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The Index and the indexing process

The indexing process

Chapter 5

Disclaimer: These abbreviated notes DO NOT substitute the textbook for this class. They should be
used IN CONJUNCTION with the textbook and the material presented in class. If there is a discrepancy between these

notes and the textbook, ALWAYS consider the textbook to be correct. Report such a discrepancy to the instructor so that
he resolves it. These notes are only distributed to the students taking this class with A. Gerbessiotis in Fall 2015 ;

distribution outside this group of students is NOT allowed.
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Indexing
Sorting to generate the index

1. An example of the indexing process requirements. Consider searching a small collection of HTML documents that
describe Computer Science books. Each such document minimally includes the author(s) and title of the books it describes.
Let us for the sake of this example we limit our exposure on few (approximately 10) books on say data structures and
algorithms. For this collection the index-terms will be limited to this domain.

1.1 Tokenization and index terms. Through the document processing techniques of the previous section we decide that
the index-terms are relevant words such as algorithms, algorithm, data structures, design, analysis, computer,

java, c++. One might observe that stemming was not used and thus algorithm and algorithms are considered two different
index-terms. One might also observe that a noun-group was identified and thus data structures became an index-term
(not index-terms). For easiness we shall refer to each document in the remainder by the author(s) of the book that it describes
rather than a generic and nameless docID.

1.2 Forward index: tuples utilizing wordIDs and docIDs. We mentioned earlier when we discussed the Google Search
Engine Architecture (Subject 3) that during the building of the forward index a collection of tuples are generated that describe
the information of each index-term in a document of the collection. Instead of a word, a wordID is used that is (usually) of
fixed length (bytes), and the document is described in term of a (usually) fixed length docID; other information about the word
might also be recorded. Auxiliary (data) structures allow for efficient conversion of docIDs into URL, Checksums and pointers
to the actual documents in the local repository of the web. Same applies to wordIDs. Given that a document is scavenged
from the beginning to the end, all tuples related to a given docID are next to each other ordered by word or character offset
that describes the position of the word in the document with the given docID.

1.3 (Inverted) index: inversion (aka sorting) of the forward index. During the inversion phase, the tuples are getting
sorted by index-term (i.e. wordID) and then by docID and offset, as needed, using a ”stable” sorting algorithm that won’t
destroy in the second round of sorting for example (sorting by docID) the order implied by the first round sorting (sorting by
wordID).

1.3.1 Hits list, Doclist. A simplified Hits array containing only docIDs is known as a doclist. The second phase sorting
by docID (after the by wordID sorting) guarantees that this list is sorted by docID.
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Indexing
Doclists and Hit lists

1.3.2 Building the index by grouping by wordID and building the Hits array of a wordID. Then we can easily
(serially) group all tuples with the same wordID. This involves grouping of all tuples with the same wordID and docID into
what is known as a Hits list for the wordID and the given docID. A Hits list (or array) also known as ”hitlist” is an ordered
sequence of hits ordered (usually) by offset. The same tuples can be grouped by docID if we eliminate duplicate tuples that
contain multiple entries with the same wordID, docID and keeping only one instance (of each). The end result is that for a
given wordID we have a list of all the unique documents (or occurrences if multiple entries for the same document are allowed)
that contain the wordID (once or more).

1.4. Collecting Information. Thus the following information can be collected (and our terminology will be consistent with
that used lated in Subject 8) but will deviate from the one used in Subject 6.

1.4.1 Corpus D, document dj and corpus size n (number of documents). Let the number of documents of the corpus
D be n, where dj is the j-th document for j = 1, . . . , n.

1.4.2 Index-terms: the i-th index-term is ki, t is the number of index-terms, and ni is the document frequency
of ki. The collection contains a number of index-terms and let this number of unique index-terms be t. The i-th index-terms
is ki and appears in ni distinct documents; this is known as the document frequency of ki. Thus the length of the doclist

for the i-th index-term is also ni (assuming that the doclists contains no duplicate docIDs). (When we refer to a given Hits
list or doclist, we might use Ndocs instead of ni.)

1.4.3 Frequency of i-th index-term: The term frequency or tf-factor of ki in dj. The number of times the i-th
index term ki appears in an arbitrary document dj of the collection is fij; this is known as the term frequency or tf-factor.
(Sometimes we call it Counts or even Nhits, but see below other uses of the latter.)

1.4.4 Other information:
∑

j fij. The term
∑

j fij give the total number of times the i-th index-term appears in D. Note
that whereas ni counts documents

∑
j fij counts occurrences (the same document might contain multiple number of times the

index term). This is the Nhits of the occurrence list for a given wordID.

1.4.5 Other information:
∑

i fij. The term
∑

i fij gives the number of index-terms in document dj. In other words this is
the length of the Hits array, as duplicate occurrences are counted. (When we refer to a given Hits list of the forward index,
we might use Nhits instead of

∑
i fij.)

1.4.6 Other information:
∑

i,j fij. Thus
∑

i,j fij gives the total number of all index-terms (non-unique) in all the documents
of the collection. (Sometimes we call it N .)
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Indexing
Represented by Incidence (Boolean) Vectors and (Boolean) Matrices

1.5. Preparing to answer queries. Queries that require the accessing of the index (aka doclist or Hits list for a given
wordID) can vary depending on the requirements of the query: A YES or NO query response needs only access the doclist
to determine whether a document satisfies or not a query. The we are talking about a Boolean retrieval model for query
processing (more will have to wait for Chapter 8) as the response is binary (aka Boolean). If a ranking of the response in
order of relevance is needed depending on say the number of times a keyword appears in a document or in the Corpus (rare
or frequent word), then a more complex Vector retrieval model is to be used that will utilize ni, fij and other collected
information.

Indicator variable. An indicator variable for a condition is 1 if a condition is true and 0 otherwise.

1.6 Boolean Retrieval Model and the Index: (Boolean) Incidence vectors. For the simple query case where a YES
or NO suffices for an anwer, one way to organize the information collected through document processing is to create for each
index-term an incidence vector, i.e. a simplified form of a HITs list or doclist. An incidence vector for a term is a binary
vector of indicator hits for a sequence of documents. In other words for an index-term i its incidence vector Ci is a vector
that is n elements long (where n is the number of documents of D) and entry Ci(j) is 1 if the j-th document of the collection
contains term i and 0, if the j-th document of the collection does not contain i.

1.6.1 Term ni appearing in dj indicated by indicator variable Ci(j). Thus Ci(j) is the indicator variable for term i
appearing in document j.

1.6.2 Incidence matrix. We can group the incidence vectors of all index-terms in the form of a matrix i.e. a collection of
rows and columns of values (0s and 1s in our case). The rows in the matrix are the books i.e. documents of the collection,
and the columns are terms and their incidence vectors. If we denote a matrix by C and reference it as C(i, j) where index
i references a row and index j references a column, then C(i, j) is 1 if the i-th term appears in the j-th document and 0
otherwise. Thus the i-th row of C is the incidence row vector for the i-th term.

1.6.3 Example. An incidence matrix is depicted in Figure 1. The rows correspond to ”incidence (row) vectors” (or their
transposes) and describe the index-term appearing in the documents and the columns the documents. The term algorithms

has an incidence vector of 0101111111 since all but the first and third books contain it. This incidence vector is the first row
of matrix C since algorithm is the first index-term of the collection (not that they are sorted, but they are listed so).
If it sounds strange that an ’incidence vector’ refers to a row of a matrix, take its transpose!
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Indexing
Incidence Vectors and Matrices: query processing

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 | Corpus in detail

Algorithms 0 1 0 1 1 1 1 1 1 1 | d1 = Knuth ’The Art of Computer Programming’

Algorithm 0 0 1 0 0 0 0 0 0 0 | d2 = Cormen ’Introduction to Algorithms’

Data Structures 0 0 0 0 0 1 1 1 1 0 | d3= Tamassia et al ’Algorithm Design’

Java 0 0 0 0 0 0 0 1 0 0 | d4= Aho et al ’Design and Analysis of Comp.Alg.’

C++ 0 0 0 0 0 0 0 0 1 0 | d5= Baase et al ’Computer Algorithms’

Computer 1 0 0 1 1 0 0 0 0 0 | d6= Lewis et al ’Data Structures and their Alg.’

Design 0 0 1 1 0 0 0 0 0 1 | d7= Aho et al 2 ’Data Structures and Algorithms’

Analysis 0 0 0 1 0 0 0 0 0 1 | d8= Goodrich et al’Data Str. and Alg. in Java’

d9= Goodrich*et al’Data Str. and Alg. in C++ ’

d10= Levitrin ’Intro to Design and Analysis of A’

Figure 1: Incidence matrix example

1.6.4 Operations on incidence ”vectors”: Bitwise Boolean/Logical operators. Given an incidence matrix C for a
corpus (document collection) query processing involves manipulating the rows of C i.e. its incidence vectors using traditional
boolean or logical operators such as AND, OR, NOT. The bitwise AND or bitwise conjunction of two n-element row vectors
x, y of 0s and 1s is an n-element row vector z of 0s and 1s denoted by z = x&y such that the i-th element of z is 1 if and only
if the i-th elements of x and y are both 1, and 0 otherwise. (For a bitwise OR or bitwise conjunction denoted by z = x|y,
the i-th element of z is 0 if the i-th elements of x and y are both 0, and 1 otherwise.)

1.6.5 Example. The conjunction

algorithms AND data structures

is the bitwise AND operation of the incidence row vectors of the two terms algorithms and data structures.
algorithms. The incidence vector of algorithms is x = 0101111111.
data-structures. The incidence vector of data structures is y = 0000011110.
Then z = x&y = 0000011110.
This means that the sixth, seventh, eighth, ninth books contain both terms in their titles!

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 5



Incidence Matrix
Space considerations: Google@1998

1.7 Google 1998. Consider the case of Google in 1998. In 1998 Google used to index as few as 25,000,000 books and
thus n = 25000000, and the dictionary that contained the index-terms contained close to t = 14, 000, 000 words.

• Corpus size. 150GB.

• Number of documents n. n = 25, 000, 0000.

• Number of index-terms t. t = 14, 000, 000.

• Average document size. 150GB/25000000 = 6KB.

• Average word length (with whitespace). 6.

• Average number of words per document. 6KB/8 ≈ 1000.

1.8 An incidence matrix is an t × n matrix. A document is a column of the incidence matrix (see previous page).
Thus an incidence matrix contains n columns. Given that the average document in Google@1998 contained 1000 words, each
one of the 25,000,000 columns contained as few as 1000 ones with the remaining values being zeroes! The number of rows of
the matrix is t = 14, 000, 000.

• 1.8.1 Incidence matrix C is an n× t matrix where t× n = 14, 000, 000× 25, 000, 000 matrix.

• 1.8.2 Number of non-zero (aka one) values. On the average, a column of the matrix has 1000 non-zero
values (ones) and 13, 999, 000 zero values. Less than 1% of 1% of the values of a column or the matrix as a whole
are ones!

1.8.3 Space for the incidence matrix C is t × n. The total amount of space that one would have used to store the
incidence matrix of Google@1998 (assuming one bit for a 0 or an 1) is 25 · 106 × 14 · 106/8 = 4.3 · 1013 bytes, or no more than
43TiB (i.e. 43 Terabytes).

1.8.4 Google@1998 corpus size vs index size vs incidence vector size. Yet, Google@1998 indexed 150GiB of
documents, in around 60GiB, an amount of space that is roughly one-thousandth of the size of the incidence matrix computed
as 43TiB.

This can only mean one thing:

An incidence matrix is inefficient.
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Inverted Index
A compact solution to an incidence matrix: incidence list

1.8.5 Incidence matrix is space inefficient. The Google example shows that an incidence matrix is a very poor solution
for storing index information. This is because it stores not only the 1s (useful information) but also the 0s. The zeroes tell
us nothing: they indicate that an index-term does not appear in a document. It makes thus more sense to store only the 1s
and forget the 0s. One example from algorithms and data structures that is used is in graph algorithms. If the graph has
lots of zero relative to its ones an adjacency matrix which is an incidence matrix is used. But if the number of ones are
’sparsely’ available relative to the zeroes, an adjacency list is used instead. So for indexing it is time to use an incidence
list instead of an incidence matrix.

1.8.6 Incidence list (aka forward index). For every document we store the index-terms (i.e. the 1s of the incidence
matrix) contained in it and ignore the 0s of the (columns of the) incidence matrix. This is an orthogonal/inverse solution!

1.8.7 (Inverted index): An orthogonal solution to the incidence list. Inversely (or orhtogonally) to an incidence
list, for every index term, we store all the documents that contain that index term in a data structure aptly named inverted
index!

1.8.8 Orthogonal solution, also known as the (inverted) index in Google 1998. An inverted index would thus store
a total of 25, 000, 000× 1000 document references, as the average document contained 1000 words for the Google 1998 corpus.
A document reference (i.e. docID) needs approximately 4 bytes for a total of 100GB. With some compression this space can
easily be halved into 50GB, very close to Google’s index size at that time!

d1 d2 d3 .... 3. (Inverted) Index or (Inverted) Lists
1. Incidence Matrix t1 0 1 1

t2 1 1 0.... t1 : d2 d3
t2 : d1 d2

2. Incidence List d1 : t2 or <d1,t2>
d2 : t1 t2 or <d2,t1> <d2,t2>
d3 : t1 or <d3,t1>
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Inverted Index
An orthogonal solution to an incidence list: inverted index

2. Inverted index (Definition). An inverted index is a word-oriented mechanism for indexing a text collection and thus
storing index-term or document-incidence information in order to speedup the search task. An inverted index consists of two
components. (The second component has multiple names!)

• A Vocabulary, the set of all index-terms in the dictionary, and

• Occurrence lists or inverted lists (most detailed form) of Hits list or Counts or doclist (less detailed form)
that contain the information necessary for each index-term of the vocabulary to be identified.

2.1 Book indexes. An index of a book, contains a list of important words (keywords), and for each such word a listing
of the pages in which this word appears. If a word appears multiple times in a page, that page is listed once. If consecutive
pages include the word, a compressed reference is used that includes the first page and the last page of the sequence separated
with a dash −. The list of words in the index is a small subset of the words of the book, and potentially a smaller fraction of
the dictionary of all English words (i.e. those of the Oxford English Dictionary, Second Edition of Figure 2).

2.2 Index of a corpus. The index might contain for each word, the document in which it appears (doclist), and/or positional
information within that document. The level of granularity might depend on the use of the index.

2.3 Concordance. In several books or collections of books, a precursor to an inverted index is what are known as concor-
dances, a primitive form of an occurrence list for a printed book.

General Info : 1989 (Pub. date), 20 volumes, 21,730 pages, 62.6Kgr/137.82lbs.

Amount of ink used to print complete run : 2,830 kilos or 6,243 lbs.

Number of words in entire text : 59 Million Number of printed characters : 350 million

Number of megabytes required for text : 540 Number of entries : 291,500

Number of main entries for obsolete words: 47,100 Number of main entries : 231,100

Number of main entries for spurious words: 240 Number of etymologies : 219,800

Number of cross-references within entries: 580,600 Number of cross-reference entries : 60,400

Longest entry in Dictionary : verb set ; 430 senses; ~60,000 words ; 326,000 characters

Figure 2: OED: Oxford English Dictionary, Second Edition (1989)
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Inverted Index
Overview of terms: Dictionary, Vocabulary, Lexicon

3. Dictionary vs Vocabulary vs Lexicon. All three mean the same thing, a collection of unique words, but in the context
of this discussion we are going to use them in a specific way.

3.1 Dictionary. Based on the discussion of Subject 6, a dictionary contains all the unique words in the corpus as
identified by the tokenizer. For example a dictionary might contain auto, car, vehicle, automobile.

3.2 Vocabulary. The vocabulary is maintained by the index and contains all the unique index-terms that are indexed
and thus included in the inverted index.

In the dictionary all four words that identify a car might all point to the same index-term of the vocabulary, say car. For
example, for a query that includes the word auto, a lookup to the dictionary can resolve the correct spelling of this word (as
opposed to say, awto) and also identify the correct index-term associated with the word i.e. car. Then index-term car will be
used for awto or autom in query processing. It is often that dictionary and vocabulary are one and the same if only because
of the overhead of maintaining two different data structures for them.

3.3 Lexicon. The lexicon is an efficient implementation of the dictionary/vocabulary by using a hash table more often
than not. (See also Subject 4 for such an implementation.) It is possible that in this context not all of the words of a vocabulary
(or dictionary) are stored into the hash table because of memory requirements (not enough available memory to store all the
words in main memory). Thus in this case some rare words (of the vocabulary or dictionary) might be stored outside of the
lexicon (i.e. outside of main memory).

3.4 Information to maintain in a Vocabulary (or Lexicon).
3.4.1. WordID. One entry per index-term. Rarely the word itself is stored in the vocabulary. A hash in the form of a

word identifier called wordID is more useful to maintain and compact to store. A pointer to an area in memory where the
string of the word itself is stored might also be available. (this is the Lexicon i.e. an implementation of the Vocabulary.)

3.4.2. ni or Ndocs. The number of distinct documents containing the i-th index term ki i.e. wordID can be recorded in
this field. We call it ni or generically Ndocs.

3.4.3. Nhits or
∑

j fij. The number of distinct occurrences of wordID i.e. ki in all Ndocs documents or separately per
document (fij) can be recorded in this field. The term fij indicates for the i-th index term ki the number of times it appears
in document dj. Thus the Nhits entry stores

∑
j fij.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 9



Inverted Index
Overview of terms: Inverted, Occurrence, Hits and Doc lists

4. Inverted list or Occurence List. The two different names names of the same list describe the major component of an
(inverted) index other than the vocabulary. For a given index-term it holds the relevant information for that index-term.

Each entry in the list is called a posting and the portion of a posting that refers to a specific document (eg. docID) or
location (eg. offset) is called a pointer.

The posting minus its pointer might record additional information about the index-term. In the case of Google (1997) it
records information such as relative font-size and capitalization.

4.1 Doclist. refers to a simplified form of an occurrence list (inverted list) in which only document references appear.
That is, the posting only includes pointer information and the pointer information only includes a document reference. A
doclist is usually sorted by docID.

(For example, Fig. 5.3 of the textbook on page 132 shows multiple instances of a doclist.)

4.2. Hits list or ”Hitlist”. It refers to the occurrence list of particular index-term in a particular document. Thus the
Hits list of an index-term over all documents of the collection form its occurrence list.

For example, an index-term that is contained in 10 documents will consist of 10 Hits lists. Each one is going to be (or can
be) of variable length depending on the times the index-term appears in the associated document. Note that in Google 1998
an occurrence list is a collection of doclists with associated Hits. Thus variations of the given explanations might be (and are)
prevalent.
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Inverted Index
Information in an Inverted/Occurrence list

Auxiliary information can be maintained in the inverted/occurrence lists. This includes.

4.2.1 Counts or Nhits. For each document listed in the doc-list or in general the inverted list of a given index-term, a
Counts field records the number of times the index-term occurs in that document. In most cases Counts provides additional
information per posting of the doclist. A single posting per document is available with the posting containing
pointer and count information.

4.2.2 Positions. This expands the information available through Counts. The number of postings for a particular
document depends on the counts information and is as much as the counts field indicates. Each posting contains a pointer
that includes document information plus an offset within the document. Such offset information can be in the form of a
character offset (rarely used), a word offset, or a block offset if a document is split into blocks of coarser granularity (a block
can be a number of consecutive characters or bytes, or a paragraph, or a section, or a chapter). The offset is from the beginning
of the document. Note that a maximum size of an offset can be established. For example in Google (1997) a word offset can
grow up to 4094 with 4095 used for words with offset greater than 4094.

4.2.3. Fields and Extents. Emails contain sender information and a subject line. Information located in those fields
can be associated with these fields that are sections of the document that carry some specific semantic meaning. HTML
documents contains title information. An extent is a consecutive area (i.e. consecutive words) of a document storing some
specific information possibly about a field. For example an HTML title is stored between <TITLE> and </TITLE>.

4.2.4. Context Information. It records information about the structure around the term. This can include HTML
tag information, font-size, capitalization that can be used in scoring processing (i.e. query-related document ranking).

4.2.5. Ordering of an inverted list. The usual ordering of a list is by document reference (i.e. docID). It is possible
however, that a score can be assigned to a particular document. Then it might make more sense to order documents based on
this score.
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Inverted Index
Example

4.3 Example with Doclist, Counts and Positions. Figure 3 indexes two documents. A vocabulary is constructed
of all the words of the two documents after capitalization is removed, and simple stemming is applied (plural elimination).
The inverted list representation is shown under B1, B2, B3 that represents the inverted list part of an index using a Doclist,
Count, and Positions respectively. Offsets given for Positions are word offsets. The vocabulary is sorted by word in this naive
example and no wordID are used. The index (vocabulary and the corresponding inverted list) can be stored in the form of
the two tables shown in Figure 4 and Figure 5 respectively.

Document 1

Sentences have words. Words have characters. Paragraphs have sentences.

Document 2

Sections have paragraphs. Paragraphs have sentences. Sentences have words.

[B1] [B2] [B3]

Vocabulary Inverted List Inverted List Inverted List

---------- [Doclist] [Counts] [Positions]

character 1 (1,1) (1,6)

have 1,2 (1,3)(2,3) (1,2)(1,5)(1,8)(2,2)(2,5)(2,8)

paragraph 1,2 (1,1)(2,2) (1,7)(2,3)(2,4)

section 2 (2,1) (2,1)

sentence 1,2 (1,2)(2,2) (1,1)(1,9)(2,6)(2,7)

word 1,2 (1,2)(2,1) (1,3)(1,4)(2,9)

Figure 3: A simple example of an index: Two documents

4.3.1 Example continues on following page. Contrary to what we mentioned earlier, in Figure 4 on the following page
the Vocabulary stores for illustration purposed words rather than wordIDs. For each word (i.e. wordID) we store the number
of documents containing the word: this is field Ndocs. In addition, pointer LocP points to the (first) table entry storing the
inverted lists for the wordID. With reference to Figure 4 and Figure 5, we have that for paragraph the corresponding Ndocs

is 2 and since LocP is 3 we conclude that lines 3,4 of the inverted lists table store the inverted lists for paragraph. In other
words, the entries for a given wordID in the inverted lists table that are of interest are those starting at location LocP and
ending just before LocP+Ndocs i.e. at location LocP+Ndocs-1.
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Inverted Index
Example (continued)

WordID Ndocs LocP
character 1 0
have 2 1
paragraph 2 3
section 1 5
sentence 2 6
word 2 8

Figure 4: Inverted index: Vocabulary

Index DocID Nhits Hits
0 1 1 6
1 1 3 2,5,8
2 2 3 2,5,8
3 1 1 7
4 2 2 3,4
5 2 1 1
6 1 2 1,9
7 2 2 6,7
8 1 2 3,4
9 2 1 9

Figure 5: Inverted index: Table of Inverted lists

4.3.1 Example continued. Indeed, line 4 has a docID field 2 which involves document 2 and the Nhits field is also 2
that indicates that paragraph appears twice in that document. The value of Nhits allows us to access the variable length
array Hits that in this case has two elements, and records word offsets. Indeed, paragraph appears as the 3rd and 4th word
in document 2.

In the inverted list table we store multiple entries for each index-term and one entry per document and index-term. The
Hits table is of variable length and stores here offset information only. The compression methods discussed earlier directly
apply to this example of Hits. An alternative would have been to store a single entry/array for each index-term similarly to
the depiction in Figure 3 so that the number of rows in the inverted list table is the same as those of the vocabulary. This
would require either a more complex representation of a Hits list or storing a pair of (docID,offset) in a posting. In that
latter case a more involved compression is required since consecutive pairs might have the same first element that might grow
slowly or slower relative to the second element of the pair that stores offset information.

4.3.2 Important Note. It is important that the Hits lines (i.e. hitlists) are sorted by docID i.e. that line Index=3 that
deals with docID=1 in the Table of inverted lists comes before line Index=4 that deals with docID=2 for index term wordID =

paragraph. The importance of this will become evident when we discuss query processing in pages 19-20.
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Index Building Example
From A to Z

4.4 Example. We give a more comprehensive example right now that shows all the steps performed from tokenization down
to index creation.

Example 1 Let the three documents of this example be the ones indicated in Figure 6. The whole indexing process consists of
the following rounds.

• 1. Tokenization and 2. Linguistic Analysis. This phase first generates for each document a stream of
tokens with Positions information in the form of (wordID,docID,offset) tuples. The tuples are then sorted
based on wordID and secondarily (or by preserving previous order) based on docID, offset. This is depicted in
Figure 7.

• 3. Forming and Building the index. The sorted stream is processed to determine (i) the number and
list of unique words, (ii) Ndocs, the number of documents containing a given wordID, (iii) Nhits the number of
occurrences of a wordID in each one of the Ndocs documents. Parsing sequentially the left part of Figure 8 can
collect this information. At the same time Nhits, Hits information is incorporated and depicted in the right
part of Figure 8. This is the first step of building the index i.e. forming the Vocabulary and the inverted lists.
Immediately afterwards, the vocabulary is built, and inverted list table entries are coalesced. By going through
the table of the right part of Figure 8 we can decide the number of lines in the table of inverted lists and build
the LocP pointers to that table. This is depicted in Figure 9.

Document 1. Document 2. Document 3.

------------------------------------------------------------

data structures data structures algorithms in java

and algorithms and their

in java algorithms

Figure 6: Example: Three short documents to index
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Index Building Example
Phases 1 and 2: Tokenization and Linguistic Analysis

Phases 1 and 2. Phases 1 and 2.

-Tokenization Sort the output based

-No linguistic analysis on

or filtering - wordID

maintaining previous order based on

- docID

- word offset

(DocID relative order remains)

wordID (docID,offset) wordID (docID,offset)

data (1,1) algorithms (1,4)

structures (1,2) algorithms (2,5)

and (1,3) algorithms (3,1)

algorithms (1,4) and (1,3)

in (1,5) and (2,3)

java (1,6) data (1,1)

data (2,1) data (2,1)

structures (2,2) in (1,5)

and (2,3) in (3,2)

their (2,4) java (1,6)

algorithms (2,5) java (3,3)

algorithms (3,1) structures (1,2)

in (3,2) structures (2,2)

java (3,3) their (2,4)

Figure 7: Phases 1 and 2: Tokenization and Linguistic Analysis
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Index Building Example
Forming the index

Phase 3. Forming the index.

wordID docID | wordID docID Nhits Hits

algorithms (1,4) | algorithms 1 1 4

algorithms (2,5) | algorithms 2 1 5

algorithms (3,1) | algorithms 3 1 1

and (1,3) |

and (2,3) | Similarly.

data (1,1) | (details

data (2,1) | omitted)

in (1,5) |

in (3,2) |

java (1,6) |

java (3,3) |

structures (1,2) |

structures (2,2) | structures 2 1 2

their (2,4) | their 2 1 4

Figure 8: Phase 3: Forming the index
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Building the index

Phase 3. Building the index: Vocabulary and Inverted Lists.

Vocabulary Inverted List Table

wordID Ndocs LocP docID Nhits Hits

algorithms 3 0 0 1 1 4

and 2 3 1 2 1 5

data 2 5 2 3 1 1

in 2 7 3 1 1 3

java 2 9 4 2 1 3

structures 2 11 5 1 1 1

their 1 13 6 2 1 1

7 1 1 5

8 3 1 2

9 1 1 6

10 3 1 3

11 1 1 2

12 2 1 2

13 2 1 4

Figure 9: Phase 3: Building the index
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Index and Query Processing
Simple Disjunctions and Conjunctions

4.5 Simple Query Processing: Conjunctions and Disjunctions. With reference to the index depicted Figure 9 we show
how simple queries can be satisfied.

4.5.1 Conjunction: Generating a single Hits list or doclist for each index-term. Let us have a simple conjunction
of three terms algorithms AND data AND structures. In this example we use the standard convention that a capitalized
AND is the conjunction operator (logical AND) rather than index-term and. The following steps are performed to generate the
unified Hits lists for the three index-terms.

For each one of the index-terms of the conjunction, the following operations are repeated:
(a) the wordID is found for the index-term and its position located in the vocabulary,
(b) the number of documents Ndocs that contain wordID is then located and the corresponding lines of the table of inverted
lists are then accessed using LocP, i.e. lines LocP, ... , LocP+Ndocs-1 will be retrieved,
(c) for each line of the table of inverted lists retrieved, the Nhits is retrieved to determine the structure of Hits; Hits is then
decompressed,
(d) the lists for each line are concatenated (unified) so that each term gives rise to one such list,
(e) further processing is performed to satisfy the conjunction (this example) or disjunction as applicable.

algorithms 3 0 --> 0 1 1 4 --> (1,4) --> (1,4)(2,5)(3,1)

1 2 1 5 --> (2,5)

2 3 1 1 --> (3,1)

data 2 5 --> 5 1 1 1 --> (1,1) --> (1,1)(2,1)

6 2 1 1 --> (2,1)

structures 2 11 --> 11 1 1 2 --> (1,2) ---> (1,2)(2,2)

12 2 1 2 --> (2,2)

algorithms (1,4) (2,5) (3,1)

data (1,1) (2,1)

structures (1,2) (2,2)

Figure 10: Retrieving hits for the query index-terms
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Index and Query Processing
Simple Disjunctions and Conjunctions

4.5.2 Conjunction: Processing the Hits list or doclists. Having retrieved the Hits lists for each index-terms of the
conjunction and unifying them into one list per index-term we are then ready to satisfy the query.

The following algorithmic description deals with a two index-term conjunction. It can be generalized for this example as
show in the Figure below. (Of course there is a tiny problem that has not discussed: when we evaluate x ∧ y ∧ z do we do it
(x ∧ y) ∧ z or x ∧ (y ∧ z)?) The ”scoring mechanism” that incorporates Nhits is for the moment excluded: all documents are
ranked the same no matter how many times a given index-term is in them.

• Naive Scoring Mechanism

• Conjunction: x AND y is doclist(x)∩doclist(y). For a conjunction we need to find all documents (i.e
docIDs) that contain both index-terms x and y. This is thus equivalent to finding the intersection of the
Hits lists using only docID information and ignoring offsets or ther info.

• Disjunction: x OR y is doclist(x) ∪ doclist(y). For a disjunction we need to find all documents that
contain one or the other (or both) of the index-terms. This is thus equivalent to finding the union of the
Hits lists using only docID.

• Negation: NOT x or -x is doclist(x) = doclist(x)c. We need to find all the documents that do not
contain x. For this we subtract from the documents of the corpus those containing x. This is the set
theoretic complement operation.

algorithms (1,4) (2,5) (3,1) Naive scoring mechanism --> 1,2,3 [Only doclists are being used]

data (1,1) (2,1) (retain docID info 1,2

structures (1,2) (2,2) filter out offsets) 1,2

_

Query is : algorithms AND data AND structures Note : | | is the intersection symbol (upsidedown U)

((algorithms AND data) AND structures) (algorithms AND (data AND structures))

_ -

temp1: {1,2,3} | | {1,2} = {1,2} temp3 = {1,2} | | {1,2} = {1,2}

_ -

temp2: temp1 | | {1,2} = {1,2} temp4 = {1,2,3} | | temp3 = {1,2}

Figure 11: Conjunction of three index-terms: Associativity?
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Query Processing
Disjunction and Conjunction resolution through merging: 2 terms/sets

4.6 Conjunction is Intersection and Disjunction is Union: Intersection and Disjunction through merging!. In
order to find the intersection (or union) of two sets or two sequences quickly, the two sequences must be in sorted order
(increasing or non-decreasing order by docID). Then the steps outlined in page 19 would generate a sequence also ordered by
docID. This is indeed the case in Figure 11.

4.6.1. Naive Method: Merge First. Say we are given two sorted (doc)lists A = {1, 2, 3} and B = {1, 2} of docIDs for
terms A and B. For illustration purposes, we write the elements of the two lists with subscripts to denote the set/term to
which they belong. The merging of A and B would generate as output {1A, 1B, 2A, 2B, 3A}.
A = {1A, 2A, 3A} and
B = {1B, 2B}.
4.6.2.a Intersection of A and B: Clean-up (pruning) of merged list The clean-up is performed through a linear scan
of the merged-list. With a linear scan we can (i) eliminate non-duplicates, (ii) keep one copy of duplicates, and (iii) remove
subscripts so that we finally get {1, 2}. This is the intersection of A and B.

4.6.2.b Union of A and B: Clean-up (pruning) of merged list. For the union, the clean-up is different. In a linear
scan as before we only keep one copy of duplicates without eliminating non-duplicates and then remove subscripts. Thus we
get {1, 2, 3}. This is the union of A and B.

4.6.3 Running time of merging and conjunction. For an a element sorted list A and b element sorted list B, the running
time of merging is a+ b. The pruning costs a+ b; the total cost of the conjunction computation is 2a+ 2b.

4.7 Queries involving NOT. What if the query involves a NOT? What is the result of NOT data? It is all the documents
in the collection that do not include data that is for our example this is {3}. Thus algorithms AND NOT data requires the
intersection of the Hits list of algorithms with the Hits list not of data but the complement of data i.e. all the documents
of the collection minus those containing data. Thus the set theoretic complement operation allows for the implementation of
operator NOT. The cost is n (corpus size).

4.8 Conjunction and Disjunction by merging: Optimizing the previous method. A drawback of the method is that
it generates the merged list before it is being cleaned-up. In Figure 12 on page 22 we show how to get the intersection/union
without creating a merged list before the clean-up thus reducing the total time to a+ b− 1 instead for conjunction and a+ b
for a disjunction.
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Query Processing
Disjunction and Conjunction resolution through merging: 3 or more terms/sets

4.9. Is (x ∧ y) ∧ z more efficient than x ∧ (y ∧ z)? An operator ⊕ is associative if and only for all a, b, c we have
a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c. Operators such as +, ∗ and AND, OR, MIN, MAX are all associative. If the cost of applying an
operator is unit, then whether a ⊕ (b ⊕ c) is performed or (a ⊕ b) ⊕ c does not matter: 2 operations will be performed at a
cost of two units. However in order to perform x∧ y i.e. x AND y we need to form the intersection of doclist(x)∩doclist(y).
The operations Intersection i.e. ∩ and Union i.e. ∪ are more costly: the cost depends on the length of the two sets. Thus
(A∩B)∩C can be more or less costly or has the same cost as A∩ (B ∩C)). The rule of thumb is to follow the rule that says.

Rule 1. Intersect the shorter lists first! And if merging, merge the shorter lists first as well!

4.10 Revisiting Merge-First and Prune-later (4.6.1-4.6.3 method): MergeIntersect. When we consider the inter-
section of two sets A and B we know about intersection: the intersection is a subset of the smaller of the two sets and the
cardinality of the intersection is no larger than the cardinality of the smaller of the two sets. (Thus the intersection of one
set with 1000 elements and one with 2 elements can be no larger than 2). Moreover, while we are merging the two lists (i.e.
in step 4.6.1) we also perform the pruning, If element x of A is equal to element y of B then x = y should appear in the
intersection of A and B and also in the union of A and B (i.e. we copy them in the output of the intersection or the union); if
however x < y or x > y for the union we move the smaller into the output and move to the next element (of the smaller’s list),
while for the intersection we do not generate an output and move to the next element (of the smaller’s list). The pseudocode
is available in Figure 12.

4.10.1 Example 2. Intersection of three sets A and B and C of sizes n, 2n and 3n.
We first find the intersection D of A and B in n+2n−1 operations. D can have no more than n elements. The we find the

intersection E of D and C in n+3n−1 operations. Set E has no more than n elements; total cost is (3n−1)+(4n−1) = 7n−2.
If however we decide to find the intersection F of B and C this would cost 2n+ 3n− 1 = 5n− 1; set F can have no more

than 2n elements. The merging of F and A into E would take n + 2n− 1 = 3n− 1 additional operations. The total costs is
now 5n− 1 + 3n− 1 = 8n− 2 higher than before.

This confirms Rule 1 and also shows that MergeIntersect is better than Merge-First Prune-Later.

Rule 2. MergeIntersect is better than Merge-First Prune-Later.
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MergeIntersect

4.10.2 MergeIntersect.

MergeIntersect (L,R) // Logical x AND y is MergeIntersect(L=doclist(x),R=doclist(y))

0. i=1;

1. s=Ndocs(L); % length of left sequence L is s

2. t=Ndocs(R); % length of right sequence R is t

3. S=1; % Runs through L

4. T=1; % Runs through R

5. while i <= (s+t) % Build output one element at a time

6. if S > s

7. return(AND,i) % Size of AND is i

8. elseif T > t

9. return(AND,i) % Size of AND is i

10. elseif L(S) < R(T)

11. S=S+1; % Advance L by one

12. elseif L(S) > R(T)

13. T=T+1; % Advance R by one

14. else % L(S)==R(T)

15. AND(i)=L(S);S=S+1;T=T+1;i=i+1;

16. end

17. end

Figure 12: Implementing logical AND through MergeIntersect

In other words while we scan one element l = L(S) from one list and one element r = R(T ) from the other list if

• (i) l < r we advance to the next element of the left list,

• (ii) l > r we advance to the next element of the right list,

• (iii) l == r we have determined an intersection element and store it in array AND.

Conjunction i.e. Intersection. For two lists A, B the total time/comparison time is a + b − 1, and the output is no
more than min{a, b}.

Disjunction i.e. Union. For two lists A, B the total comparison time is a+ b− 1, total time is a+ b as the output can
be at most a+ b.
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Disjunction and Conjunction resolution through merging: 3 or more terms/sets

4.11 Further Optimizations are possible: Binary Search. If the sizes of the doclists are not comparable to each other
but one is much smaller than the other, binary-search of the elements of the smaller of the two lists into the larger one can
speed thing even more.

Consider the case of having a conjunction x AND y where the doclist X of x has 20 docIDs and the doclist Y of y has
1000 docIDs. The two lists X and Y are sorted already by docID. A binary search of each element of X into Y takes
dlg (1000 + 1)e = 10 operations per element of X. Since X has only 20 elements, in 20 · 10 = 200 comparisons (operations) we
can find out which of the elements of X are in Y , i.e. establish the intersection of X and Y in that many 200 operations.

Merging however, of X and Y would alternatively take 20+1000−1 = 1019 operations. The former method (binary-search)
is 5 times faster than the latter method (merging)!

4.12 Estimating the size of a conjunction, union or negation. Therefore before we evaluate an expression that contains
OR, AND, NOT it makes sense to estimate using information available through Ndocs the size of the Hits lists of the terms
involved, and then compute bounds on the size of the Hits lists of intermediate results and use that information to develop a
schedule that will minimize the total overall cost. (Search engines such as Google and Bing are possibly using that information
when they announce About **a number of** results under the textbok of the engine.)

4.12.1 Conjunction. For an operation x AND y the doclist of the result will be at most (aka ”about”)
MIN(Ndocs(x),Ndocs(y))

4.12.2 Disjunction. For an operation x OR y the doclist of the result will be at most (aka ”about”)
Ndocs(x)+Ndocs(y).

4.12.3 Negation. For operation NOT x the doclists of the results will be n-Ndocs(x) where n is the number of documents of
the corpus.
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5. Skip Lists: Need of. With Reference to MergeIntersect consider the case where array L has as its docIDs all the integers
from 1 through 100,000,001 in its doclist and in sorted order. And let also R have in its doclist every 10,000-th element or
so in that range i.e. 1, 10001, . . . , 100, 000, 001. Then during the course of the algorithm above the operation S = S+ 1 of Line
11 of Figure 12 will be performed 100, 000, 000− 10, 000 times for no apparent reason. If during the first iteration(s) element
1 was included in the intersection, the next time element 2 is considered from L and element 10, 001 is considered from R.
Since 2 < 10, 001 an S = S + 1 will be performed then and 9, 998 additional times or so. We could skip all those elements of
L to speed up the process to read the document with docID 10001 in L. This is possible by maintaining the doclists not in
the form of ordinary arrays but as skiplists.

5.1 Skip List. With skiplists few elements can have extra pointers. For a linked list of length n, each element has a next

pointer and thus we need n pointers total. Let us call the 0-th level of pointers. In a skip list, at the 1-st level of pointers,
the first element points to the third, the third to the fifth and so on. This way half of the elements get a second pointer, i.e.
there are n/2 additional pointers overall at that level. Likewise in the i-th level, n/2i elements get an extra pointer. Overal
we have doubled the number of pointers overall yet some elements can have up to lg n pointers. Search tranversal works not
only horizontally for a given level but also vertically across the pointers of a given node. If skip by 2, 4, 8, seems too little, in

doclist processing skip by about
√
Ndocs(.)) can be used instead.
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5.2 Example. In the example below the doclist of data contains about 101 document. The skip factor is 10 thus at level 1,
0 points to 10, 10 to 20, and so on, 90 points to 100. These pointers are in addition to the k points to k+ 1, the next element
in the list. The doclist of structure is limited and thus the first element points to the last of the list. The intersection works
along the 0-th level pointers and it continues as long as the value of data is less than the value of the 1-st level pointer of
structure (i.e. 101) and also as long as the value of the 0-th level pointer of structure is less than then value of the 1-st level
pointer of data (i.e 10).

Thus, given that (0 < 101 and 1 < 10) 0 is compared to 1 and is smaller, i.e. data’s list advances by. Then 1 is equal to
and still (1 < 101 and 1 < 10) and thus 1 is output for the intersection. Both lists advance to 2 and 11 respectively. However
11 > 10 i.e. the 1-st level pointer of data can skip 2, 3, . . . , 10 and move to the next element through the 1-st level pointer.
Thus data’s doclist advances past 10, to 11. The doclist of structure is still at 11. Given that (11 < 101 and 11 < 20) and
both values are 11, 11 is output and pointers advance to the next element which is 12 for data and 33 for structure. Given
that 33 > 20 again data can use the 1-st level pointer not just once but twice to skip first 12, . . . , 20 and then 21, . . . , 30 and
traverse the 0-th level pointer of data to 33

10 20 30 90

_____________ __________ ________ ____________

| v | v | v | v

data 0->1->2 ->10-> ... ->20 ... ->30 ->90-> ... -> 100

101

____________________

| v

structure 1->11->33->77->99->101
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Inverted Index Review
Tuple processing: Maps, Reductions, sorting and scanning

6.1 Tokenization. During tokenization, a stream of tuples of the form
(docID,wordID,offset,otherinfo)

are generated. These tuples form the forward index: they are ordered in the sense that for a given docID the tuples are generated
in sequence and in increasing offset from document start to end. These tuples will be inverted during the indexing process:
inversion means sorted by and grouped by wordID to generate the posting entries of the occurrence/inverted lists. In any
such posting the portion identified by the pair docID,offset will form the pointer portion of the posting; the remainder will
be other non-pointer information such as otherinfo in our case. This stream of tuples is also known as the forward index.

6.2 Indexing Process. During indexing this stream is sorted by wordID to generate the inverted lists (inverted/occurrence
lists for all wordIDs). This sorting operation inverts the forward index to generate an inverted index. Secondarily, for
every wordID we need those tuples also sorted by docID so that the Hits lists for each docID of the given wordID can also
be generated. (A wordID might appear multiple times within a docID and we want these tuples to be close together and in
fact sorted of offset as well as docID.) If the tuples are indeed sorted by docIDs, then doclists for the wordID can also be
generated and also the accounting information discussed earlier involving Nhits, Ndocs, LocP can thus be easily collected.
The Hits list for a given wordID,docID is also desirable to maintain order by offset; the original tokenization stream had
for a given docID all its word ordered by offset anyway. Thus it is desirable that sorting will not destroy previous orderings.
A sorting algorithm that behaves like that is said to sort in-place.

6.3 Indexing and Vocabulary formation. The length of the stream generated by the tokenizer gives the number of words
(rather, index-terms) N in the collection . (This

∑
i

∑
j fij =

∑
i,j fij.) If the stream is sorted by wordID (as it should be after

6.2 above), we can easily form a dictionary by eliminating duplicate wordID entries to determine the size of the vocabulary
in terms of number of distinct words, i.e. compute t. We can also determine n the size of the documents in the collection
if we eliminate duplicate entries with the same docID. (Note that tuples with the same docID are consecutively listed in the
tokenizer’s output even if or even if not a global ordering by docID is available.) The only issue might be that new words
might need to be assigned a new wordID, if during a previous indexing process, that word did not appear in the corpus. This
can be done at this time! During indexing this stream can be sorted by wordID,docID in that order. Consecutive counting
of (wordID,docID) pairs in the resulting stream can compute Nhits of the collection (the one maintained in the Vocabulary)
for each wordID. Elimination of (wordID,docID) duplicates and counting can compute Ndocs, compute LocP or also compute
Nhits information for a given Hits list. Thus the determination of the length of the Hits table for the appearance of wordID
in a given docID can be established.
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Google’s MAPREDUCE

6.4 Sort and Scan operations. Thus all this activity can be determined from the initial stream of tuples, by performing
a sequence of sorting operations followed by a sequence of scanning operations that might involve duplicate elimination
or counting of duplicate entries (where duplicates are wordIDs, docIDs or pairs of (wordID,docID)s). (Consider Google in
1997 in which the sorter operated on the forward index stored in the barrels to generate the inverted index to be stored in the
barrels as well.) Sometimes these scanning operations are known as reductions.

6.5 Parallel Execution on Massive amounts of Data. All those tasks involve streams of tuples in the billions or trillions.
It is rather impossible for all these operations to be performed by a single computer. They have to be performed in parallel
by a collection (i.e. cluster) of several (tens or hundreds or thousands) machines. Both sorting and scanning / reduction
operations are amenable to efficient parallelization.

6.6 Map operations. Whether to count or not, eliminate or not, and how to count (duplicate or unique occurrence counting)
involves a mapping of the original stream into a mapped set.

Thus a MAP operation is essential. The end result of the mapping is a Reduction operation, or REDUCE that will
eliminate duplicates or count tuples in a given way as determined by the MAP operation. In addition if several machines are
being used for this task, the MAP operation also works so that the tuples are distributed evenly to the machines of the collection
based on the mapped values. Thus tuples with a given (wordID,docID) value might be destined for machine X instead of
machine Y, and thus the REDUCE operation will be applied to them then (after they move to that machine X). Similarly
the REDUCE operation will also collect partial results per machine X, to generate global results per collection rather than per
machine that will be then sent to the query server or GWS.

6.7 MAP-REDUCE. This is the fundamental idea behind Google’s MAPREDUCE system: a convenient way to automate
several similar-looking repetitive and time-consuming tasks, and also the full and efficient parallelization of this activity due to
the sizable amount of information involved. (And by parallelization we mean the splitting of data evenly among the machines
of the cluster, the transmission of data to the machines based on this splitting, the schedule and synchronization of the
computations involved, the transmission and collection of partial/local results, and finally the generation of global results with
their dispatch to one machine, if they are small in size, or more than one machines otherwise.)
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Inverted Index
Index (compressed) size estimation

7. Index Size estimation. Using information from Google@1998, roughly the size (in bytes) of the index is one quarter to
one fifth of the corpus size.

If we try to work around this let

• 7.1 Corpus size (docs): n.

• 7.2 Text size per document: s.

• 7.3 Corpus volume (B): ns. (Assuming ASCII endocing i.e. one byte per character.)

• 7.4 Word size (words): N = sn/6. A rough estimate of word length is 5, and thus accounting for white-space
this estimate is derived.

• 7.5 Distinct words : t = 40
√
sn. Heaps’ Law with k = 100 and β = 1/2, gives t = 100

√
N ≈ 40

√
sn.

• 7.6 F frequency of most frequent word: F ≈ N/ ln t = sn/120. This is roughly one percent of the corpus
volume! Zipf’s Law gives that N = F + F/2 + . . .+ F/t = F ln t. Thus F = N/ ln t. Given that N = sn/6 and
t = 40

√
sn, we get that F ≈ sn/(3(ln s + lnn + 7.5)) ≈ sn/120. For the latter we assume that 109 ≤ n ≤ 1011,

and 104 ≤ s ≤ 105, i.e. lnn ≈ 22.5 and lg s ≈ 10.

• 7.7 Occurrence list length (B) of most frequent word: 5% of corpus size! Since by (7.6) F = sn/120,
assuming 2B for a posting and 4B for a docID we need roughly 5% of corpus volume for maintaining the most
frequent word without any compression. With compression this can go down significantly to around 1.6% (eg.
using Elias-γ). This is because 2sn/120 = sn/60 is used for postings, and the n docIDs use roughly insignificant
amount of space.

• 7.8 Top-100 words’ index: ≈ 10% of corpus volume. Since by (7.6) F = sn/120, and 104 ≤ s ≤ 105 we get
that F ≥ 100n. Thus the top-100 words have frequency at least F100 = F/100 ≥ n. The doclist might include
all docs of the corpus. Thus the 100 doclists use (100 ·n · 1)B altogether. The postings however (2B per posting)
use 2(F + . . . + F/100) = 2F ln 100 = 9.2sn/120 = 8sn/100 bytes. Adding the two together we get roughly
9-10% of corpus volume!

• Conclusion: One third of the index relates to the Top-100 popular words!
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Appendix
Practice makes perfect

Exercise 1 Show that for a collection of D documents of average size 6KB and average word length 6, Heaps’ Law can be
used with k = 100 and β = 0.5 to show that the number of dictionary words is approximately 3000

√
n.

Exercise 2 Reconsider the calculations of page 6 for a collection of D = 1, 000, 000, 000 documents by using the following
considerations.

• Web-page size. Assume that each web-page is on the average about 6KB long.

• Number of words. The average size of a word is around 6 characters/bytes (including surrounding spaces).
What is the (average) number of words per document and what is the total number of words for the collection?

• Number of unique words. The English language has about 300,000 words including derivatives the total
goes up to 750000 (See Figure 2). However Google in 1997 used to store close to 14,000,000 words. Use Heaps
Law to determine the size of the dictionary in unique words. Use k = 100 and β = 1/2.

• Incidence Matrix size. How many rows and how many columns in the incidence matrix?

• Sparseness. What fraction of the matrix is non-zero? On the average what fraction of an incidence vector is
non-zero?

• What is a better storage solution? How much space will it occupy? Express size in bytes. (Assume 1 byte
is 8 bits.)
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