
Subject 6
Fall 2015

Document Properties and Processing

Parsing and Linguistic Analysis

Chapter 4 and 6

Disclaimer: These abbreviated notes DO NOT substitute the textbook for this class. They should be
used IN CONJUNCTION with the textbook and the material presented in class. If there is a discrepancy between these

notes and the textbook, ALWAYS consider the textbook to be correct. Report such a discrepancy to the instructor so that
he resolves it. These notes are only distributed to the students taking this class with A. Gerbessiotis in Fall 2015 ;

distribution outside this group of students is NOT allowed.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 1

Document Properties
Initial Processing

When a file is returned to crawler central (and say stored in the Repository of web-based documents), the indexer retrieves
this document and tries to determine whether it is indexable or not based on the suffix of the file-name retrieved. If the suffix
is not sufficient in figuring out the exact type of the document (or there is no suffix), then some type of parsing needs to be
pursued to determine the indexability of the document and its contents (do they include text or not). This is what we also
call structure recognition. During this phase other important pieces of information are collected about the document/file
in question. These include the character set used (ASCII vs UNICODE for example), possibly the language used (in ASCII
a code-page’s upper code usage might be indicative of it, in UNICODE the 2-byte characters of a foreign language is an
easier way to recognize the language) for the text, and also the programming language that might be used in the file (e.g.
several UNIX script files begin with a declaration #!/usr/local/bin/perl to indicate that the text file is a Perl-script, or
#!/usr/local/bin/python to indicate a Python script).

At the same time, the tokenization component needs to be initiated and for that several data structures need to be
initialized. Such initializations might depend on the programming language or in general, the language used, the character
set used, and the type of the file name (since a parser for a specific programming language might have to be used to reliably
parse the file).

For an English text, or English-based texts, or in general documents expressing a spoken language several pieces of
information are known in advance (a-priori).

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 2

Document Properties
Approximating Web document size: Pareto distribution

What can we say about the distribution of document sizes in the Web? How can we approximate the distribution
of size for Web-based document? How can for example the crawler anticipate the amount of space it will use for fetching
information, or the indexer to plan ahead of time for the 1 billion Web-based documents that it plant to index? Web-based
document size distribution changes between text and image documents and thus depends on the document type. In any case,
the size of a document can be approximated by a Pareto distribution.

Pareto distribution. Web-document size can be approximated to follow a Pareto distribution with probability density
function

p(x) = θkθ/x1+θ, and thus Pr(X ≥ x) ≈
(
k

x

)θ
i.e. P r(X ≤ x) ≈ 1−

(
k

x

)θ
.

where x is measured in bytes and k, θ > 0 are parameters of the distribution. (p(x) gives the probability that a document is
of size x, and Pr(X ≥ x) is the probability that the size X of a document is at least x bytes long.)

Between the two parameters k and θ, parameter θ might change very slowly with time. On the other hand parameter k
might grow significantly if say, video/audio files become more frequent and thus contribute to the increase of file size.

Choosing θ. For text files, a θ = 1.36 is used and smaller values can be used for image files and other binary formats. A
typical generic choice for all file types is θ = 1.1.

Choosing k. The choice of k varies with time. For example k = 9.3KB, 18.7KB, 130KB, 400KB is a best fit for 1998, 2003,
2009, and 2013 respectively.

Example. For k = 9.3KB, and θ = 1.1, if we use the expression for Pr(X ≥ x) we conclude that 93% of the documents have
size no more that 9.3KB.

Power Law. Note that the Pareto density function is of the form c/xθ, for some constant c. Such distributions are said to
follow the power law. The degree of a vertex of the Web graph also seems to follow a power law distribution with θ = 2.1−2.5.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 3

Document Properties
Entropy (character-based)

Character-based entropy. The amount of information in a document is known as its entropy. Let a text document
have N characters. Out of this document of file length N , there are n distinct characters of frequency fi for character i, where
i = 1, . . . , n. Thus

∑n
i=1 fi = N . Then the “probability” of occurrence of character i in the text is denoted by pi = fi/N (or

equivalently, this is the fraction of the text using character i). Then, the entropy of the document is

E = −
n∑
i=1

pi lg (pi),

where n is the number of different characters and
∑
i fi = N is the length/size of the document.

Example 1 (binary alphabet). Consider a document with N zeroes and ones (the only two characters of the alphabet).
If the number of zeroes and ones is the same N/2, then the entropy of the document is −p0 lg p0 − p1 lg p1, where p0 = p1 =
(N/2)/N = 1/2, and thus −1/2(−1)− 1/2(−1) = 1. The entropy of 1 indicates the number of bits (i.e. 1) needed to encode
the two characters.

Example 2 (n equi-probable characters). Consider a document of size N with n equi-probable characters so that fi = N/n
and thus pi = fi/N = 1/n. Then the entropy of this text is

−
n∑
i=1

pi lg (pi) = −n(1/n) lg (1/n) = lg n

and thus the n characters can be encoded in lg n bits. For this reason a character set with 128 characters (e.g. ASCII) uses
lg 128 = 7 bits for encoding.

Example 3 (characters with different frequencies). An English text is such a case where the frequency of characters
varies. In English text, the probability of a character appearing in the text depends on the appearance of previous characters.
For example, given the appearance of character t, it is more likely that the next character in the text will be an h (as in that,

the, this, there, therefore) than say, a q or a z. Consider now the artificial example of the text being our DNA encoded
with characters A,C,G,T, and in the text the corresponding frequency-based probabilities are pA = 1/2, pC = 1/4, pG =
1/8, pT = 1/8 respectively. Then one can use − lg (p.) bits to encode these characters, where . is A, C , G, T . This way we could
decode A in 1 bit, C in 2, and G, T in three bits each. These generated codes need to form a bit aligned code. In this example,
the code generated (and is known as Shannon-Fano code) happens to be the same (in bit length) to the corresponding Huffman
code.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 4

Document Properties
Word-based Entropy and Zipf’s Law

Entropy (word-based). One can express entropy and thus the information available by a text in terms of words rather
than characters. Consider for example a document that consists not of N characters but we instead use as a metric number
of words. Let it have N words. Let the number of distinct words in the document be n. As before let fi be the frequency of
the i-th word and let pi = fi/N . The (word-based) entropy measure for this document is E = −∑n

i=1 pi lg (pi).

Zipf’s Law. One important law that applies to words appearing in documents is Zipf’s law. Consider words wi with
frequencies fi (or probabilities pi = fi/N). Sort these words in descending frequency so that the most frequent word comes
first (i.e. it has the highest rank of 1). The word with the lowest frequency will have rank n (since we have n words). Let
the frequency of the most frequent word be f (i.e. f = fk if word wk is the most frequent one). In the text below instead
of dealing with the frequencies of the unordered words we refer to words after they are ranked based on frequencies and thus
F1 ≥ F2 ≥ Thus F1 is the frequency of the top-ranked word (which used to be word wk, i.e. F1 = fk).

Definition 1 (Zipf’s Law) The i-th most frequent word in a text has a frequency Fi such that Fi = f/i, where f is the
frequency of the most frequent word (and thus F1 = f/1 = f). This also means that

Fi × i = f

Since the text has in total N words of which n are distinct, we conclude that N = f/1 + f/2 + f/3 + f/4 + . . . + f/n =
f(1 + 1/2 + 1/3 + . . . + 1/n). The series H(n, 1) = Hn = 1/1 + 1/2 + 1/3 + . . . + 1/n is known as the harmonic series of
order n. It is known that Hn ≈ lnn + γ, where γ is Euler’s constant and γ ≈ 0.5772. A more general form of this series is
H(n, θ) = 1/1θ + 1/2θ + . . .+ 1/nθ. Using the properties of the harmonic series we conclude that N = f/1 + f/2 + . . .+ f/n =
fHn = f(lnn+ γ).
In other words, solving for f we get f = N/(lnn + γ), or equivalently for Fi that Fi = N/(i · (lnn + γ)). Note that the Fi’s
form a permutation of the initially unordered frequencies fi’s.

Note. A variation of Zipf’s Law is that for example in a company, 10% of the customers generate 90% of the service requests.
(Or similarly 10% of the students in a class ask 90% of the questions.)

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 5

Document Properties
Zipf’s Law (standard) and Mandelbrot’s distribution

A reformulation of Zipf’s Law is to make it look closer to a Pareto distribution in the denominator. One could consider
the previous formulation a simplified version of the standard formulation shown below if one substitutes 1 for θ below.

Definition 2 (Zipf’s Law (standard)) The i-th most frequent word in a text has a frequency Fi such that Fi = f/iθ, where
f is the frequency of the most frequent word (and thus F1 = f/1 = f).

Then N = f + f/2θ + . . . = fH(n, θ), and thus f = N/H(n, θ) and equivalently the i-th ranked word has frequency
Fi = N/(H(n, θ) · iθ).

Let H(n, θ; q) be a variation of the Harmonic series Hn or H(n, θ) such that H(n, θ; q) = 1/(1 + q)θ + 1/(2 + q)θ + . . . +
1/(n+ q)θ. Then, we can obtain a Mandelbrot’s distribution in which the term iθ becomes (i+ q)θ instead.

Definition 3 (Mandelbrot’s distribution.) The i-th ranked word has frequency given by Fi = f
(i+q)θ = N

H(n,θ;q)·(i+q)θ .

A negative binomial distribution can be used to express the fraction of the documents containing a word k times.

Definition 4 (Negative binomial distribution.) The fraction of the documents containing a word k times is given by

F (k) =
(
θ+k−1
k

)
pk(1 + p)−θ−k, where θ = 0.42 and p = 9.24.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 6

Document Properties
Heaps Law on vocabulary size

The size of a vocabulary n can be inferred quite reliably from the size of the document N (we continue using the notation
introduced earlier). In order for the result to apply (even empirically), one must assume that no typing errors occur that
could potentially bloat out the vocabulary size.

Definition 5 (Heaps’ Law.) In an English text with N words, the size n of its vocabulary (i.e. distinct words) is approxi-
mately given by n ≈ k ·Nβ. For English texts, 10 ≤ k ≤ 100, and 0.4 ≤ β ≤ 0.6.

Several times β is considered to be equal to 0.5 and with this value chosen, Heaps’ Law takes the form n ≈
√
N .

A set of interesting statistics for the Bible and the TREC collection available at http://trec.nist.gov/data.html is the
following table. (Note that the terminology in the table below is different than the one we have been using in this section.)

Text Collection Bible TREC
No of docs : n 31k 741k

No of terms: F 884k 333M
No of disti terms: t 8k 535k

No index pointers: f 701k 134M
Size 4.3MB 2070MB

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 7

Document Properties
English texts

We give below a collection of observations that apply to English texts and values for β and θ as those used in Heaps’ and
Zipf’s law. A rule to remember is that βθ ≈ 1.

Average English Word Length (All) : 4.8 - 5.3 characters --> w

Average English Word Length (exlude stopwords) : 6.0 - 7.0 characters

Average English Word Length (distinct words) : 8.0 - 9.0 characters --> W

Shortening of text due to stemming : 5.0 - 6.0 characters, a 30% reduction

Text Collection k β 1/β θ w W
AP89 62.95 0.45 2.2

AP 26.80 0.46 2.1 1.87 6.3 8.0
DOE 10.80 0.52 1.9 1.70 6.4 8.4
WSJ 43.50 0.43 2.3 1.87 5.2 7.4

Other statistics that can be derived from the textbook (Chapter 4, page 78 and onwards) include the following.
The most frequent words of the AP89 collection are the, of, to, a, and with pi = fi/N ranging from 6.4% to 2.32%.

(Note that because these words are sorted by rank already, there is not difference in Table 4.2 of the textbook whether one uses
fi or Fi.) Although ipi varies from 0.065 to 0.120, for the words with rank 11 through rank 50 the approximation ipi ≈ 0.093
applies consistently.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 8

Document Properties
Word Ranks

Fact (from Zipf’s Law). The product frequency times rank is constant and equal to the frequency of the most frequent
work i.e. fi× i = f . (We use lower-case f for the frequency.) Therefore fii = f implies that fi = f/i and converting frequency
into probability of occurrence pi = fi/N , where N is the total number of words, and thus

fi × i = f and pi =
fi
N

implies pi =
fi
N

=
f

iN
=

(
f

N

)
1

i
= CN/i,

where CN = f/N , and is constant for a given text (of N words).

Question 1. What is the rank rm of a word that appears m times ?

Answer to Question 1. A word that appears m times has frequency m, i.e. ft = m, for some t. Thus the rank of that word
would be the index t, the subscript of f , and thus rm = t. Given that, by the previous fact, ft× t = f we have m× t = f and
thus

Rank of word appearing m times : rank = t =
f

m
=

f

N
· N
m

=
CNN

m
.

Question 2. What is the highest rank, i.e. the rank of the lowest frequency word? How many distinct words are there?

Answer to Question 2. The lowest frequency word has frequency equal to 1. Thus fi = 1. Then by way of fi × i = f and
fi = 1, we have i = f . Thus the highest rank of a word is f . This also means that there are f distinct words.

Question 3 (for information). What is the lowest rank, i.e. the rank of the highest frequency word?

Answer to Question 3. The highest frequency word has frequency equal to f . Thus fi = f . Then by way of fi× i = f and
fi = f , we have i = 1. Thus the lowest rank of a word is 1, and it corresponds to the word with frequency f .

In question 1 we identified the rank of a word that appears m times. There might be more than one words that appear
m times. We pick the last one of them to determine the rank. Thus rank rm is to include all words with ranks 1, . . . , rm that
appear in the corpus m or more times. Also rank rm+1 is equivalent to that all words with ranks 1, . . . , rm+1 appear m+ 1 or
more in the corpus. Thus

Question 4. How many words appear exactly m times?

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 9

Document Properties
Word Ranks

Question 4 (repeated from previous page). How many words appear exactly m times?

Answer to Question 4. The number of words appearing m times is the number of words appearing at least m times minus
the number of words appearing at least m + 1 times. The former, by Question 1 is CNN/m and the latter by Question 1 as
well is CNN/(m+ 1) respectively. Thus the number of words appearing exactly m times is

CNN/m− CNN/(m+ 1) = CN
N

m(m+ 1)
=

f

m(m+ 1)
.

Question 5. How many words appearing once in the text?

Answer to Question 5. The number of words appearing exactly once is by Question 4 for m = 1 equal to f/(1 · (1 + 1)) i.e.
f/2.

Therefore

• The most frequent word has frequency f .

• There are f distinct words in the text; the highest rank value in the text is f (the lowest rank value of 1 corrsponds to
the word with the highest rank and frequency).

• There are f/2 words of frequency 1.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 10

Document Processing
Phases

The first step of document processing involves a number of text operations or transformations. They can be grouped into
three phases: (a) the lexical analysis or parsing or tokenization, (b) the linguistic analysis, and (c) the indexing. (The first
phase and also the second phase has already been discussed in some detail in Subject 1/2.)

Modified token stream

EXAMPLE

Algorithmic
theory of
numbers , and strings

algorithmic
theory

strings
numbers

algorithm
theory
number
string

Algorithmic
theory of
numbers and strings

algorithmic
theory
of
numbers
and
strings

Indexing

INDEXER

Token stream

Parsing (Tokenization,Lex.analysis) Linguistic analysis

structure
text +

text

document

recognition
structure

stopwords
noun
groups

stemming
accents,

spacing,

capitalization, etc

Figure 1: Document Processing

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 11

Document Processing
Phase A: Parsing

A. Parsing. The first phase is known by a variety of names such as lexical analysis and parsing and involves the
tokenization of the input document. For this reason it is sometimes also called tokenization. This phase thus converts
the character stream of the input document(s) into tokens (the use of the common words might exclude number, dates,
etc from inclusion into tokens). The objective is to determine which ones of the tokens can serve as keywords and finally
generate index-terms out of them. It is the index-terms that will be stored in the index, not (necessarily) words or tokens.
(The notion of a keyword is more theoretic: it identifies the subset of the words/tokens that are considered important in a
document.) Parsing also includes a number of processing steps that need to resolve several issues such as treatment of number,
dates, case (upper vs lower), accents and punctuation, fonts.

This phase consists of a sequence of subphases that can include the following: (a) File-type that determines syntax,
presentation style, semantics, including character encoding (ASCII vs Unicode), and document language (English vs Germanin
languages vs etc), (b) white space removal is decided and phrases are handled (eg. is United States treated as two words
separately or one), and short words are resolved (XP, NT, WWII), (c) case folding is determined and resolved and accents and
punctuation marks are dealt with, (d) hyphenization is resolved, (e) Positional Information of word (aka context) that also
ignores tag words to generate offset (i.e. <TITLE> does not increment offset counter), (f) Title Info is recorded (surrounded
by TITLE tags), (g) Font-Type Info and Size is noted (e.g. text is between and) or what the font-size is relative to
the default one of the page, (h) Header text, i.e a distinction between (H1,H2,H3) and possibly (H4,H5,H6) is being made and
recorded, (i) List Info, such as UL, OL, DL, LI is utilized, (j) and URL is properly attributed and extracted from Anchor
along with associated text. than the SourceURL, and (k) number and date translation is decided.

As a result of this first phase, the tokenizer might return not just the token identified (say algorithm) but also metadata
information about it other than its value (name). For example if it is in an HTML document, for algorithm, its appearance
in the HTML document becomes important and thus it will be transmitted by the tokenizer (i.e. that say it is in bold-face
font or not, etc). These first text transformations have a simple linguistic and context-based element. They identify issues
such as what will become a token, and whether position within a document is important or not.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 12

Document Processing
Phase B: Linguistic Analysis

B. Linguistic Analysis This phase is applied to the output of the previous phase (the token stream) or is combined with it.
In this phase language-related text transformations are applied to generate the index terms. The set of text transformations
involve the application of a list of stopwords, stemming, that will further restrict or modify the stream of tokens that would
generate possible keywords and eventually index-terms. Sometimes an index-term is a token (word) that does not appear
per se in the text or it appears there in a completely different form (with a suffix). For example with reference to Figure 1,
algorithm is an index-term, although the word algorithm never appears in the text: the input document contains only the
word algorithmic.

• 1. Stopwords. Frequent not very useful words are poor index-terms and bloat indexes. These frequent words include
articles and connectives. However important text such as to be or not to be might contain such frequent words and
thus one want to be able to index it properly. Will this text be missed because of stopword restrictions or improper
choice of the stopword list? Such a case needs to be avoided.

• 2. Stemming. A stem is the substring of the word left after the removal of its affixes (prefix and suffix). The stemming
operation attempts to reduce distinct words to their common grammatical root.

◦ 2a. Stemming eliminates duplicates of the same word (e.g. in algorithm, algorithms, algorithmic or the more
involved swimming, swam, swim) whether they are in plural or singular form, in gerund form, or have past tense
suffixes.

◦ 2b. To stem or not to stem? (e.g. Harman(1991), Frakes (1992)).

◦ 2c. Algorithms for stemming include Porter’s and Harman’s with the latter being described on the following page.

• 3. Lemmatization. It refers to the grouping of different inflected forms of a word (e.g. car, cars, car’s, cars’,
and also good, better, best).

• 4. Synonyms. Similar in meaning words. (car, vehicle, automobile) or the not so obvious (metro vs underground
vs subway).

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 13

Document Processing
Phase B: Linguistic Analysis

• 5. Noun groups, (e.g. kitchen table). Sometimes noun groups can be identified during the previous phase when
dealing with specific phrases.

• 6. Spelling. center vs centre . Or the more challenging towards vs toward. Is one of them a typo? Do we apply
lemmatization?

• 7. Typing Errors. Do you correct them ? How does one handle them? Usually at query time correct spelling by
checking each word against the lexicon for distance editing (definition on page 16) of at most 2-3.

• 8. Thesaurus use. Consider the case of a thesaurus for different subjects that determine the list of index terms as
a subset of the tokens identified so far. Most search engines assume that the set of all tokens of all documents (after
stemming and stopword elimination) is the thesaurus. Identify synonyms, words with similar meaning and search for
all of them if one in the query list.

Stopword list. A list of possible stopwords can include a subset of the following words. One reason we use stopwords and
decide not to index them is storage/space problems. The inverted index might grow too large beyond our storage capabilities
if we index several very frequent words. If space is not an issue one can decide not to treat some or all of these words as
stopwords (and thus index them).

I a about an are as at be by com en for from

how in is it of on or that the this to was what

when where who will with www

It is tempting to consider the ordinarily disjunctive word or a stopword. But be reminded (again) that OR might be the
designator for the state of Oregon, or an acronym for Operations Research or for Operating Room. It is imperative that
the stopword list be kept as short as possible. Also phrases such as it is, there is, up to us include several potential
stopwords; however a us might be a writing for USA as well.

At this level, a semantics-based classification of a Web-page might also take place that characterizes it for example as
sports, politics, academic, etc.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 14

Document Processing
Phase B: Linguistic Analysis and stemming

There are some arguments in favor or against stemming e.g. Harman(1991) and Frakes (1992). If there is plenty of space
available in the search engine architecture, stemming might be eliminated for certain words (and thus algorithm, algorithms
and algorithmic might give different sets of results, if searched for).

There are several algorithms for stemming that are simple and also other algorithms that are rather more complicated.
For example Porter’s algorithm and Harman’s are two such methods. The latter is quite straightforward as shown below. A
third widely used algorithm is an one by Krovetz.

Harman’s stemming Algorithm.

HarmanStemmingAlgorithm(word)
1. If word ends in -ies but not -eies or -aies

then -ies --> -y;
2. If word ends in -es but not -aes, -ees or -oes

then -es --> -e;
3. If word ends in -s but not -us or -ss

then -s --> -;

The algorithm is not perfect, yet it is quite simple. However it has its limitations. What happens for example if the input is
tries, retrieves, foxes, dies ?

In general it has been observed by Porter through the experimental use of his own stemmer, that the size of a vocabulary
can be shortened by 30% if one uses stemming. (One phase, but not the complete algorithm of Porter’s stemming method is
available in the textbook on page 92.)

Note. The parser should also be capable of accommodating errors including syntax errors and thus be able to deal with
free-form text in which no specific syntax is implied. Thus if there is a syntax and semantics implied in the text the parser
should be able to take advantage of this additional information. In the absence of such information it should also be able to
work properly and miss as few words as possible, since a word missed might be an index-term missed after all.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 15

Document Processing
Phase B: Linguistic Analysis and word similarity

Two documents or two words can be compared to determine their similarity.

• One way to measure similarity is by using a distance function. The Hamming distance of say two strings of the
same length is the number of positions in which they are different. Distances satisfy the triangular inequality d(a, c) ≤
d(a, b) + d(b, c).

• The edit or Levenshtein distance is the minimum number of character insertions, deletions, and substitutions we need
to perform in any of the strings to make them equal. The edit distance of center and centre is two and of color and
colour is one.

• Another measure is the longest common sequence (deletion of characters is only allowed). For example color and
colour have color whereas survey and subway have suy.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 16

Document Processing
Phase B: Linguistic Analysis and n-grams

n-gram. An n-gram is a sequence of n words that have a special meaning if they occur together.
According to the textbook (page 101) the following data related to n-grams can be obtained from Google’s text collection.

Google Text Collection
Number of words n : 1 trillion
Number of 1-grams : 13 million
Number of 2-grams : 314 million
Number of 3-grams : 977 million
Number of 4-grams : 1.3 billion
Number of 5-grams : 1.17 billion

Figure 2: Google-reported n-gram information

Note. The following might also be deemed quite surprising as far as n-grams or phrases are concerned.

Most frequent ENGLISH phrase (or 3-gram) is: All rights reserved.

Most frequent CHINESE phrase (or 3-gram) is: Limited Liability Corporation (LLC).

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 17

Document Processing
The final Phase: Indexing

3. Indexing The token stream generated after the end of the second phase for a given input document, will be merged
with those of other documents to generate a forward index. In a forward index for every document the words that appear
in the document are listed along with other word attributes. Eventually, when the forward index is generated completely,
an inversion operation will be performed to eventually generate an inverted index. This inversion operation is usually a
sorting operation that is stable. A sorting algorithm is stable if the relative order of same-valued keys is maintained between
the input and output. This inversion is shown in Figure 3. The original token streams of three documents are merged into a
single token stream. In this token stream, an ordering exists based on docID (primary key) and also within a document based
on the word offset attribute that is assumed to be the only attribute for this example (secondary key). When the inversion
operation is applied, the stream is sorted in a stable manner based on wordID (primary key), then within the same wordID
based on docID (secondary key), and if the word appears more than once in a given document, based on word offset (secondary
key). The ordering based on the two secondary keys (docID, word offset) is already available in the input. Thus we would like
it not be destroyed during the inversion. A choice of a stable sorting algorithm will achieve this; if one can not use a stable
sorting algorithm, an algorithm can be made to behave as if it was stable by adding to each key additional information that
will make it unique (and thus eliminate the precondition of having same valued keys to determine stability).

Attribute (for this example

WordID | word offset from

DocID | | beginning of file)

| | |

<1,algorithm, 1 - > <1, algorithm, 1>

<1,theory , 2 > <2, algorithm, 1>

<1,number , 4 - > <2, algorithm, 25>

<1,string , 6 > <2, data, 2>

<2,algorithm, 1 - > <3, engine, 2>

<2,data , 2 - > Inversion (sorting) <3, inform, 3> Index Generation

<2,structure, 3 > -----------------> <1, number, 4> -------------> [To be continued)

<2,program , 4 - > <3, practice, 5> (continued)

<2,algorithm, 25 - > <2, program, 4>

<3,search, 1 > <3, retrieve, 4>

<3,engine, 2 - > <3, search, 1>

<3,inform, 3 - > <2, structure, 3>

<3,retrieve, 4 > <1, string, 6>

<3,practice, 5 - > <1, theory, 2>

Figure 3: Inversion of a forward index to generate an inverted index

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 18

