long). The forward index is distributed over those 64 barrels. Each barrel stores
a range of wordIDs. For wordIDs in a given barrel we don’t need to store all the bits of the wordID but only an offset from
the first wordID stored in that barrel. Long barrels store data 10 times larger than those stored in the short barrels.

2.11.1 Forward Index in Barrels. For a given document, the forward index contains multiple variable-length tuples. A
tuple will contain a docID to identify the current document, followed by multiple entries that consist of a wordID to identify
the word whose hits will be recorded, an nhits record (8 bits) that will record the number of occurrences of the word in docID

followed by a variable length array of 2 x nhits bytes since a hit (and there are nhits of them) is 2B long. The length of this
record is thus nhits*2+4 bytes. The last tuple for a given docID records a NULL wordID in the corresponding field to indicate
the end of the record related to this docID. Information related to the next docID is then made available.

2.11.2 (Inverted) Index in Barrels. The same barrels that store the forward index store the (inverted) index except that
in the latter the tuples are sorted by wordID. The Lexicon records for a given wordID the number of documents ndocs that
contain it. A pointer to the barrel(s), long or short, is also available. This pointer points to an area of ndocs consecutive
variable length records. Each such record is a tuple containing a docID, the document containing that word, an nhits field
(5bits) that records the number of occurrences within docID of wordID, followed by a variable length record of 2xnhits bytes
recording those nhits. The length of this record is thus nhits*2+4 bytes.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 9

Google Search Engine Architecture
Indexing Process: Anchors, URL Resolver and Links

2.6 Anchors and
2.7. URL Resolver.

During the indexing process and ACTION 2.5.2 the Indexer creates and populates the ANCHORS data structure. This data
structure is being read by the URL Resolver and it (i) converts relative URL into absolute URLs, and (ii) absolute URLs into
docIDs.

ACTION 2.7.1.: Absolute URL and docID conversion. Using as input ANCHORS information a relative URL
are converted into an absolute URL by the URL resolver. Moreover an absolute URL is also assigned a docID value. This
information is maintained in the DOC index.

ACTION 2.7.2.: Short Barrel Update. As explained in ACTION 2.5.2 when in a document p an anchor to document
u is found with an associated Anchor text, a tuple
〈from URL p, to URL u, AnchorTextAssociatedwith u〉
is stored in Anchors. In this ACTION 2.7.2 the text associated with u will be included in the short barrels of document
docID u, not docID p by the URL resolver. Note that in Barrel we do not store URLs, only docIDs; thus from URL p,
to URL u will converted into docIDs by the URL resolver first; this is possible because of prior ACTION 2.7.1.

ACTION 2.7.3: Links. As explained in ACTION 2.5.2, the URL resolver read ANCHORS and converts a
〈from URL p, to URL u, AnchorTextAssociatedwith u〉
into a pair of docIDs that will be stored into Links
〈from docID p, to docID u〉.

ACTION 2.7.4: URLs with no docID. Periodically, the URL resolver merges a list of URLs that have not been
assigned a docID with the list of URLs that have been assigned a docID. This latter file is File3 maintained by DOC index.

2.8. Links. It stores pairs of docIDs (not URLs) generated by the URL resolver through ACTION 2.7.3

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 10

Google Search Engine Architecture
Indexing Process: Lexicon

The motivation behind the data structures used by Google is to reduce disk accesses since all of the information maintained
by the Index can not (or could not) be stored into main memory. Whether it is 1990 or 2010, one disc access still takes 8-10msecs
i.e. it is slow.

2.9 Lexicon. The lexicon is maintained so that it fits into main memory. Its size is thus kept small by not maintaining rare
words in main memory. Google’s lexicon in 1998 used to maintain in main memory roughly 14 million words. Rare words
are attached to the lexicon and maintained in a separate disk file, not in main memory. The lexicon is organized as a hash

table of pointers to a list of words separated by nulls (i.e. \0 in Unix/C parlance). The indexer generates lists of words (or
wordIDs) through the lexicon, and the sorter creates a new one list of wordID as a result of the inversion operation. The
merging of these two lists is undertaken by the SEARCHER and generates a new lexicon. Moreover, the lexicon for a given
wordID maintains the number of ndocs that contain the wordID and a pointer to the barrel(s).

2.9.1 Heaps’ Law. This empirical law states that for a corpus containing N words, the number of distinct words n forming
its dictionary/vocabulary/lexicon can be approximated by a formula

n = kNβ

wher β varies between 0.4 and 0.6 and a typical value if β = 0.5, and k is a constant that varies between 10 and 100.
Example. For a text with 16 billion words, k = 100, β = 1/2, and thus n = 100

√
N we obtain a n = 14, 000, 000.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 11

Google Search Engine Architecture
Indexing Process: Doc Index, PageRank, BigFiles

2.10 DocIndex. The DocIndex contains information about documents (web-pages) in fixed width and length (ISAM for
Indexed Sequential Access Method). The information is indexed by docID.

File1 in DocIndex. One file maintained includes for each document its docID, current status information, a pointer to
the Repository for the document, a document checksum and other statistics and a pointer to either File2 or File4.

File2 in DocIndex (for crawled pages). File1 for a crawled web-page includes a pointer to this File2. File2 contains
the URL of the document whose entry in File1 points to this location (of File2), and its title information. File4 is a list of
URLs (no title info).

File3 in Doc Index (for non-crawled pages). File1 for a non-crawled web-page includes a pointer to this File3. This
File3 contains a list of URL checksums and corresponding docIDs. File3 is sorted by URL checksum. It is used to convert
a URL into the corresponding docID. When Google wants to find the docID of a URL, the URL is first converted into its
checksum, and a binary search is performed on File3 on the checksum to retrieve its docID. The URL resolver periodically
merges this sorted by URL checksum file with a list of URLs whose docID is to be computed.

2.13 PageRank. It computes the PageRank number for every docID stored in the Links using the Links information. It will
provide this information to the Searcher for the set of documents submitted by the Searcher to PageRank.

BigFiles. It is virtual files spanning multiple disks and filesystems that store Google index-related information (web-pages,
indexes, barrels, etc). They use 64-bit addressing.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 12

Google Search Engine Architecture
Searching Process: Searcher

2.14 Searcher. It is the query engine of Google. It performs a variety of tasks that includes the following ones.
2.14.a Query satisfaction. It uses the Lexicon and the inverted index (stored in the Barrels) to answer queries. Moreover

it uses the Lexicon to offer alternatives if it realizes that a search term might have been misspelled.
2.14.b Rank results. It uses and retrieves PageRank information to rank results of queries. Given that Barrels store

docIDs, the ranks are retrieved through the PageRank interface. (Be reminded that Links store link information of docIDs as
well.)

2.14.c Context Information. For the average user, a docID means nothing. The Searcher uses DocIndex to convert a
docID back into a URL (File1 and File2 of DOC index), and then using this information from DOC Index (File1), it retrieves
the compressed file from the Repository to display readable result information such as the URL not docID, title information
of the document (File2 of DOC Index), context information i.e. the text that includes the word occurrence appearing as a
search term in the query.

2.14.d ACTION 2.14.1 below. The Searcher performs the merging of information that merges the sorted list of
word/wordIDs generated by the Sorter and a list of word/wordID available in the current Lexicon and maintained by the
indexer into a new Lexicon.

ACTION 2.14.1 : DumpLexicon. The list of wordID/words generated by the Sorter (ACTION 2.12.2) and the
current list of wordIDs maintained in the LEXICON by the INDEXER are being merged to generate a new LEXICON that
is up-to-date. This merging is performed by the SEARCHER.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 13

Google Search Engine Architecture
Search Process: Google Query Evaluation

Google Query Evaluation Steps

1. Parse the query.
2. Convert words into wordIDs.
3. Seek to the start of the doclist in the short barrel

for every word.
Short Barrel: Title and Anchor text of web-pages
DocList : For every wordID list of docIDs containing.

4. Scan through the doclists until there is a document
that matches all the search terms.

5. Compute the rank of that document for the query.
6. If we are in the short barrels and at the end of any doclist,

seek to the start of the doclist in the full barrel for every
word and go to step 4.
Full Barrel : All of the page is indexed

(10x larger than Short Barrel in 1998).
7. If we are not at the end of any doclist go to step 4.
8. Sort the documents that have matched by rank,

and return the top k.

Source:http://www-db.stanford.edu/~backrub/google.html

Figure 3: Google Query Evaluation Process

An example of an information retrieval system is that used by Google. Figure 3 describes the steps undertaken by a Google
search engine in answering a query. Although it represents how Google worked in 1998, it is still relevant today. Several steps
may have been enhanced and highly optimized since then, but the fundamental underlying operations have little changed.

So far we have given an outline of what web-searching entails and is about. One might ask the following question. If
web-searching through a search engine is an information retrieval problem, that has been studied for more than 30 years, what
is left to be told about it? Is it an obvious problem or is there something that still needs to be told about it?

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 14

Google@1998
Google Query valuation

For every query q and document dj Google establishes an information retrieval based valuation that depends on five or so
factors that includes title, anchor, URL, large-font and small-font occurrence of a word in the query in the document. Each
such factor is assigned a weight (say a number between 0 and 1) and that weight is then multiplied by a count that shows how
often the word of the query appears in the document as factored. This determines the information-retrieval based value/rank
of the document relative to the query. This becomes in Google parlance the relevance score or the similarity s(q, dj) measure.
For the document in hand, its PageRank is also determined let us call it r(dj). The sum of the two scores/ranks determines
the final rank of the document dj relative to query q and is used to order the results in the form that will be presented to the
user: R(q, dj) = s(q, dj) + r(dj).

To be, or not to be, that is the question:

Whether ’tis Nobler in the mind to suffer

The Slings and Arrows of outrageous Fortune

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 15

Exercises
Practice makes perfect

Exercise 1 Read the paper introduction the Google search engine also available from the following URL.
http://www-db.stanford.edu/˜ backrub/google.html Try to answer after reading the paper the following questions whose
answers are in the paper or may need to be further searched upon. (a) What was the size of google’s dictionary/vocabulary
around 1998? Justify your answer. (b) What is the number of bits used for docID? You might need information beyond the
paper for that. (c) On the same one page you used for (a), (b) describe the data structures used by google for indexing. (d)
Does google (circa 1998) use a hash table for the dictionary? What do they use? Why ? What does Google call the dictionary?

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 16

