
Subject 8
Fall 2015

Retrieval modeling

Chapter 4 (4.5)

Chapter 7 (7.1,7.5) and Chapter 8

Disclaimer: These abbreviated notes DO NOT substitute the textbook for this class. They should be
used IN CONJUNCTION with the textbook and the material presented in class. If there is a discrepancy between these

notes and the textbook, ALWAYS consider the textbook to be correct. Report such a discrepancy to the instructor so that
he resolves it. These notes are only distributed to the students taking this class with A. Gerbessiotis in Fall 2015 ;

distribution outside this group of students is NOT allowed.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 1

This subject
and the textbook

In the textbook the subscripts in fij get swapped

that is what we denote fij in this subject,

the textbook might call it fji

Since in the textbook i runs through documents and j through terms

which is the reverse of what we do here

the effect might be the same

The textbook also uses qj for wiq

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 2

Modeling Retrieval and Ranking
Introduction

Information retrieval systems assume that the semantics of the document and of the user query can be modeled precisely by
a set of index-terms. This approach may be problematic for the following reasons.

(1.a) Index-terms vs search terms (i.e. words). A user request might get prepared using an imprecise space of search
terms (e.g. all the words in a document) rather than a clearly/precisely defined set of index terms,

(1.b) Query language. The list of index terms may not capture the essence or the semantics of the query (Is the search for
A better than B the same as B better than A when performing a keyword search?),

(1.c) User query training. Users are not trained to properly form their queries. (Explore semantics/meaning of TO be OR

NOT to be and its variations.)

Thus it becomes unclear which documents of the output are relevant, and which are not. (The documents of the output
would include all documents that contain the index terms of the query.) A ranking might take place to further refine and
order the output.

• Ranking operates on premises relevant to the notion of document relevance.

• Distinct sets of premises yield distinct information retrieval (IR) models.

• The IR model one adopts determines what is relevant and what is not.

There are three classical information retrieval models: boolean, vector, and probabilistic.

• 2.1. Boolean Model. In the boolean model, documents and queries are represented as sets of index terms and the
model is set-theoretic. (The incidence matrix of Subject 7 is an example.)

• 2.2. Vector Model. In the vector model, documents and queries are represented as vectors in t-dimensional space
and the model is algebraic. Dimension t is the number of index-terms and the elements of the vector take not Boolean
(i.e. 0-1) but arbitrary values.

• 2.3. Probabilistic Model. In the probabilistic model, the modeling framework is based on probabilities and thus
it is probabilistic.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 3

Modeling Parameters
Definitions

For the remainder of this subject we will use some standard notation introduced earlier in Subject 7 (page 3). In this section
a query will be considered itself a document consisting of words that are the terms forming the query. Thus a query q will
become by itself a document of the collection and a comparison between a query and a document of the collections is to be a
comparison between documents.

• 3.1. Modeling Framework. F is the modeling framework that we will be using at any time.

• 3.2. Queries. Q is a set of query requests. Since we rank results of individual queries, q is one element of Q;
the latter is thus becoming a single-element set.

• 3.3. Corpus. D is a collection of n documents. The j-th document of the corpus is dj.

• 3.4. Index terms. The i-th index term is ki, 1 ≤ i ≤ t, and t is the number of index-terms.

• 3.5. Document frequency of ki. The term ni is the number of documents in which ki appears i.e. the
document frequency of term ki.

• 3.6. Term frequency or tf-factor fij. fij is the raw frequency of ki in dj. This is the term frequency or
tf-factor of ki in dj.

• 3.7. Normalized frequency. Fij is the normalized frequency of ki in dj i.e. Fij = fij

max
m

fmj
.

• 3.8. Inverse document frequency. The term idfi is the inverse document frequency for ki i.e. idfi =
log

(
1 + n

ni

)
. It gives high values for rare words, and low values for frequent ones. (Sometimes one can use

idfi = log n
ni

instead.)

4.1 Note. In Subject 7 for specific examples we dropped subscripts and gave longer intuitive names. We instead of using
ni we used Ndocs several times, and instead of using fij we preferred Nhits for a given term ki.

Two similarity (or dissimilarity) measures can then be defined.

4.2 Similarity measure: Intra-cluster similarity. Determine the features that best describe the objects of a set. A
measure of similarity is the tf-factor fij.

4.3 Dissimilarity measure: Inter-cluster dissimilarity. Determine the features that best distinguish the objects of a set
from those of the collection. A measure of dissimilarity is idfi.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 4

Modeling Parameters
Weights

Several times instead of using raw frequencies or numbers we prefer to use weighed frequencies. Although a normalized
frequency is an alternative to term frequency, other variations might be possible.

• 5.1. Relative term frequency. Variable rij is used to denote the relative term frequency of index term ki

in document dj.
(A choice for rij is rij = Fij but more often the following is used: rij = (1 + log fij).)

• 5.2. Relative query frequency. Variable riq is the relative query frequency of index term ki in query q.
(A choice for riq is riq = 1.)

• 5.3. Term weight. Variable wi is the term weight of index term ki in the corpus and is defined as the inverse
document frequency.
(Thus wi = idfi = log

(
1 + n

ni

)
.)

• 5.4. Document-term weight. Variable wij is the document-term weight of index term ki in document dj.
(One choice for wij is rij, i.e. wij = rij = (1 + log fij).)

• 5.5. Query-term weight. Variable wiq is the query-term weight of index term ki in query q.
(One choice for wiq is wiq = riqwi = log (1 + n

ni
)).)

6. Default values.

idfi = log
(

1 +
n

ni

)
rij = (1 + log fij) , riq = 1 (1)

wij = rij , wiq = riq idfi = idfi

7. Similarity Measure s(q,dj). This way, for a query q and document dj the similarity s(q, dj) can be expressed by a
formula of the form shown below. (The denominator

∑
i fij is the number of terms in dj.)

s(q, dj) =

∑
iwijwiq∑

i fij

=
1∑
i fij

·
∑

i

(1 + log fij) log (1 + n/ni) (2)

7.1 When we discuss the vector model on pages 8-9, more variations of Eq. 2 will be given.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 5

Modeling Parameters
Weights . . . more options

8. Alternative choices for wij and wiq. Although Equation (1) provides some choices for wij and wiq these are not the
only possible. Some more are shown below.

8.1 Document-term weight: Option A1. The value of the document-term weight can be expressed sometimes by the
term-weight frequency i.e.

wij = Fij × idfi

8.2. Document-term weight: Option A2. A normalized term is given by

wij =
fijidfi√∑
i

f 2
ijidf2

i

8.3 Salton and Buckley query-term weight: Option B1. A variant is defined (Salton and Buckley) as

wiq =

0.5 +
0.5 ∗ Fiq

max
l
flj

× idfi

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 6

Modeling Parameters
Definitions

In order to establish the relevance of the documents of a corpus to a given query q, a similarity measure of each document
dj of the corpus relative to query q is to be established. This process involves a number of steps as follows.

9.1. Step 1: Choose similarity measure s(q,dj). For query q and document dj the similarity s(q, dj) may be established
by way of Equation (2), where wij, wiq are from Equation (1). Thus

s(q, dj) =

∑
iwijwiq∑

i fij

The similarity measure is an information retrieval measure of the relevance of dj to query q. A ranking of dj relative to query
q can be established then. The ranking function R(q,dj) can use similarity-based measure(s) exclusively or incorporate
other factors/measures as well such as the importance of document dj in the corpus.

9.2 Step 2: Determine rank R(q,dj).

9.2.1. Rank based on information-retrieval terms only (i.e. similarity-based rank).

R(q, dj) = s(q, dj).

9.2.2. Rank based not entirely on information-retrieval terms.

R(q, dj) = s(q, dj) + Other factors.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 7

The Boolean model
Introduction

10. The Boolean Model. It is a very simple model based on set theory. According to the model a term either appears or
does not appear in a document. Thus in order to determine the weight of term ki in document dj i.e. wij we set wij = 1 if
ki appears in dj and we set wij = 0 otherwise. The frequency fij does not matter at all. One can thus arrange an incidence
matrix with the documents becoming the rows and the index-terms the columns (as we did in Subject 7). A column becomes
the incidence vector of a given term; its ones indicate the documents containing the term (once or more than once times).
Similarly, a given row is a descriptor of a given document. Its ones show the index-term appearing in the document. In the
Boolean model, a document becomes a binary (boolean) row vector of terms e.g. di = (k1, . . . , ki, . . .).

10.1 Queries in the boolean model. Queries are specified in the form of a boolean expression using boolean operators such
as AND, OR, NOT also denoted by ∧, ∨ and ¬ respectively. Queries are usually written in DNF (Disjunctive Normal Form)
i.e. as a disjunction of conjunctions. (Note that humans prefer to express their queries in Google in conjunctive normal form
instead.)

10.1.1 Example query Q1 in conjunctive form. A query Q1 for example can be written as Q1 = q1 = k1 ∧ (k2 ∨ k3) to
determine all documents that contain term k1 and one or both of k2, k3.

10.1.2 Example query Q1 in DNF form. Query Q1 in DNF should read as Q1 = q′1 = (k1 ∧ k2) ∨ (k1 ∧ k3).

10.2 Similarity s(q, dj) between query q and document dj. Let query q in DNF form be expressed by q′. Let r be any
of the conjunctive terms of q′ (such as k1 ∧ k2) , k1 ∧ k3). The similarity s(q, dj) of q and dj is 1 if and only if there is a
conjunctive term in that is true, and 0 otherwise (i.e. all conjunctive terms are 0).

10.3 Advantages of the Boolean model: Simplicity, clean formalism.

10.4 Disadvantages of the Boolean model: Exact matching only supported (too few or too many hits). No partial
matching. No ranking. Users need to translate queries into DNF.

10.5 Index term weighing i.e. the use of wij that is neither 1 nor 0 but reflects the values of fij is a better approach, and
thus the boolean model is never better than the next model, which is the vector model.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 8

The vector model
Introduction

11. The Vector Model. In the vector model, the documents are represented as vectors. This is the approach of the
boolean model. The difference between the vector and boolean models is that the document vectors were boolean (vectors of
zeroes and ones) in the boolean model whereas in the vector model are not (necessarily) boolean.

11.1 Document representation as a vector. Thus document dj is represented by a vector
dj = (w1j, . . . , wij, . . . , wtj)
of components wij, where wij denotes the weight of term ki in document dj.

11.2 Query representation as a vector. Queries are also formulated as vectors and thus query q is represented by a vector
q = (w1q, . . . , wiq, . . . , wtq)
i.e. the query becomes a “short document” itself. (In such a case, the weight wiq of a term that appears in the query is one,
i.e. wiq = 1.)

11.3 Query-document similarity s(q, dj). The similarity between query q and document dj is thus defined as a similarity
measure between two “documents”, and this similarity measure is then defined as the similarity between two vectors.

11.4 Expressing s(q, dj) in the vector model. The similarity s(q, dj) can be defined through traditional similarity measures
S(q, dj) between vectors. Such measures S(q, dj) include the following.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 9

The vector model
Similarity Measures

• 11.5 Euclidean Distance. S(q, dj) =
√∑

i(wij − wiq)2. This is a dissimilarity measure, since a non-zero
value is indicative of the distance between the vectors, or its closeness to zero indicates the similarity between
the document and the query. (The query that is usually short discriminates against long documents.) Then
s(q, dj) = S(q, dj).

• 11.6. Dot-Product or Inner-product Distance. S(q, dj) =
∑

iwij ∗ wiq. In this case the query discriminates
in favor of long documents posing the opposite problem of euclidean distance. What should thus be of interest
is the difference in directions ie the angle between the vectors. Then s(q, dj) = S(q, dj).

• 11.7. Cosine S(q, dj) =
q · dj

|dj| × |q|
=

∑
i

wij ∗ wiq√∑
i

w2
ij

√∑
i

w2
iq

=

∑
i

wij ∗ wiq

WjWq
. This similarity measure captures the

difference in direction of the vectors of the query q and document dj. It also justifies the normalization proposed
in the bottom of page 5 for s(q, dj) there. If the angle is zero between q, dj then the cosine is 1; if the two are
orthogonal to (different from) each other then cosine is 0. (One could set s(q, dj) = S(q, dj).)

• 11.8. Manhattan Distance. S(q, dj) =
∑

i |wij − wiq|. Then s(q, dj) = S(q, dj).

We may use the cosine definition 11.7 and incorporate it into Equation (1) to derive a similarity measure close to but not the
same as Equation (2).

• 11.9 Updated similarity measure s(q, dj) over Equation (2).

s(q, dj) =
1

WjWq

×
∑

i∈q∩dj

(1 + log fij) · log (1 + n/ni). (3)

Wj =
√∑

i

w2
ij wq =

√∑
i

w2
iq wij = (1 + log fij) wiq = idfi

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 10

The vector model
Similarity and Ranking

11.10 Comparison of measures: 11.5, 11.6 and 11.8. For measures 11.5, 11.6, and 11.8, the closer the distance, the
smaller the S(q, dj) is and the better the similarity will be. That is, lower S(q, dj) values imply close similarity.

11.11 Cosine measure 11.7. For the cosine measure 11.7, the closer the angle, the smaller the angle is and the closer
S(q, dj) is to 1. That is, higher S(q, dj) values imply close similarity. Cosine is a normalized similarity metric.

11.12 Partial matches and ranking. The existence of non-binary weights (attributes of the vectors) provide for partial
matches. A degree of similarity is possible and ranking is feasible.

11.13 Answering a query q for a corpus D using similarity measures only. The process of answering a query q
thus becomes obvious.

• For all documents dj determine similarity s(q, dj).

• Rank documents based on similarity measure (exclusively).

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 11

The vector model
Reliability of similarity measures

11.14 Reliability issues: frequent words. Keyword frequencies used in similarity measures favor frequent words which
might not convey enough information about the document.

11.14.1 Problems using fij for wij. The tf-factor fij therefore should not be overemphasized. A better measure becomes
the normalized term-frequency factor Fij but again by not much.

11.15 Reliability issues: rare words. Inter document dissimilarity that relies on idf, i.e. the inverse document frequency
may alternatively be used. This measure gives high values for rare words and thus reduces the importance or effect of frequent
words. Thus idfi can be used instead of Fij or fij.

11.16 Reliability issues: frequent and rare words and the tf-idf weight. One can combine the two contributions by
using fij or Fij in conjunction with idfi for wij. Therefore a weight factor for wij that can be used in the vector model is
wij = Fij ∗ idfi which is also known as the tf-idf weight. A better approach is to use a normalized logarithmic component for
Fij as in (1 + log fij) multiplied by idfi. This is the form used in Equation (4).

As a conclusion,

11.17. Advantages of the vector model. Good ranking (term weighing, partial matching, cosine similarity).

11.18 Disadvantages of the vector model. Assumes terms are independent; does not handle synonyms. Query weighing
may not reflect relevance. It also favors longer over shorter documents. Similarity is not (may not be) scaled.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 12

Vector model
Computing s(q, dj) in practice

11.19 Computation time of answering a query q for corpus D. For each query q, in order to determine the relevant
to the query documents, one needs to compute s(q, dj) for all documents dj in the collection D.

There are n documents and t terms, thus this computation becomes very expensive at O(nt). This was discussed for
incidence matrices in Subject 7.

For a corpus of n = 1, 000, 000, 000 documents and t = 100, 000, 000 terms, the computation cost is prohibitively expensive.
The sparsity of the incidence matrix implies that an adjacency-list-based rather than an adjacency-matrix-based approach

can be used instead.
With this in mind in the computation of s(q, dj) only the index terms that appear in document dj and query q need

to contribute a relevant term to s(q, dj). By using the formula of Equation (4) and weights from Equation (1) we get the
pseudocode of Figure 1.

The running time of Figure 1 is proportional to n (the number of documents) and
∑

i ni where ni is the number of documents
in which ki appears, rather than O(nt). We also note that the sum

∑
i ni is over index i, and index i runs through the

index-terms of the query i.e. for all practical purposes i takes few values (for practical queries and consulting
the statistics of Subject 2, i is no more than 4 or 5 since the average query rarely has more than 4 or 5 terms).
Thus

∑
i ni in the worst case (if every ni = n) would be no more than O(n), a t factor improvement over O(nt).

Note also that in the code with the intent to be thorough we included lines 7-10 that compute Wq and also computed
during query time Wj in lines 1-5. The latter can be precomputed at indexing time and stored within the inverted table as a
property of a document (or possibly in the doclist that maintains information about the documents of the corpus). The former
computation could have been incorporated into lines 11-23. Alternately we can avoid the division by Wj ∗Wq altogether and
the similarities won’t be scaled.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 13

Vector model
Computing s(q, dj) in practice (continued)

s(q, d[0..n-1]) // Compute similarity for query q for all n documents of the collection

1. for(j=0;j < n ; j++) {

2. s(q,d[j])=0.0; // Initialize a counter for each document.

3. for (i=0;i=Length(d(j));i++) // this depends on the length of d(j) not on t itself!

4. W(j)=Retrieve(w(i,j)*w(i,j)); // This retrieves rather than computes W(j)

5. } // This can be precomputed...

6. Wq = 0;

7. for(i=0;i < q.length(); i++) { // Go through each term of the query one by one

8. ki = q.term[i]; // Let the i-th term of query q be ki

9. Wq= Wq+ idf(ki)*idf(ki);

10.}

11.for(i=0;i < q.length(); i++) { // Go through each term of the query one by one

12. ki = q.term[i]; // Let the i-th term of query q be ki

13. Wq= Wq+ idf(ki)*idf(ki);

14. Location= LocateInInvertedIndex(ki); // Locate the entry for ki in the Vocabulary

15. Ndocs = InvertedIndex[Location].Ndocs; // Locate the Ndocs for term ki

16. for(k=0;k<Ndocs;k++) { // Go through the Ndocs documents that contain ki

17. DocIndex = LocP+k; // The k-th document is in location LogP+k of the

18. docID=OccurrenceList[DocIndex].docID;// occurrence list

19. // Compute the contribution to the document/term pair in s(q,docID);

20. s(q,docID) = ((1+log(OccurrenceList[Docindex].Nhits)) *

21. log(1+N/InvertedIndex[Location].Ndocs)))/(W(docID)*W(q));

22. }//and repeat for all docs of ki.In line 7 formula (3) for modified S3

23. } // and repeat for all query terms ki of q

Figure 1: Similarity computation in the vector model (adjacency-list approach)

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 14

The Probabilistic model
Introduction

12. Probabilistic model. The Probabilistic model tries to capture the Information Retrieval problem within a probabilistic
framework i.e. it tries to assign probabilities to documents so that a probability signifies the relevance of the document to the
given user query. Under this model, given a query, there is an ideal answer set that satisfies the query. The framework tries to
guess/estimate an initial description of an ideal answer set. and then improve the initial guess/estimate by iteratively refining
it. At every iteration of this process, the user’s input is used to refine the answer set.

12.1 Disadvantages of the probabilistic model. One disadvantage is the guessing of the initial answer set. Also, it does
not use tf , idf information at all. Experiments due to Salton and Buckley confirmed that the vector model is superior.

13. Other models. Besides the boolean, vector and the probabilistic models, other models have been proposed. These
include an extension to the boolean model, and one after fuzzy set theory.
13.1. Fuzzy Set Model which is an alternative set-theoretic model. A query term defines a fuzzy set and each document
has a degree of membership to that set (a real number between 0 and 1). In the boolean model, by contrast, membership is a
clearly (binary) defined relationship.
13.2. Extended Boolean Model extends the boolean model with vector model capabilities to rank query results. Consider
a simple query consisting of two terms k1 and k2 i.e. q = k1 ∧ k2 or q = k1 ∨ k2. Define the unit square on the plane with sides
equal to 1. Then determine x, y values in terms of td-idf information of k1, k2 in a document dj. The similarity of q, dj is then
expressed as the distance of point (x, y) of two-dimensional space from certain vertices of the square.

For Document dj

(0,1) ---------------- (1,1) For a query q= k1 AND k2

| | similarity s(q,dj) is normalized distance from point (1,1)

y ’ ’ ’ ’ ’ ’o | i.e. 1-sqrt(((1-x)**2 + (1-y)**2)/2)

| ’ | For a query q= k1 OR k2

| ’ | similarity s(q,dj) is normalized distance from point (0,0)

| ’ | i.e. sqrt((x**2+y**2)/2)

| ’ | Point is at o (x,y) where x,y are defined

| ’ | in terms of td-idf of k1 and k2 in dj.

(0,0) ---------’------ (1,0)

x

Figure 2: Extended Boolean model

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 15

Model Evaluation: Precision and Recall
Computation and Analysis

14.1. Set of all documents in the corpus. Consider a query request q on a corpus of n documents.

14.2. Set A of relevant documents. The set of relevant documents to the query is A and its cardinality is a.

14.3. Set B of retrieved documents. An information retrieval policy retrieved the documents of set B. Its cardinality is
b.

14.4. Set T of retrieved documents that are relevant. The set T = A ∩ B contains all the retrieved documents that
are relevant. Let its cardinality be t.

The top-left element of the table (disregarding the TOTAL rows and columns) shown in Figure (3) shows the cardinality of
T the number of retrieved documents that are relevant. Then b− t is the number of retrieved documents that are not relevant
(i.e. they irrelevant) to the query. This the top-right element of the table shown in Figure (3).

The number of relevant documents not retrieved is a− t i.e. the difference between the number of all relevant documents
in A minus those relevant documents retrieved in B and formed T . This is the bottom-left element of the table shown in
Figure (3).

What needs to be confirmed is the number of irrelevant document not retrieved. The collection has n document of which
a are relevant. Thus the number of irrelevant documents is n − a. Those retrieved are b − t, thus those not retrieved are
n− a− b+ t.

The ratio (b− t)/(n− a) is called the fallout and gives the fraction of the irrelevant but retrieved documents over all the
irrelevant documents.

RELEVANT IRRELEVANT (TOTAL)

-------- ----------

RETRIEVED t b-t b

NOT RETRIEVED a-t n-a-b+t n-b

(TOTAL) a n-a

PRECISION P = t / b The first-row information is used to derive P.

RECALL R = t / a The first-column information is used to derive R.

A= set of relevant documents B=set of retrieved documents T= relevant documents retrieved

Figure 3: Retrieval and Recall

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 16

Web modeling: Tag information
Overview

15 Tag information. For web-based documents that are in HTML format, one can formulate weight factors that reflect the
position of the index terms in the HTML text. The Webor Method (Cutler et. al.) partitions HTML tags into ordered classes.
It then determined approximate percentages of the distribution of term occurrences among a set of six ordered classes. These
are listed below.

• title (eg. <TITLE>), Distribution: < 1%.

• anchor (eg <A>), Distribution: < 3%.

• header (eg. <H1> to <H6>), Distribution: ≈ 4%.

• list (eg. <DL>,,), Distribution: ≈ 5%.

• strong (eg. , , , <I>, <U>), Distribution: 10%.

• plain (eg. none of the above) Distribution: < 75%.

Then, instead of using a single tf-value fij or Fij for a term to describe wij, Webor uses a tf-vector (tfv) such as

tfv = (tf1, tf2, tf3, tf4, tf5, tf6)

where tfi is the tf-term for occurrences of the index term in a class i tag in the document. For each element of the vector
different importance values (iv) are then assigned. Let ivi be the importance values for the i-th class.

The new term-frequency is then computed by the combination of the tf-values of the classes weighed appropriately.∑
i

tfi · ivi.

15.1 Some conclusions based on experimentation: Anchors and strong/emphasized text are important, header infor-
mation is less, title is slightly just above plain text and listings.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 17

Ranking
Introduction for the next Subject

The relevance of a query to a document (e.g. a web-page) is established by first computing the function s(q, dj) that
determines the similarity between query q and document dj.

This similarity measure is based solely on information retrieval-based knowledge (e.g. the searchable contents of the
document). Search engines (or web-searching methods in general) do not rely on this measure exclusively to rank a web-page
(e.g. document dj).

They also use additional information such as the link structure of dj. The link structure relates to information such as:

• (a) what documents/pages are pointed by dj and are these pages important (e.g. authoritative),

• (b) what documents/pages point to dj and are these pages important (e.g. hubs of information such as a directory
page).

All such link information can be made to contribute a separate component to the rank of dj or a web-page in general.
Thus the rank of dj relative to query q denoted by R(q, dj) is a function that will represent the rank of a document/web-

page. One component of R(q, dj) is s(q, dj).
One of the first attempts to use linkage information was the vector spread activation model by Yuwono.
Vector spread activation model. The ranking score R(q, dj) is the sum of the similarity s(q, dj) of dj plus a portion of

the similarity of each document that points to dj. This is under the assumption that if relevant documents point to dj, then
dj should also be relevant. Let l(i, j) be 1 or 0 based on whether document di points to dj or not. Then

R(q, dj) = s(q, dj) + β
∑

i

R(q, di)l(i, j)

where β is a user defined parameter (e.g. β = 0.2).
References:
1. M. Cutler, Y. Shih, and W. Meng: Using the Structures of HTML Documents to Improve Retrieval. Usenix Symposium

on Internet Technologies and Systems (USITS’97) . pp.241-251, Monterey, California, December 1997.
2. M. Cutler, H. Deng, S. Manicaan, and W. Meng: A New Study on Using HTML Structures to Improve Retrieval.

Eleventh IEEE Conference on Tools with Artificial Intelligence (ICTAI’99) , Chicago, November 1999.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 18

