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Hash Tables
Introduction: Efficient (or not) key search

Index-based applications require the use of an dictionary data structure that supports operations Insert, Search and
Delete. Such operations can convert a wordID into a word or the ”fingerprint” or ”checksum” fword of a word into a wordID.
Or they are related to the conversion between a URL and its docID or the ”fingerprint” fURL of the URL itself and its docID.

A1. Linked List or Array ”implemetation” and their uses. A ”naive” implementation of a dictionary using a linked
list or an unordered array or even an ordered array would lead to some operations taking linear time O(n) in the worst-case,
where n is the number of keys maintained (keys can be words or URLs or other index-related entities). This is too much.
The use of an ordered table however, allows the utilization of BinarySearch that can expedite the search operation (but not
Insert and Delete) to O(lg n). In fact Google 1998 uses in its DOCIndex binary search on a DOCIndex table sorted by fURL to
determine the docID of a given URL. But for most uses, this use of an ordered array is too slow. Updating this table (i.e.
inserting or deleting keys) take linear O(n) time that makes sense only if it is done in ”batch mode” where several records are
deleted or inserted at once, not one at a time!

Other alternatives include balanced tree structures such as a red-black tree, an AVL tree, 2-3-4 trees, or B-trees, with
which one can achieve logarithmic time for all three operations (Insert, Delete, Search) i.e . O(lg n) for a data structure with
n keys. The extra space for pointers however might become a concern. Google 1998 uses in its DOCIndex a B-tree to maintain
information about documents: they are indexed by docID and through that key (wordID), information about the URL and
also its position in the Repository can also be retrieved.

A2. Direct Addressing. In direct addressing of an array we allocate an array of size equal to the number of possible
keys and store a key in the corresponding table slot of the array in O(1) time. For U = {0, . . . u− 1} a universe of key values
table T [0..u− 1] allocates key k to the k-th entry of the table. x below and in the remainder is a record and key(x) is the key
of record x, and other(x) contains other relevant information.

DAddress-Search (T, k) DAddress-Insert(T,x) DAdress-Delete(T,x)

return(T(k)) T[key(x)]=x T[key(x)]=NULL;

The drawback of this scheme is that if x are URLs of length 50, the value of u can grow too large to 263·50 (63 is the number of
lower case, upper case English characters, digits and a space, but not including slashes or colons that form a URL). If however
x is an IPv4 address such as 128.235.32.40 then function key(x) = key(a.b.c.d) is easy to compute of a · 224 + b · 216 + c · 28 + d,
it is an integer between 0 and 232 − 1 and a table of size u = 4GiB might work miracles with direct addressing. However this
scheme breaks down for an IPv6 address that consists of 16 bytes, not just 4 and thus require a table with u = 2128 size, an
impossible number.
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Hash Tables
Introduction

The introduction of hash tables allows faster dictionary operations ON THE AVERAGE but NOT in the worst-case; the worst
case performance of a hash table is that of a linked list! However the average case performance under realistic assumptions is
expected constant time O(1). Hash tables, because of their simplicity have many practical applications. For example, a
hash table is used in compilers to implement a keyword look-up table and constitutes an integral part of languages that deal
with manipulation of string structures (e.g. Perl, Python).
A3. Hash Table. If allocation of a table of size m equal to m = u is not possible because u is too large (cf IPv6 addresses),
direct addressing is not an option as it wastes space. An alternative to direct addressing is hashing. A hash table allocates
space proportional to the (maximum) number of keys that we plan to store in the hash table NOT TO THE
TOTAL NUMBER OF POSSIBLE KEY VALUES. Thus if we only plan to maintain a million IPv6 addresses we need a table
may of size approximately one million (in fact for reasons that will be made clear later, twice as much, i.e. two million is a
reasonable estimate for a hash table size to maintain 1,000,000 keys).

How many bits do we need to represent 2**2 = 4? 3 bits (100)

How many bits do we need to represent 2**3-1 = 7? 3 bits (111)

How many bits do we need to represent 2**2 .. 2**3 -1 ? 3 bits

How many bits do we need to represent 0 .. 2**3 -1 ? 3 bits maximum

How many bits do we need to represent 0 .. 2**n -1 ? n bits maximum

How many bits do we need to represent 0 .. 2**lgn-1? lgn bits maximum

How many bits do we need to represent n ? FLOOR(lgn)+1 = CEILING(lg(n+1)).

How do we map binary number 1011 into a decimal number?

3 2 1 0

2 2 2 2

x x x x

+ 1 0 1 1 = 8 + 0 + 2 +1 = 11

Fingerprinting functions: CRC-32, MD5, SHA256, etc. Although function key(x) was easily available for converting
IPv4 address x = a.b.c.d into an integer value, if x is a string of characters (ASCII or UNICODE values) something more
elaborate is to be used. Such a key function is then known as a ”fingerprint” function and can be an checksum such as CRC-32
(4B long) or SHA-1 (20B) or the SHA-2 variants (eg. SHA256, SHA512) or MD5 (16B). An arbitrary string (eg a URL and
rarely a long chemistry or biology-related word) of 50 or so characters (50B for ASCII or 100B for UNICODE) thus gives a
fingerprint of 16B-32B. If the x is a word or a URL the result key(x), i.e. the fingerprint of x is denoted by fword or fURL

respectively. key(x) might also use something simple (and a very poor choice of a fingerprint): thus string ABZ might get
converted into 65 + 66 + 90 = 221, the sum of the ASCII values of A,B,Z.
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Hash Tables
Introduction

B1. Collisions and Fingerprints and Hash Tables. No matter what the choice of key(x) the end result is that a Universe
of u values gets mapped into a Universe of fewer m values where m � u. Thus the 2128 IPv6 addresses get mapped into a
table of 2,000,000 entries i.e. m = 2, 000, 000. Collisions then are unavoidable: that is there could be two keys x1 6= x2

key(x1) = key(x2) even if x1 6= x2. Let us call k1 = key(x1) and k2 = key(x2).
Several times the use of say SHA256 might be uneconomical: 256 bits or 32B for a universe of u = 2256 possible finger print

values is still too much. We then need apply one (secondary) more hash function h that maps k1, k2 into a hash index, and
then use this hash index as table index into a table of m = 2, 000, 000 entries! Thus even if 256-bit SHA256 fingerprints k1

and k2 are different from each other it is still possible that h(k1) = h(k2) indeed! Collisions are unavoidable (automotive or
key-based).

A minimization of collisions is a reasonable objective in designing a hash table and choosing a hash function. Key
collision resolution is, however, essential in dealing with hashing.

B2. Some terminology to be used. For the remainder we shall assume that all keys are not in the “raw” x form; key
k = key(x) is available and thus they are binary numbers, or their base-10, or base-16 integer representation..

1. The number of keys to be hashed will be denoted by n
2. The size of the hash table is denoted by m and the slots are indexed 0, . . . ,m− 1.
3. Load factor is the ratio a = n/m. As we mentioned before several times (but now always) m should be

chosen m ≈ 2n.

B3.1. Collision Resolution Protocol: Chains (aka linked lists). One scheme in resolving collisions is by chaining
all keys k1, k2 that get hashed into the same slot h(k1) = h(k2) in a (doubly) linked list attached to that slot. Though the
worst-case performance is O(n) (all keys get into the same chain) for an m-slot table on the average a O(1 +n/m) = O(1 + a)
performance can be achieved (the average length of a chain would be about n/m).
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Open-Addressing
Introduction

B3.2. Collision Resolution Protocol: Open-Addressing. In open-addressing we always have n ≤ m and we store
the keys into the hash table itself. (By keys with might mean the wordIDs but not necessarily the words themselves.) A slot
contains either a key or a flag (unused key value) that indicates that the slot is available. The Load factor a = n/m ≤ 1 is
thus at most 1 for open-addressing.

0 1 2 3 4 5 6 7 8 9 10

---------------------------------- h’(k)=k%11

| | | | | | | | | | | | h(k,i)= (h’(k) + i) % 11

| | | | | | 5| 6|16| | | |

---------------------------------- Figure 1.

In order to insert k we repeatedly probe the hash table until we can find an empty slot in which to put the key. Instead
of probing slots in a predetermined order 0, 1, . . . ,m−1, the probing sequence depends on k. We thus extend hash function
h(k), to include a probe index/number starting from 0

h : U × {0, . . .m− 1} → {0, . . .m− 1}

thus defining for every key k a probe sequence,

〈h(k, 0), h(k, 1), . . . , h(k,m− 1)〉

that is required to be a permutation of 0, . . . ,m− 1, or there may be some slots that may be missed during the probing.
Thus for key k, we first probe h(k, 0), then if necessary h(k, 1), and so on. If h(k,m − 1) is also full, then we determine

that the hash table is full and this causes an overflow.
B3.2.1 Average Case Performance. For an Insertion or an Unsuccessful search (key not in the Hash Table) the performance
of open-addressing on the average is O(1/(1 − a)). Thus if a = 0.5 i.e. the hash table is half-full, on the average two probe
operations are required for insertion or to determine a key is not there (in the hash table). If a = 0.9 i.e. the table is 90% full,
this becomes close to 10 or 11 instead. Deletion and Successful search are a bit faster. Having said that worst-case performance
is O(m) as in the worst-case we might probe all the m slots of the table!
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Hashing
Case studies

B4. What do we store in the Hash table? In all the previous examples we never stored into the hash table the key
x, i.e. we never store directly a URL or a word. This is because a URL, word have arbitrary lengths. In a hash-table we
prefer to stored fixed-length information. A fURL, fword, docID, wordID in the form of k is thus stored instead! Next to
it there might be a room for an index (or pointer) p. Thus index or pointer p might point to the memory location storing the
variable-length URL or word. The first few bytes (usually 4B) of that location might store the length of the URL or word.
Alternatively we can pack all arbitrarily long URLs, words into a very long array that is separated with a special symbol i.e.
NULL value whose ASCII code or UNICODE code is a zero (1B in the former, 2B in the latter case).

If instead of storing k fURL, fword, docID, wordID in the hash table we decide to store x itself, we would need to allocate
space in a hash table wide enough to accommodate the longest word or URL i.e. the longest x! This is not very efficient as
a single slot of a hash table would need to be 200B to 400B long for a URL and most of the space of a slot then and most of
the time would get wasted!

B5. Google’s DocIndex: docID and k coexisting. With respect to Google 1998 (Brin and Page, 1997/1998 paper), one
of the tables in DocIndex stores URLs (i.e. x) and docIDs (i.e. k) for a particular document and a variety of data associated
with it such as the status of the document, a pointer to the Google repository holding the document (the “cached” copy of the
Web document), the document checksum (fURL or not) established by Google’s internal checksum function (which can be one
of the previously listed functions) and different from the URL checksum (most likely fURL), statistics about the document,
the URL itself and its title (if any). This table is in fact a B-tree.

Another table related to DocIndex stores a pair of docID (k) and URL checksum (fURL) and allows through binary search
on the URL’s checksum to determine the docID of a given URL. This is possible because this table is sorted by URL checksum.
From time to time this table is merged with a table of (new) URL checksums. Some of them have no associated docID available
in the table, and thus the URL associated with those URL checksums get assigned a new docID. This is a sorted table, each
slot of which can accommodate a URL checksum plus a docID.
B6. Average length of a word in a dictionary/lexicon/vocabulary. The average length of a word in a dictionary is
roughly 7 characters (in fact in a widely used corpus known as the TREC collection, it is 7.36).
B7. Average length of a word in a corpus/text. The average length of a word in a text is somewhat smaller at about
3.86 for the TREC collection. This is because in a text we have repetitions of short words involving articles such as a, an, etc.

B8. Lexicon of words. On the next page we provide some alternative methods to maintaining a lexicon of words using a
hash table. One of them is similar to the method Google used in 1997/1998.
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Hashing
Case study: Three organizations for word or wordIDs in a lexicon

One application of a hash table is to maintain a vocabulary (or lexicon). The lexicon (vocabulary) may be implemented by
a more elaborate version of an open-addressing scheme. The hash table itself (similar to the table used for open-addressing)
might be a hash table of pointers. The strings themselves are stored into a separate contiguous memory separated by NULL
(’\0’) characters. For efficiency purposes vocabularies used in say Web-searching are memory resident.

Case T1. Suppose we would like to maintain a table of n words using a hash table. Collision resolution by open addressing
will be used. For efficiency reasons we use m = 2n, i.e. the table should be at least twice as large as the number of words that
will be maintained in it. We choose to store x itself i.e. word inside the hash table. Let the maximum length of a word to be
maintained be 32 characters, yet the average length of a word be 7. If ASCII encoding gets used the number of charactes is
also the number of bytes used. Total space of the hash table is m · 32B = 2n · 32B = 64nB. (If one has a PC with 512MiB
of space, a large capacity for 1997 configurations, then one could barely accommodate n = 512/64 = 8M words with such a
scheme.)

Case T2a. Scheme T2a is a minor variation of T1; it maintains inside the hash table not the string itself, but only some-
form-of-a-pointer to strings that are (represent) words. The bitlength of a pointer can be 32-bits i.e. 4B. However if an index

to a table is used instead, we can get away with few extra bits and can thus use 24bits, or 16bits or fewer than the 32 bits of
a pointer. The words themselves are stored in an array A of characters where words are separated by NULL characters i.e.
\0. For hash table T this scheme used 4m = 4 · 2n = 8nB if a pointer is 4B. The length of A is n · 8 = 8n. This is because
A maintains n words of average length 7 (see Case T1 assumptions). Adding the NULL at the end, this becomes an 8. The
total space used for T and A is thus 8n+ 8n = 16nB, a fraction (one quarter) of the space used previously. This 32M words
can be accommodated instead. Google’s Lexicon in 1998 bears similarity to this organization. A number of n ≈ 14, 000, 000
words were maintained in the Google lexicon.

Case T2b. This scheme is a slight variant of T2a. We maintain a wordID in addition to pointer p in a slot of the hash table.
If we have n words we need at a minimum lg n+ 1 bits for a wordID. For n < 232 we would need no more than 4B per wordID.
Thus wordIDs can consume 4m = 8n more bytes. If the previous scheme used 16nB of space this one uses 24nB of space.
Roughly n = 512/24 ≈ 21M words can be maintained.
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Hashing
Duplicate Detection

In computing the terms ”hash function”, ”hash” (the result of the application of a fingerprinting function), ”checksum”, or
”fingerprint” might refer to the same thing in a variety of contexts. Thus converting x into a k involved a checksum (CRC-32)
or a ”hash” (MD5, SHA-1, SHA-2), and converting k into h(k) the application of a hash function. k is a checksum, or hash
of x, and so is h(k) of k. They are also fingerprints of x and k respectively.
B9. Fingerprints. Hashing can be used for fingerprinting to detect and eliminate duplicates.
B10. Duplicate detection. Consider two documents k1, k2. We would like to detect whether they are the same or not. We
could go through them character by character and decide whether the i-th character of k1 is the same as the i-th character
of k2 or not, and this is the problem of string matching. However we could determine whether k1 is different from k2 by just
checking the file size of k1, k2. If they are different the documents are different. If they are the same, they might contain
the same number of ”characters”, but not necessarily the same characters. Thus in this latter case a character to character
comparison might be necessary. A variation of this applies to URLs. Say we have a hash function h that maps k1 into h1

i.e. h1 = h(k1) and also k2 into h2 = h(k2). Even if k1, k2 are long, h1, h2 might be of fixed-length (CRC-32, MD5, etc). In
such a case duplicate detection (i.e. identification that k2 is a copy of k1) is easier by comparing the fingerprints h1 and h2

rather than k1 and k2. However there is one case (Case 2 in the diagram below), where a spurious hit might result. The
two documents are different yet their hashes coincide (this was previously called a collision). This happens because a huge
universe (of possible documents) gets mapped into a small address-space.

DuplicateDetection(h1,h2,k1,k2)

1. If h1 != h2

2. Documents k1 and k2 are different

3. If h1 == h2

4. Case 1. k1 and k2 can be duplicates of each other

5. Case 2. k1 and k2 are different but it just happened that h1= h(k1) = h(k2) = h2

For a document, a single checksum for the whole document might generate plenty of spurious hits. One better alternative
is to split it into parts. Say we have parts a1, b1, c1, . . . for document k1 and a2, b2, c2, . . . for another document k2 and generate
hashes h(a1), h(b1), . . . and h(a2), h(b2), . . . for each part instead. Then for k1, k2 we have more than one fingerprints, and thus
the number of spurious hits will decrease. How would one define the part of a document? It can be just a line of it, or a fixed
collection (say, 10) of lines, if k1, k2 are text documents.
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Hashing
Duplicate Detection: Simhash

The structure of the document will determine what constitutes a part. In the previous approach of fingerprinting text
documents were viewed as a collection of characters: they can also be viewed as a collection of words instead!

Algorithm simhash can be used to further reduce the chances of getting a spurious hit. Algorithm Simhash (d) can be
described as follows when applied to document d: it generates a vector H containing b bits.
Step 1. Find all n (distinct) words in document d. For each word wi identified, find its frequency fi, i.e. generate pairs of
words and frequencies (wi, fi).
Step 2. Depending on the number of words found, generate arbitrary vectors of b-bits that will become hashes for each word.
Thus for each word wi one will generate a unique b-bit vector of zeroes and ones hi that will be the hash for word wi. Given
that one has n words, it is expected that b ≥ lg n. (The b-bit hashes will be unique for unique words.)
Step 3. Create a b-word vector of real numbers V = (v1, . . . , vb) initialized to zero. Also create a b-word 0-1 vector
H = (H1, . . . , Hb) initialized to zero (this will become the output). Go through each word (for i = 1 to n) and through each
one of the b bits of the hash for that word (for j = 1 to b) and apply one of the two steps below:
Hash-bit is 1. If the j-th bit of hi is 1, add fi to vj.
Hash-bit is 0. If the j-th bit of hi is 0, subtract fi from vj.
Step 4. Go through vector V . If vj is positive, set Hj = 1, else set Hj = 0.
Step 5. The hash for the document is the b-vector H of zeros and ones.

Example. Consider a document consisting of data tropical fish data fast fish.

Step 1: Find frequencies and words : data 2 0 1 0 1 b=4

Step 2: Assign b-bit 0-1 vectors to each word tropical 1 1 0 1 1

(we decided to use b=4) fish 2 0 0 1 1

fast 1 1 1 0 1

Step 3: V = ( 0 , 0 , 0 , 0) initially

V = (-2+1-2+1,+2-1-2+1,-2+1+2-1,+2+1+2+1) = (-2,0,0,6)

Step 4: H = ( 0,0,0,1) is the hash for the document
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Text Compression
Introduction

C1.1 Why compression? Repository maintenance Google in 1997 required close to 150GB to store the corpus (its
approximately 24,000,000 documents) that it indexed. With the use of compression this could go down to one third to one
fourth of that size. There are tradeoffs among various compression methods such as the time it takes to compress/decompress
a document vs compressed volume size. Google for example prefers the former (zlib/gzip) over the latter (bzip), and because
of this the compressed volume was approximately 50GB, whereas using bzip a smaller size could have been achieved. The
benefit of this is that decompressing a document can be done faster (using zlib/gzip) than other methods (bzip). In this
Subject we touch the concept of compression by introducing some concepts and discussing a primitive compression algorithm
that is known as Huffman coding.

C1.2 Why compression? Index compression The index for a given word is a long list (array) of docIDs that describe all
the documents containing the given word. If the list contains no other information (eg word offset, context) it is sometimes
called doclist. If a word appears in a document multiple times there might be multiple consecutive instances of the same
docID. More often than not the list is sorted by docID. Thus a very common word might appear in all or almost all of the
documents of the collection. Thus its doclist would be quite long; moreover successive docIDs are going to be consecutive or
differ by a very small number in a sorted doclist. Thus a docID 23456780 might be followed by a docID quite close to 23456780
(as in 23456781, 23456782, . . . , 23556790). Thus even if docIDs are large numbers the gaps between two consecutive docIDs
are small numbers. Thus index compression involves compressing the gaps between consecutive docIDs. We discuss algorithms
such as v-byte encoding, Elias−γ, Elias−δ, Golomb-b in this context. Other parts of the index might also get compressed
by these or other methods.

C2. Text compression and decompression. In the remainder we deal with the problem of text compression. In text
compression we are given a string T of characters drawn from some alphabet Σ and we want to efficiently encode string T into
a smaller (binary) string C. The way compression is performed is by first assigning (i.e. encoding) a distinct bit sequence
(called the code) to each element (character) of Σ and then converting the characters of T using this character encoding into
C. Moreover we should be able from C and the information available about Σ (i.e. the encoding of its characters) in C to
recover T during the decompression of the text.

The process that converts T into C is called encoding or compression; decoding or decompression is the inverse
process.
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Text Compression
Codes: Bit-aligned, Byte-aligned, Prefix and Lossy vs Lossless compression

C2.1. Codes. The bit sequence assigned to a given character is called the code of that character. Thus the code for A in
ASCII is 65 in decimal, or 41 (0x41) in hexadecimal, or 101 (0o101) in octal. In UNICODE this would be in hexadecimal
0x0041 i.e. two bytes one of which is zero and the other the ASCII value of the character. Since n bits have 2n distinct values,
an alphabet with | Σ | characters requires lg | Σ | bits.

If each character is equally likely to appear in a document (or string) not much can be done. In real-life however this is
not the case. In English, certain letters are more likely to appear than others (e.g. e is more frequent than w or x). Thus it
makes sense to assign fewer bits to more frequent characters and more bits to infrequent characters. In a bit-aligned code
the same byte can be used to encode one or more or part of one or more characters.

C2.2 Byte-aligned codes. These codes respect end of byte boundaries and use a fixed amount of bytes per code. Thus
ASCII or UNICODE character codes are byte-aligned codes; in ASCII a character is assigned one byte, but in UNICODE at
least two (and currently, only two) bytes.

Several of the codes that we will be discussing in the remainder are bit-aligned codes.

C2.3 Bit-aligned codes. In a bit aligned code, the breaks between one word (code) and another one can occur at any bit
position, not necessarily at multiples of 8 bits (byte).

This however creates a certain number of problems. Let A,C,G,T (to keep this example short) have codes 0,1,10,11
respectively. Then encoding ACACGT into 01011011 causes a number of problems during decompression. The compressed text
can also be decompressed as AGTAT!

C2.4 Prefix codes. Thus for bit-aligned codes it is imperative that no code is the prefix of another code, and in our previous
example, 1, the code for C, is prefix of both 10 and 11, the codes for G, T . Such codes are called prefix codes (and imply
the prefix-free property)!

C2.5 Lossless vs Lossy compression. Data compression techniques are lossless or noisy/lossy. For a lossless technique,
and compressed text C, we can fully recover the original uncompressed T from C. There are also noisy or lossy techniques
where full-recovery of T from C is not possible. Such techniques can be used in image or voice compression. JPEG is a lossy
image compression algorithm. GIF is a losless data compression algorithm based on the Lempel-Ziv-Welch (LZW) algorithm.
PNG is also lossless (and for sometime was used as a replacement for GIF).
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Text Compression
Entropy

C3. Entropy. The amount of information in a document is known as its entropy. Thus for a document whose n different
characters have frequencies f1, f2, . . . of total length N , let us define the fractions pi = fi/N which might correspond to
the a-priori probability of occurrence in a document of the corresponding character. Then the entropy of the document is
−∑n

i=1 pi lg (pi), where n is the number of different characters and
∑

i fi = N is the length of the document in characters.

C3.1 Example (a): Binary documents. Consider a document with N zeroes and ones (the only two characters). If
the number of zeroes and ones is the same N/2, then the entropy of the document is −p0 lg p0 − p1 lg p1, where p0 = p1 =
(N/2)/N = 1/2, and thus −1/2(−1)− 1/2(−1) = 1. The entropy of 1 indicates that one bit suffices to encode the characters
of the document: indeed one bit is needed to encode a 0 or a 1!

C3.2 Example (b). If the document on the other hand contains n = 256 characters (think of ASCII or extended ASCII),
each one with the same frequency N/256 we also get that pi = (N/256)/N = 1/256. Similarly, the entropy of this document
is also
−∑

pi lg (pi) = −∑
1/256 lg (1/28) = −∑

(1/256)(−8) = 8
∑n=256

i=1 1/256 = 8. For this case 8 bits are needed per character.
For a general n, if each one of the n characters is equally likely to show up in the document/text, we can show that the entropy
is going to be lg n.

C3.3 Example (c). Now assume that the text only contains four characters (aka symbols) A,C,G,T with frequencies N/2,
N/4, N/8, and N/8 corresponding to “probabilities” (or fractions) of 1/2, 1/4, 1/8, 1/8. We could use
− lg 1/2,− lg 1/4,− lg 1/8,− lg 1/8 bits for each one of the characters i.e. 1,2,3, and 3, to get an entropy equal to 1/2 · 1 +
1/4 · 2 + 1/8 · 3 + 1/8 · 3 = 1 + 6/8 = 1.75 which is the average number of bits per character. Thus in a document with N
characters (and frequencies as specified) we can encode it using only 1.75N bits altogether. This is much less than standard
ASCII coding that uses 7 (or 8) bits per character for a total of 7N (or 8N).
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General Text Compression
Huffman codes

H1. Huffman codes. The primary method that will be presented in this subject for text compression is Huffman coding
that yields what is known as Huffman codes. Huffman codes are bit-aligned prefix codes. They lead to lossless compression.
Huffman encoding requires that we know in advance the alphabet Σ and also the frequency of each character in the text.
Each character is represented by a different encoding string or binary character code (or code in short) in such a way that no
encoding string is a prefix of another encoding string: prefix codes are being used. Huffman codes result in space savings of
20% to 90% depending on the structure of the input string or file that is to be compressed.

H1.1 A greedy algorithm. Huffman’s algorithm for encoding and decoding a text is a greedy algorithm that during
its course of execution makes a decision/choice that is the best possible decision at the time (that’s the greedy principle in
algorithm design).

H1.2 Huffman coding performance. Nowadays it is not very often that anyone is using Huffman compresison (aka
coding) to compress a text or strings of characters. Average savings observed is of 3 bits per character with 5bits being used
for character encoding. This is not good enough any more. Lempel Ziv (LZ78) uses only 4.2 bits on the average, and LZ77
a bit less. The UNIX compress function uses approximately 3.31 bits and gzip close to 2.53. And bzip2 uses 2.23 bits per
character which implies close to 4:1 compression.

H1.3 Huffman coding variants. However instead of doing character compression/encoding we can do word compression/en-
coding, Huffman can exhibit substantiallhy better performance to the level of 2.95 bits per word.

H2. Huffman decoding (decompression). The important property of prefix codes is that decoding is quite straightforward.
Since no code is a prefix of another one, that code at the start of a string or a file is unambiguous and can be removed from
the coded file; repeating this process decodes the rest of the string or file uniquely.

H3. Prefix code representation: Binary Tree. A character of the alphabet is a leaf of that tree. A code is a description
of the path from the root to the specified character/leaf. Every internal node of the binary tree has a left child and a right
child; the left branch is encoded as a 0 and the right branch as an 1. The binary tree representing a prefix code is full with
n− 1 internal children where n is the number of distinct characters appearing in the text/document/string and correspond to
the leaves of the tree.
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Text Compression
Huffman coding

H4. Building the binary tree of prefix codes. The characters of a file (or a string) that is to be compressed are collected
and their frequencies computed. Thus the frequency f(c) of any character c becomes available. Every node of the tree is going
to have a right and left child (i.e. the binary tree is full) except for the leaves that have no children. Every node will have a
frequency field that records the sum of the frequencies of its left and right children; this is also the sum of the frequenciess
of the leaves in the subtree of that node. The number of bits required to encode the file with a given prefix code tree is
B(T ) =

∑
c∈C f(c)d(c), where d(c) is the depth of character c in the tree (i.e. its distance from the root), and f(c) is the

frequency of character c in the document/file/string. used to obtain the tree.
The algorithm that constructs a Huffman code (i.e. an optimal prefix code) is a greedy algorithm. It builds the tree that

corresponds to the code bottom to top. Initially the n characters form individual one-node trees. Any single node is the root
of its own tree. The information associated with each node is the character representation (e.g. ’A’) of the node and the
frequency of the character in the string/file. The algorithm works bottom-up by combining two trees into a single one by
creating a root node for the new tree whose left child is the root of one of the two trees and the right child the root of the
other tree. The frequency field of the new root is the sum of the frequencies of the roots of the two constituent trees (now,
children). There is no character representation associated with such an internal node. Therefore after n − 1 such operations
the n original trees have been merged into one whose frequency field is the number of characters N of the string/file.

Greedy principle for combining trees. The criterion for choosing the two trees to combine is a “greedy” one: the two
trees with the lowest frequency fields at their respective roots are chosen.

H5. Computer Implementation Details. We use a priority queue to maintain the trees, and implement the priority queue
with a MINHEAP. The priority of a tree is the frequency of its root.

Encoding(Uncompressed ufile, Compressed cfile) Text is AACCAGTA

1. Read file, find its characters, compute frequency of each character. A: 4 C: 2 G: 1 T:1

2. Build Huffman tree T from chars and their frequencies.

3. Use T to encode ufile into compressed cfile (might include in cfile information about T)

// This line 3 is Encode(ufile,T,cfile);
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Huffman codes
Encoding and Decoding

Build HuffmanTree(T)

1. For every character c build a one node binary tree with character c as its root ; -:8 STEP3 : combine A with

Frequency of root is the frequency of its character i.e. c.freq= freq(c); c.val = c; /\ 1 (C,(G,T)) tree

2. while there are more than one binary trees do { / \

3. Pick the two trees y and z whose roots have the lowest frequency y.freq and z.freq; 0 / -:4 STEP2 : combine C with

4. Build a new tree with root x; / / \ 1 (G,T)-tree

5. x.left = y ; x.right = z; x.freq = y.freq + z.freq; / 0/ \

6. } / / -:2 STEP1 : combine G, T

7. return(RootOfOnlyTreeLeft); / / 0/ \ 1

A:4 C:2 G:1 T:1

codes : 0 10 110 111

Encode(Uncompressed ufile, HuffmanTree T, Compressed cfile) ufile is : AACCAGTA

1. For every character c of ufile {

2. Determine the path from root(T) to the leaf that is that character c cfile is : 0 0 10 10 0 110 111 0

3. Record path (left branch is 0 , right branch is 1) ie 00101001101110

4. Emit into cfile path 0-1 information

}

Decode(Uncompressed ufile, HuffmanTree T, Compressed cfile) cfile is 00101001101110

1. r = root(T); root of T above: read 0 ---> A leaf reached;reset

2. for every bit b of cfile { root of T again read 0 ---> A leaf reached;reset

3. if b is 0 r=r.left root of T again read 1 ---> -:4

4. else if b is 1 r=r.right read 0 ---> C leaf reached;reset

5. if r is a leaf root of T again read 1 ---> -:4

6. emit the char value of the leaf into ufile; read 0 ---> C leaf reached;reset

7. r= root(T); root of T again read 0 ---> A leaf reached;reset

8. else root of T again read 1 ---> -:4

9. continue; // i.e. read one more bit b from cfile read 1 ---> -:2

} read 0 ---> G leaf reached;reset

continue likewise to generate T and then A...
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Text Compression
Arithmetic Coding, Dictionary-based methods

H6. Statistical coding. Huffman coding and other similar methods (e.g. arithmetic coding) are statistical-based in the
sense that they generate good probability estimates of the appearance of every symbol in the text.

H7. Compression Ratio. The compression ratio is defined to be the ratio of the size of the compressed file over the size
of the corresponding uncompressed file.

H8.1 Huffman coding is fixed-length bit coding. Each symbol is pre-encoded using a fixed-length number of bits. Decoding
a string starting in the middle of a file is possible without having to decode everything from the beginning to the desired word
(as long as we know the codes for all characters of course).

H8.2 Arithmetic coding computes the codes incrementally, one symbol at a time, and decoding from the middle of a
compressed file requires to start things from the beginning. For this reason arithmetic coding is not a very good candidate for
text-based document processing as this is used in Information Retrieval/Web-searching.

H8.3 Dictionary-based methods such as LZ77 (gzip, ARJ, LHarc, PKZip), LZ78/LZW (arc, pak, UNIX compress) are those
in which a dictionary of words is being built and thus codes are assigned to words not (necessarily) individual characters.

H9. Compression models. Compression models assign probabilities to the next symbol to be coded. Models can be

• Adaptive which assume initially nothing about the text and build their model/probabilities during compression.

• Static that they use a-priori probabilities; if a document deviates from that model, they will perform poorly.

• Semi-static which perform two or more passes of the text, first to collect information and then build the compressed
text (e.g. ordinary Huffman coding).

Compression models can also be classified as

• Character-based if they use characters as symbols (e.g. ordinary Huffman coding).

• Word-based if they use words as symbols.
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Specialized Compression
Occurrence lists: Gap or delta encoding

I1. (Inverted) Index: A doclist The inverted index of a corpus consist of a collection of lists for each word (or wordID)
of the document. In its simplest form this collection of lists is a collection of docIDs: for a given wordID its doclist records
the docID of all the documents containing that wordID. More often than not, this list is sorted by docID. The number of
doclists is the number of wordIDs of the corpus.

I2. (Inverted) Index: An occurrence list. More often that not this doclist is called an occurrence list; an occurrence
list containing offset information is sometimes called Hits (and rarely, a HitList) or Positions. More than one entry for a
given docID may be included in that list. Each element of the occurrence list of a given wordID can be viewed as a triplet
〈docID,offset, context〉
containing the docID in which an instance of wordID appears, a word offset within that document describing the position of
wordID in that document, and attribute information that describes the context of the appearance of that instance of wordID
(eg fontsize, capitalization etc). Occurrence lists are sorted first by docID and for the same docID by offset. The size of such
a list can be huge : think for example the length of the occurrence list for a stopword-like word such as a or the in google.

I3. Compressing doclists or occurrence lists. However for several wordIDs the corresponding doclists are short. The
size of a doclist can be reduced significantly if specialized compression methods are used based on the principle that

“ small numbers are more likely to occur than large numbers”,

where large vs small refers not to the value of a docIDs (for example) or the number of bits needed to write it down (or store
it) but to differences (in value) of two consecutive docIDs in a sorted list of of docIDs. The difference between consecutive
docIDs is known as a gap or delta (for difference/gap).

Observation 1. Frequent words have small/short gaps.

Observation 2. Infrequent words have longer/larger gaps. But infrequent words have short doclists as well! (And thus they
do not need to be compressed!)

Gap encoding, Delta encoding or δ−encoding. Sometimes this encoding of gaps of docIDs is also called gap encoding
or delta encoding or δ encoding.
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Specialized Compression
Occurrence lists: Gap or delta encoding

I4. Example: Doclist. Consider for example a doclist consisting of [1000, 1002, 1003, 1004, 1006].
Each one of the docIDs can use 4 or 8 bytes for storage (32-bit or 64-bit representation of a docID). Thus this doclists would
use 5 · 8 = 40B bytes or 20B depending on the representation. However, beyond the baseline (first) docID that will be stored
using that number of bits (i.e. 1000), for the remaining docIDs we can only use docID differences (gaps) instead. Thus a way
to store the doclist above is to store it in the form [1000, 2, 1, 1, 2].
The gaps are sometimes referred to as the deltas. Given that the difference between consecutive docIDs is a small number,
we can use a single byte (or less) to represent gaps. For this particular example, 8B can still be used for 1000, but 1B for the
remaining four gaps for a total of 12B. Compare this to the 40B original storage requirements. For a 32-bit docID the original
requires 20B and the latter gap-encoding only 8B providing 60% savings at a minimum.

I5. Example: Occurrence List. Suppose we isolate the inverted index of a single wordID appearing in only two documents:
in one it appears thrice at offsets, 2,3,5 and in the other twice at offsets 5 and 7. The doclist is of length 2 but the ocurrence
list is of length 5. Elementary compression can be performed if all entries for the same wordID and docID are grouped together
into Hits recording in addition its length i.e. Nhits.

Furthermore we can gap-encode the docIDs. The base docID is not encoded. Thus 10000 remains as it. The follow-up
docID is gap-encode relative to the previous one. The difference between 10001 and 10000 is recorded. Nhits is not compressed.
The basse hit entry of Hits is not encoded however, hit 3 is encoded as 3− 2 and 5 as 5− 3. Likewise 7 is encoded as 7− 5.

For the ”compressed hitlist” [2 1 2] we can decompress it by generating all prefixes of it as in 2, 2 + 1, 2 + 1 + 2 which give
2, 3, 5, as needed. Likewise for [52] and also [100001]

Say wordID=2 (for data) appears in two documents with docID 10000 and 10001
The forward index is

(10000, 2, 2) doclist for wordID=2 is length=2: 10000 ---> 10001
(10000, 2, 3)
(10000, 2, 5) inversion --> same ---> occurrence list docID Nhits Hits docID Nhits Hits
(10001, 2, 5) for wordID=2 is 10000,3, [2 3 5] , 10001, 2, [5 7]
(10001, 2, 7)

Compress occurence list as follows
10000,3, [2 1 2] 1, 2, [5 2]

or 10000,3,2,1,2,1,2,5,2
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Specialized Compression
Gap encoding

I6. Recovery is easy: It involves a prefix computation.

x1 x2 x3 x4 .... xn
x1 = S1
x1 + x2 = S2 = S1 + x2
x1 + x2 + x3 = S3 = S2 + x3
x1 + x2 + x3 + x4 = S4 = S3 + x4
...
x1 + x2 + x3 + ... + xn = Sn = Sn-1 + xn

For a sequence of numbers x1, x2, . . . , xn the prefix sum computation involves the computation of
x1, x1 + x2, x1 + x2 + x3, . . . , x1 + x2 + x3 + . . .+ xi, . . . , x1 + . . .+ xn. The i-th prefix sum can be computed from the (i− 1)-st
prefix sum by adding to it xi.

Thus, from 1000, 2, 1, 1, 2 we can compute the prefix sums 1000, 1000+2, 1000+2+1, 1000+2+1+1, 1000+2+1+1+2
to recover the docIDs of the corresponding doclist.

I7. Prefix Sums in Parallel. A prefix sum computation is very efficient. A parallelization of a prefix sum computation in
PC clusters is also possible (Google’s MAPREDUCE language/system is built to perform such computations efficiently.) A
parallel prefix sum computation is also known as a scan, prefix-sum and can be done for any associative operator not just
sum (eg multiplication, MIN, MAX, etc).

I8.1 Note (Associativity). For an operator + and operands, a, b, c, the operator is associative if and only if (a + b) + c =
a+ (b+ c) for all a, b, c.

I8.2 Note (Commutativity). For an operator + and operands, a, b, the operator is commutative if and only if (a+b = b+a
for all a, b.
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Gap Compression
Byte-aligned: v-byte encoding

I8. Variable-byte length encoding using byte-aligned codes. The example in I4 and I5 was intentionally simple and
fitting. All the gaps were small numbers whose values could fit into a single byte. In general to represent a gap in gap-encoding
we might need more than one byte. We have the option of using bit-aligned coding of gaps or byte-aligned. One such latter
method is what is known as variable byte length or v-byte encoding. It uses short codes for small numbers and longer for
larger/longer numbers. Each code is a sequence of bytes rather than bits i.e. it is a byte-aligned code. So the shortest code
is one byte long. If a value cannot fit into one byte, a second byte is used; if it cannot fit into two bytes a third byte is then
used and so on.

I8.1 v-byte encoding. The v-byte encoding of a number k represents the number in binary in the low seven bits of a
collection of bits. The low seven bits (seven rightmost bits) contain numeric data in binary. The most significant (leftmost)
bit is a terminator bit. The last byte of each code has the terminator bit 1; any other byte(s) has it equal to 0. If there is
only one byte involved it has the bit set to 1. The method can represent only non-negative integers. Thus a number k which
is less than 128 it can be represented by one byte 1AAAAAAA where AAAAAAA is the binary representation of k. If a number is
128 or more but less than 214, it can be represented by two bytes 0BBBBBBB 1CCCCCCC, where BBBBBBBCCCCCCC is the binary
representation of k, and so on (the left-most B is the most significant bit, and the right-most C the least significant bit). Note
all but the rightmost byte have a 0 leftmost bit; the rightmost byte has a 1 leftmost bit: this indicates it is the last byte of
the sequence identifying a number.

k=0 10000000 in hex 0x80 for binary 00000000 whose hex value is 0x00

k=1 10000001 in hex 0x81 for binary 00000001 whose hex value is 0x01

k=127 11111111 in hex 0xFF for binary 01111111 whose hex value is 0x7F

k=128 00000001 10000000 in hex 0x01 0x80 for binary 10000000 whose hex value is 0x80
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Gap Compression
Practical Issues: v-byte encoding

I9.1 Occurrence lists and v-byte encoding. Let us use an Occurrence list of pairs: the first element of a pair is a docID

and the second a word offset within that document. It looks like (1,1)(1,9)(2,6)(2,7)

I9.2. Step 1: Generate Hits and NHits. This step is also performed by Google 1997 and involves the grouping performed
involving word offsets (also known as positions) within the same document. Thus for each document we will create a triplet
(docID,Nhits,[positions/offsets]) = (docID,Nhits,Hits). The end result would be to get something like
(1,2, [1 9]) , (2,2,[6 7])

instead of a long list. In this example the first element of a triplet is a docID such as 1 and 2 respectively. The second element
is the Nhits or the length of the Hits to follow i.e. 2 in both cases. Thus the docID is stored just once and not for every pair.
So this simple method ”compresses” the original ”hitlist” in a very simple and obvious way. The Nhits field is important
because it determines how long the Hits list is especially if we deparenthesize and debracket the notation used above.

I9.3 Step 2: Flatten out. If we deparenthesize and debracket we get

1, 2, 1, 9, 2, 2, 6, 7

I9.4 Step 3: Gap encoding. For the numbers involved we now use gap-encoding i.e. delta-encoding which means instead
of using x, y, z in a list we encode it by using X=x, Y=y-x, Z=z-y i.e representing it with X, Y, Z instead . In order to
retrieve the x,y,z from the X,Y,Z we need to perform a prefix computation i.e. compute X, X+Y, X+Y+Z. The delta-encoding
would apply to docID and Hits fields but not to Nhits. Our example list would then become the first line below, that with
the prefix computation involved in the second line could retrieve the original list.

1, 2, 1, 8, 1, 2, 6, 1

since this means

1, 2, 1,1+8,1+1, 2, 6, 6+1

I9.5 Step 4: Convert into Hexadecimal v-byte codes. A v-byte encoding would then give in hexadecimal (note that 81
is 10000001 in binary).

81, 82, 81, 88, 81, 82, 86, 81 (hexadecimal notation)
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Specialized Compression
Elias and Golomb codes

For the remainder lg k is the binary (or base-two) logarithm of k, and dxe is the ceiling function and bxc is the floor function
(see the penultimate page, ie. around page 30, of this Subject for definitions).

In this section we discuss bit-aligned codes as an alternative to byte-aligned codes to address the problem of gap encoding
in index compression.

J1 Optimal bit-aligned code: Binary code, but does not work! The optimal bit-aligned code for a (non-negative)
integer k is its binary representation! It cannot be used for gap encoding however, because it is NOT a prefix code. An
optimal code to represent k is its binary representation. That code for k uses only blg kc + 1 bits; however it is not a prefix
code. This is because the codes for 0, 1 (binary or decimal) are prefixes of the codes for 2,3, which are 10 and 11 respectively,
which are also prefixes for the code of 4,5,6,7 which are 100, 101, 110, 111, and so on. Thus if one sees the binary sequence
10010011 one cannot determine if it encodes 4,4,3 or 2,0,1,0,0,3 , or 9,0,0,1,1. One must use prefix codes to be able to
untangle combined binary sequences of varied lengths.

J2. Bit-aligned (prefix) codes. Bit-aligned codes that are prefix codes that can be used for gap-encoding are presented
below. There are four (primary) classes of such codes.

• Unary codes.

• Elias-γ codes.

• Elias-δ codes.

• Golomb-b codes.

J2.1 Unary codes. The unary code for k uses (k+ 1) bits .(If we decide not to represent 0 we can go down to k bits as well.)
It is very un-optimal relative to the ”optimal” binary code.

J2.2 Elias-γ codes. The Elias-γ code for k will use 2blg kc+ 1 bits. It tries to reach the performance of the ”optimal” binary
code, using unary codes.

J2.3 Elias-δ codes. The Elias-δ code for k will use 2blg (blg kc+ 1)c+ blg kc+ 1 bits. It is a bootstrapping of Elias-γ codes,
where the use of unary codes is replaced by (recursively) using Elias-γ codes.
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Bit-aligned codes
Unary codes

J3. Unary codes. We are to devise methods that can compress small numbers (gaps) efficiently in as little space as possible.
A unary code is a bit-aligned code. The unary code of number k (i.e. its representation) is a string consisting of k ones
followed by a single zero. (Equivalently one can use k zeros followed by a single one as the representation.) Thus

Number k Code for k

0 0

1 10

2 110

3 1110

J3.1 Number of bits in unary representation of k is equal to k + 1 (includes k ones followed by one zero).

J3.2 Observation. One might observe that for gaps in doclists, if docIDs are unique, there will be no gaps that are zero.
Thus one might not have to represent 0 at all.

J3.3 Alternative representation. When a 0 is not to be represented, one could represent k by (k − 1) 1’s followed by a
single 0. This representation uses one fewer bit than before.

J3.4 Unary codes vs Binary codes. In unary codes the number of bits to store k is (k + 1). This is too much. One could
use a binary code and thus only need dlg (k + 1)e = blg kc + 1 bits. (In the following section the floor function variant will
be primarily used.) The problem with binary codes, as explained earlier, is that they are not prefix codes.

J3.5 Unary codes vs Hexadecimal or octal codes. Besides unary and binary codes (representations) we have decimal
(base-10), octal (base-8) and hexadecimal(base-16) representations or codes.

J3.6 Number of bits in binary representation of k is equal to blg kc+ 1 or dlg (k + 1)e. (Both give the same answer.)
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Bit-aligned codes
Elias-γ.

J4. Elias-γ. A unary representation uses too much space. Elias-γ (Elias-gamma) codes combine unary and binary codes and
provide a variable length bit-aligned coding scheme. The concatenation of two strings a and b is putting the characters of b
immediately after a Thus the concatenation of 101 and 000 would give 101000.

The Elias-γ code of natural integer k is represented by the concatenation wdwr of wd and wr, defined as,

• wd is kd in unary, where kd = blg kc. Thus wd consists of kd ones followed by a single 0.
The number of bits used for wd is thus blg kc+ 1 or in other words kd + 1. This is also the number of bits in the binary
representation of k or the unary representation of kd!

• wr is kr in binary using exactly kd bits, where kr = k−2kd = k−2blg kc. kr is thus what is left of the binary representation
of k if one drops the leftmost (most significant) 1 in the representation. The position of that one in the representation
is kd (we count from the rightmost position starting with 0). The number of bits to represent wr is the number of bits
in the binary representation of kr which is the number of bits in the binary representation of k minus the lefmost bit
1, i.e. blg kc+ 1− 1 = blg kc.
The number of bits used for writing wr is thus blg kc i.e. kd bits.

• Since wdwr becomes the Elias-γ code of k, the number of bits used in this representation is 2kd + 1 = 2blg kc+ 1.

Example: Find the Elias-γ code of k = 7.
Consider k = 7. Its unary code is 11111110, i.e. 8 bits. Its binary code is 111, i.e. three bits. Observe that kd = blg kc =
blg 7c = 2. The formula for the number of bits in the binary representation of arbitrary k is blg kc+ 1 = blg 7c+ 1 = 2 + 1 = 3,
which is correct since 710 = 1112 (the subscript shows the base).
1. What is wd? Form kd = blg kc = blg 7c = 2. The unary representation of kd = 2 is 110 and thus wd = 110. Number of bits
in wd is kd = blg kc+ 1 = 3, which is the number of bits in the binary representation of k = 7.
2. What is wr? Form kr = k− 2kd = 7− 22 = 3. The binary representation of kr = 3 is 11, and thus wr = 11. Note that 11 is
111 if the left-most 1 is thrown away. The left-most one is the second one (kd = 2), since counting starts from the rightmost
position and with 0. Note also that the number of bits for wr is kd = 2.
3. What is the Elias-γ code for k = 7 ? It is wdwr i.e. 110 11 which is 11011 without spaces. The total number of bits is
2kd + 1 = 2blg kc+ 1 = 2blg 7c+ 1 = 5.
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Bit-aligned codes
One more Elias-γ example.

Example: Find the Elias-γ code of k = 8.
Consider k = 8.

1. Unary code for k = 8 is 111111110, i.e. of k + 1 = 9 bits.
2. Binary code for k = 8 is 1000, i.e. of blg 8c+ 1 = 4 bits.
3. Decimal vs binary for k = 8 we have 810 = 10002.

4. wd string for k = 8 is kd in unary, where kd = blg kc = blg 8c = 3 in unary is 1110. That is wd = 1110. Number of bits is
kd + 1 = blg kc+ 1 = 4, i.e. the number of bits in the binary representation of k = 8.

5. wr string for k = 8 is kr in binary, where kr = k − 2kd = 8− 23 = 0 in binary with the appropriate number of bits. Note
that the number of bits for wr is kd = blg kc = blg 8c = 3. Thus we write 000 not 0!. Therefore wr = 000.

6. Elias-γ code for k = 8 is wdwr = 1110000 consisting of 2kd + 1 = 2blg kc+ 1 = 2blg 8c+ 1 = 7.

Example. Show that the Elias-γ code of k = 6 is 11010.
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Bit-aligned codes
Elias-δ.

J5. Elias-δ. In the Elias-γ code of k, kd is represented in unary, and unary encoding uses too many bits. Thus Elias-δ
attempts to use Elias-γ encoding of kd instead of unary, and leave kr untouched by writing it in binary. The only tiny problem
for all the details to work out smoothly is that we need to Elias-γ encode not kd but kd + 1 instead. We use the notation
used for Elias-γ to describe the Elias-δ code for k.
(Alarm. The textbook on page 147 uses kd instead of kd + 1, and is in error.)

The Elias-δ (Elias-delta) code of natural integer k is represented by the concatenation of three strings w1, w2 and wr, defined
as,

• w1w2 is the Elias-γ code of (kd + 1) (and NOT of kd as stated on page 147 ofthe textbook), where kd = blg kc.

◦ w1 is kdd in unary, where kdd = blg (kd + 1)c. The number of bits used for w1 is thus kdd + 1 = blg (kd + 1)c + 1
which is also the number of bits to represent kd + 1 in binary.

◦ w2 is kdr in binary, where kdr = (kd + 1)− 2kdd (TEXTBOOK IS IN ERROR). The number of bits used for w2

is thus kdd = blg (kd + 1)c.

• wr is kr in binary, where kr = k − 2kd = k − 2blg kc. The number of bits used for wr is thus kd = blg kc. (This part is
the same wr used for the Elias-γ code of k; that is why we used wr instead of w3!)

Since w1w2wr becomes the Elias-δ code of k, the number of bits used in this representation is (kdd + 1) + kdd + kd

which is
blg (kd + 1)c+ 1 + blg (kd + 1)c+ blg kc which is
2blg (kd + 1)c+ 1 + blg kc, and since
kd = blg kc, we have that the number of bits is
2blg (blg kc+ 1)c+ 1 + blg kc.
This is roughly 2 lg lg k + lg k, where lg lg k is the logarithm of the logarithm of k i.e. lg lg 16 = lg 4 = 2, and lg lg 216 = 4.
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Bit-aligned codes
Examples for Elias-δ encoding.

Example: Find the Elias-δ code of k = 7.
We have already found the Elias-γ code for k = 7 to be 11011. With that we found that kd = blg 7c = 2, and kr = k−2kd =

7− 22 = 3 and thus wr = 11. We only need to find w1w2 that relate to the Elias-γ of kd + 1 which is kd + 1 = 2 + 1 = 3.
1. What is w1? Form kd + 1 = blg 7c + 1 = 2 + 1 = 3. The unary representation of kdd = blg (kd + 1)c = blg 3c = 1, is 10.
That is w1 = 10, and the number of bits is the number of bits in the binary representation of kd + 1 = 3 which is also 2 (since
310 = 112).
2. What is w2? Form kdr = kd + 1− 2kdd = 2 + 1− 21 = 1. The binary representation of kdr = 1 is 1, in kdd = blg (kd + 1)c =
blg 3c = 1 bits. Therefore w2 = 1.
3. What is the Elias-δ code for k = 7 ? It is w1w2wr i.e. 10 1 11 which is 10111 without spaces. The total number of bits is
blg (kd + 1)c+1+ blg (kd + 1)c+ blg kc which is (1+1)+(1)+(2) = 5 (parentheses show the contribution of the corresponding
string).

Example: Find the Elias-δ code of k = 8.
We have already found wr = 000 from the Elias-γ code and also kd = 3. Then kd + 1 = 4.

1. kdd = blg 4c = 2. Thus w1 is 2 in unary i.e. w1 = 110.
2. kdr = kd + 1− 2kdd = 3 + 1− 22 = 0. Thus w2 is 0 in binary using kdd bits. Since kdd = 2, we have w2 = 00.
3. What is the Elias-δ code for k = 8. It is w1w2wr i.e. 110 00 000 i.e. 11000000.

Example. Show that the Elias-δ code of k = 6 is 10110.
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Bit-aligned codes
Golomb-b codes.

J6. Golomb-b codes. The Golomb-b code of k is the concatenation of wq and wr, where q, r are the quotient and the
remainder of the division of k − 1 by b. Consequently, 0 ≤ r < b. (If b is a power of two Golomb-b codes are known as Rice-b
or Rice-2b codes.)

• wq is the unary representation of q = bk−1
b
c,

• wr is the binary representation of r = (k − 1)− q ∗ b represented in dlg be or blg bc bits as specified below.
(If b is a power of two the ceiling and floor coincide and lg b bits are used.)

Let C = blg bc, and B = dlg be.
Case 0. If B is equal to C i.e. b is a power of two, then B = C bits are used. Otherwise, one of Cases 1 or 2 applies.
Case 1. If r is small, i.e. 0 ≤ r < 2B − b, then C bits are used.
Case 2. If b > r ≥ 2B − b, then B = C + 1 bits are used with the leftmost bit being 1. Then r + 2B − b is represented in

binary (inclusive of the leftmost 1 bit).

The b in Golomb codes when used for gap encoding of doclists is determined by the corpus properties and the properties
of a given doclist. Thus for a corpus of N documents, with p distinct terms and f representing the sum of the lengths of its
doclists, a choice for b is b ≈ 0.69(Np)/f .

If however the length of a doclist of a given term is l, then an alternative choice that is term (index-term) dependent is
b ≈ N/l.
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Bit-aligned codes
Golomb-b code examples.

Example for (k = 8, b = 3). Let k = 8, b = 3 and thus q = 7/3 = 2 and r = 7 − 2 ∗ 3 = 1. Let B = dlg be. Then B = 2.
Similarly C = 1. The unary representation of q = 2 is wq = 110. But r < 2B − b is not true, since r ≥ 22 − 3 = 2B − b. Thus
we represent r with B bits and its representation is that of r + 2B − b = 1 + 4− 3 = 2 The binary representation of r = 1 is
thus wr = 10 Thus the Golomb-3 code of k = 8 is 11010.

Example for (k = 8, b = 4). Let k = 8, b = 4 and thus q = 7/4 = 1 and r = 7 − 1 ∗ 4 = 3. The unary representation of
q = 1 is wq = 10. The binary representation of r = 3 is wr = 11, since r− 2blg bc−1 = 3− 22−1 = 1. Thus the Golomb-4 code of
k = 8 is 1011.

Example for (k = 3 and b = 5). We have q = 0 and r = 2. We have r < 23 − 5 and thus 010.
The remainders r for a given b can be retrieved by a Huffman tree-like consideration.

b=5 0: 00 b=3
/ \ 1: 01 0/ \ 1 0 : 0

0/ \1 2: 10 0 0/\ 1 1 : 10
/ \ 3: 110 1 2 2 : 11

0/ \1 0/ \1 4: 111
0 1 2 0/ \1

3 4

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 29



Refresh
Logs and Exponentials

I. Floors and Ceilings.
A1. The floor function bxc : denotes the largest integer smaller than or equal to x.
A2. The ceiling function dxe : denotes the smallest integer greater than or equal to x.

Examples for floor and ceiling.
b3.5c = 3, b−3.5c = −4, and b3.0c = 3.
d3.5e = 4, d−3.5e = −3, and d3.0e = 3.

II. Exponentials. Let a,m, n be real numbers such that a 6= 0.
A3. a0 = 1, a1 = a, a−1 = 1/a.
A4. am · an = an+m, am/an = am−n.
A5. (am)n = (an)m = a(mn).

III. Base-two Logarithms.
A6. The base-2 logarithm of x, denoted by lg x (or sometimes log2 x), is the real number y such that 2y = x.
A7. lgk n = (lg n)k.
A8. lg lg n = lg (lg n).
A9. For all a > 0, b > 0, c > 0 and n we have that

A9a. a = 2lg a,

A9b. lg (ab) = lg a+ lg b,

A9c. lg (a/b) = lg a− lg b,

A9d. lg an = n lg a,

A9f. ln a = lg a
lg e

, where ln a is the natural logarithm of a base e.
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Exercises
Practice makes perfect

Exercise 1 Give unary, Elias-γ, Elias-δ, and Golomb-3 representations for (decimal) integer 12.
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