
Subject 9
Fall 2015

Ranking: HITS and PageRank

Chapter 4.5

And additional information

Disclaimer: These abbreviated notes DO NOT substitute the textbook for this class. They should be
used IN CONJUNCTION with the textbook and the material presented in class. If there is a discrepancy between these

notes and the textbook, ALWAYS consider the textbook to be correct. Report such a discrepancy to the instructor so that
he resolves it. These notes are only distributed to the students taking this class with A. Gerbessiotis in Fall 2015 ;

distribution outside this group of students is NOT allowed.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 1

Ranking
Introduction

1.1 Ranking based on similarity first: s(q, dj). The relevance of a query to a document (e.g. a web-page) is established
by first computing the function s(q, dj) that determines the similarity between query q and document dj, i.e. between two
”documents”. This similarity measure is based solely on information retrieval-based knowledge (e.g. the searchable contents
of the document). Search engines (or web-searching methods in general) do not rely on this measure exclusively to rank a
web-page (e.g. document dj).
1.2 Ranking based on link structure of dj. Search engines also use additional information such as the link structure of
dj to generate R(q, dj). The link structure relates to information such as:

(a) what documents/pages are pointed by dj and are these pages important (e.g. authoritative),

(b) what documents/pages point to dj and are these pages important (e.g. hubs of information such as a directory
page).

1.3 Rank is similarithy based and link structured based. All such link information can be made to contribute a
separate component to the rank of dj or a web-page in general. Thus the rank of dj relative to query q denoted by R(q, dj)
is a function that will represent the rank of a document/web-page. One component of R(q, dj) is s(q, dj).

1.4 First ranking model: Vector Spread Activation Model. One of the first attempts to use linkage information was
the vector spread activation model by Yuwono. The ranking score R(q, dj) is the sum of the similarity s(q, dj) of dj plus
a portion of the similarity of each document that points to dj. This is under the assumption that if relevant documents point
to dj, then dj should also be relevant. Let l(i, j) be 1 or 0 based on whether document di points to dj or not. Then

R(q, dj) = s(q, dj) + β
∑

i

R(q, di)l(i, j)

where β is a user defined parameter (e.g. β = 0.2).

1.5 References.
1. M. Cutler, Y. Shih, and W. Meng: Using the Structures of HTML Documents to Improve Retrieval. Usenix Symposium

on Internet Technologies and Systems (USITS’97) . pp.241-251, Monterey, California, December 1997.
2. M. Cutler, H. Deng, S. Manicaan, and W. Meng: A New Study on Using HTML Structures to Improve Retrieval.

Eleventh IEEE Conference on Tools with Artificial Intelligence (ICTAI’99) , Chicago, November 1999.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 2

Ranking
HITS: Authority and Hub page rank (Kleinberg 1998)

2.1 Another model: Kleinberg’s HITS model. Kleinberg (1998) introduced a model that assigns two ranks to each web-
page/document. One rank signifies how important the document is as a hub of information, and the other how important
it is as an authoritative source of information. The resulting ranking algorithm is sometimes referred to as HITS i.e. a
Hypertext Induced Topic Search. The ideas behind the model can be summarized as follows.
2.2 HITS modeling: Hubs and Authorities.

(1) A page is an authoritative page if it is referenced by many hub pages that are relevant to the query,

(2) a page is a hub page for a query if it points to many authoritative pages for that query, and

(3) good authoritative and hub pages reinforce one another.

2.3 Finding pages for a query q. How can one find such authoritative and hub pages for a query q?

2.3.1 Step 1: Submit query q to a similarity-based engine and record the top n i.e. the root set RS(q) pages based on
s(q, dj) results.

2.3.2 Step 2: Expand set RS(q) into the base set BS(q) to include pages pointed by RS(q) pages. That is,
BS1(q) = {all pages pointed by an RS(q) page}.

2.3.3 Step 3: Also include into BS(q) pages pointing to RS(q) pages (if possible, but restrict the number for each RS(q)
page to no more that a number say B) that is BS2(q) = {B pages pointing to an RS(q) page}, for some fixed B.

2.3.4 Step 4: Thus BS(q) = RS(q) ∪BS1(q) ∪BS2(q).

2.3.5 Authority and Hub computation on BS(q) only: dj and a(dj) and h(dj). For the subgraph induced by BS(q),
let E be the set of links (i.e. edges) induced by it. A link from document di to dj will be denoted by the pair (i, j). For each
document dj, we shall compute the authority score a(dj) of dj, and the 2.3.5.2 hub score h(dj) of dj by performing an A
(for authority) update followed by an H (for hub) update in that order.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 3

Ranking
HITS algorithm: Authority (A) and Hub (H) update steps

2.4 Authority and Hub vectors for all dj. All the a(dj) and h(dj) values are collected into two vectors at, ht, i.e. containing
n rows and one column! The t indicates the transpose, i.e. a vector of n rows a, h is shown as row vector at, ht of one row and
n columns.

ht = (h(d1), . . . , h(dn)) at = (a(d1), . . . , a(dn))

Those two vectors a, h will be updated synchronously (most often) for a number of iterations. The i-th iteration will be
denoted by a superscript (i) and values of those vectors will be denoted accordingly by a(i) and h(i) respectively.
2.5.1 A: Authority update step. The first update involves the authority scores. The previously available hub scores are
being used for this update. If an edge points from i to j i.e. (i, j) ∈ E then the authority of dj is to be updated using the
score of h(di). Therefore, for every link (i, j) ∈ E that points to document dj

a(dj) =
∑

(i,j)∈E

h(di). (1)

2.5.2 H: Hub update step. For the hub update step the just computed authority values are to be used. For every link
(j, k) ∈ E of documents dk pointed by dj

h(dj) =
∑

(j,k)∈E

a(dk). (2)

2.6 Example 0. For the three vertex graph shown below

0 ------> 1 Adjacency matrix L = [0 1 1] L^t = [0 0 0]
\ / [0 0 1] [1 0 0]
\ / [0 0 0] [1 1 0]
\ /
v v A step: a(0) = 0 [a(0)] [h(0)]
2 a(1) = h(0) = [a(1)] = L^t * [h(1)] ==> a = L^t * h

Adjacency List a(2) = h(0)+h(1) [a(2)] [h(2)]
0: 1 2
1: 2 H step: h(0) = a(1)+a(2) [h(0)] [a(0)]
2: - h(1) = a(2) = [h(1)] = L * [a(1)] ==> h = L * a

h(2) = 0 [h(2)] [a(2)]

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 4

Ranking
HITS algorithm: A and H, authority and hub operations

2.7 An A step precedes an H step (An H step follows an A step). The two steps of Eq. 1 and Eq. 2 are interwined.
One first uses the h values of a previous computation (iteration) to get the a values in the A step. The newly computed a
values are then used to generate a new set of h values in the H step.

2.8 Adjacency Matrix relationship of the a(i) and h(i) vectors. Let L be the adjacency matrix over the set of links
E of BS(q). With this we mean that L(i, j) = 1 if (i, j) ∈ E. Otherwise, L(i, j) = 0 for (i, j) 6∈ E. Let Lt be the transpose
matrix of L i.e. one that results if the rows of L become columns in Lt and the columns respectively rows. Let h(i), a(i) be the
hub, authority vectors after i iterations of the A,H steps, for the n documents of the corpus.

h(i)′ = (h(i)(d1), h
(i)(d2), . . . , h

(i)(dn)), a(i)′ = (a(i)(d1), a
(i)(d2), . . . , a

(i)(dn)),

Then by rewriting Eq. 1 (see also Example 0 of the previous page) we have

a(i) = Lth(i−1)

and by rewriting Eq. 2 we obtain
h(i) = La(i).

2.8.1 Note the superscripts above! Note the superscripts on the right side of the equation mark in both equations. In
the former case it refers to iteration i− 1 and in the latter case to iteration i. Note also that the order of execution matters.
First the authority values are updated for a given iteration i using the i− 1 iteration hub values, and then the hub values get
updated using the iteration i authority values just computed.
2.9 Example 0 continued. For the previous example, let the initial values for the a, h vectors be all ones.

v v A step: a(0) = 0 [a(0)] [h(0)]

2 a(1) = h(0) = [a(1)] = L^t * [h(1)] ==> a = L^t * h

Adjacency List a(2) = h(0)+h(1) [a(2)] [h(2)]

1: 2 H step: h(0) = a(1)+a(2) [h(0)] [a(0)]

2: - h(1) = a(2) = [h(1)] = L * [a(1)] ==> h = L * a

h(2) = 0 [h(2)] [a(2)]

h : 1 1 1 a : 1 1 1

Step 1 A: 0 1 2

H: 3 2 0

scale : 0.83 0.55 0.0 0.0 0.44 0.89

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 5

Ranking
HITS algorithm: Solving for a and h

2.10 Power method. These recursive formulae of (2.8) are interwined. If we unfold them and unwind them, then we get
the following. This is also known as the power method.

a(1) = Lth(0) h(1) = La(1)

a(2) = Lth(1) ⇒ a(2) = Lt
(
La(1)

)
=
(
LtL

)
a(1) h(2) = La(2) ⇒ h(2) = L

(
Lth(1)

)
=
(
LLt

)
h(1)

Thus after the first iteration, the values of a, h can then be multiplied by a power of the product LLt or LtL to generate the
a, h values in any iteration as shown on the right hand side below.

a(i) = Lth(i−1) =⇒ a(i) = LtLa(i−1) =⇒ . . . =⇒ a(i) = (LtL)i−1a(1)

h(i) = La(i) =⇒ h(i) = LLth(i−1) =⇒ . . . =⇒ h(i) = (LLt)i−1h(1)

2.11 Instability and Scaling: Avoiding growing values. One step is missing in this computation. The values a(i), h(i)

can grow large as they are dependent on (LtL)i and (LLt)i. Thus a scaling needs to be performed immediately after a round
of A and H updates gets completed to make sure than those values are no more than 1. This scaling is shown below. The
scaling step can appear as step 2.5.3 immediately after the 2.5.2 H step.

a(i)(dj) =
a(i)(dj)√∑
k(a(i)(dk))2

, h(i)(dj) =
h(i)(dj)√∑
k(h(i)(dk))2

,

For the computation to work properly and this iterative process to converge, and Algorithm HubAuthority-Rank (shown
two pages after this page) to be complete, we need to explain two missing parts from this exposition.

Issue 1. What are the initialization vectors a(0) and h(0)? (The answer is in line 4 of Algorithm HubAuthority-Rank.)

Issue 2. Why does the algorithm converge? How fast is convergence? What are the preconditions for convergence?

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 6

Ranking
HITS: Initial values, convergence, and pitfalls

2.12 Initial values to address Issue 1. The initial values of a(0) and h(0) affect convergence. In order to have convergence,
a(0) and h(0) must be chosen in such a way that they are not orthogonal to the solution a(i) and h(i) of the i-th iteration. Note
also that only h(0) needs to be initialized, not a(0) since the former is only used in the first A step to generate a(1). In the
subsequent H step, the h(1) will use the a(1) values just computed.

2.12.1 One choice of initial values: all-one values. A choice a(0) = h(0) = e, where e is the unit vector (i.e. all its
components are ones) suffices.

2.12.2 One choice of initial values: all-1/n values. Another alternative is to set a(0) = h(0) = e/n i.e. scale the initial
values.

2.12.3 A choice of initial values: all-1/
√
n values. Another alternative is to set a(0) = h(0) = e/

√
n i.e. scale the initial

values according to the scaling method of the A and H steps.

2.12.4 Full Answer to Issue 1. Initial values are all ones for the hub and authority vector elements as indicated in step 4
of the Algorithm HubAuthority-Rank. A ”more appropriate” alternative is e/

√
n though.

2.13 Convergence to address Issue 2. Both matrices LLt and LtL are well-defined and by matrix analysis (e.g. Perron-
Frobenius theorem) vectors a(i) and h(i) will then converge to the dominant eigenvector of one or the other matrix.

2.13.1 Rate of convergence. The rate of convergence however depends on the difference (i.e. eigengap) between the
largest λ1 and second largest λ2 eigenvalues of the two matrices. HITS usually converges (but no guarantee is offered) to a
solution after 10-20 iterations.

2.14 A mild critique of the mathematical properties of HITS. One problem with HITS is the existence of multiple
connected components in the graph represented by L. Then the algorithm might ignore all but one of these components when
it converges. We are brief at this point on the mathematical properties of HITS; a more thorough discussion that also relates
to HITS will deal with Google’s PageRank algorithm.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 7

Ranking
HITS: Pseudocode

Algorithm HubAuthority-Rank depicts not only the A,H update steps but also the correspondin scaling.

Algorithm HubAuthority-Rank
1. Obtain RS(q) for query q.
2. Expand RS(q) into BS(q) as described.
3. Use BS(q) to obtain a graph G=(V,E) of links with adjacency matrix L
4. For each dj initialize hub and authority values to 1 i.e. a(dj) = h(dj) = 1;
5. for every document dj component of a,h repeat {

(i) (i-1)
6. Run the authority update step A to get a (dj) from h (...)

(i) (i)
7. Run the hub update step H to get h (dj) from a (...)

(i) (i)
8. Scale a (dj) h (dj) as explained.

} until convergence is reached
9. Return documents ordered by authority scores (high first)

Figure 1: Kleinberg’s HITS algorithm computation

In the scaling step one can remove the superscripts that indicate iteration and have no other significance in the computation
to obtain a simpler

a(dj) =
a(dj)√∑

i a2(di)
, h(dj) =

h(dj)√∑
i h2(di)

,

(Note that the denominator is computed partially and only once by the end of step 7, then inverted so that multiplication
rather than the more expensive division is performed.)

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 8

Ranking
HITS: Example 0 completed

For the example of page 4, we show the computations involved for 7 iterations using (a) initial all-one vectors, (b) initial
all-1/n vectors, and (c) initial all-1/

√
n vectors.

Kleinberg’s HITS (Hub and Authority) Algorithm

0 : 0 1 1

1 : 0 0 1 (Adjacency list)

2 : 0 0 0

(a) vectors are initialized to = 1.000000

Base : 0 :A/H[0]=1.00000/1.00000 A/H[1]=1.00000/1.00000 A/H[2]=1.00000/1.00000

Iterat : 1 :A/H[0]=0.00000/0.83205 A/H[1]=0.44721/0.55470 A/H[2]=0.89443/0.00000

Iterat : 2 :A/H[0]=0.00000/0.84800 A/H[1]=0.51450/0.53000 A/H[2]=0.85749/0.00000

Iterat : 3 :A/H[0]=0.00000/0.85027 A/H[1]=0.52410/0.52635 A/H[2]=0.85166/0.00000

Iterat : 4 :A/H[0]=0.00000/0.85059 A/H[1]=0.52549/0.52582 A/H[2]=0.85080/0.00000

Iterat : 5 :A/H[0]=0.00000/0.85064 A/H[1]=0.52570/0.52574 A/H[2]=0.85067/0.00000

Iterat : 6 :A/H[0]=0.00000/0.85065 A/H[1]=0.52573/0.52573 A/H[2]=0.85065/0.00000

Iterat : 7 :A/H[0]=0.00000/0.85065 A/H[1]=0.52573/0.52573 A/H[2]=0.85065/0.00000

(b) vectors are initialized to = 0.333333

Base : 0 :A/H[0]=0.33333/0.33333 A/H[1]=0.33333/0.33333 A/H[2]=0.33333/0.33333

Iterat : 1 :A/H[0]=0.00000/0.83205 A/H[1]=0.44721/0.55470 A/H[2]=0.89443/0.00000

Iterat : 2 :A/H[0]=0.00000/0.84800 A/H[1]=0.51450/0.53000 A/H[2]=0.85749/0.00000

Iterat : 3 :A/H[0]=0.00000/0.85027 A/H[1]=0.52410/0.52635 A/H[2]=0.85166/0.00000

Iterat : 4 :A/H[0]=0.00000/0.85059 A/H[1]=0.52549/0.52582 A/H[2]=0.85080/0.00000

Iterat : 5 :A/H[0]=0.00000/0.85064 A/H[1]=0.52570/0.52574 A/H[2]=0.85067/0.00000

Iterat : 6 :A/H[0]=0.00000/0.85065 A/H[1]=0.52573/0.52573 A/H[2]=0.85065/0.00000

Iterat : 7 :A/H[0]=0.00000/0.85065 A/H[1]=0.52573/0.52573 A/H[2]=0.85065/0.00000

(c) vectors are initialized to = 0.577350

Base : 0 :A/H[0]=0.57735/0.57735 A/H[1]=0.57735/0.57735 A/H[2]=0.57735/0.57735

Iterat : 1 :A/H[0]=0.00000/0.83205 A/H[1]=0.44721/0.55470 A/H[2]=0.89443/0.00000

Iterat : 2 :A/H[0]=0.00000/0.84800 A/H[1]=0.51450/0.53000 A/H[2]=0.85749/0.00000

Iterat : 3 :A/H[0]=0.00000/0.85027 A/H[1]=0.52410/0.52635 A/H[2]=0.85166/0.00000

Iterat : 4 :A/H[0]=0.00000/0.85059 A/H[1]=0.52549/0.52582 A/H[2]=0.85080/0.00000

Iterat : 5 :A/H[0]=0.00000/0.85064 A/H[1]=0.52570/0.52574 A/H[2]=0.85067/0.00000

Iterat : 6 :A/H[0]=0.00000/0.85065 A/H[1]=0.52573/0.52573 A/H[2]=0.85065/0.00000

Iterat : 7 :A/H[0]=0.00000/0.85065 A/H[1]=0.52573/0.52573 A/H[2]=0.85065/0.00000

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 9

Ranking
HITS: Example 1

3

4

0

1

2

Figure 2: HITS algorithm: An example graph

Example 1. For the graph in Figure 2 we keep things simple as before.

0 1 2 3 4 Iteration 0 a=(1 1 1 1 1) h =(1 1 1 1 1)

A= 0|0 0 0 1 1 Iteration 1 A: a=(1 0 0 3 2) <---[use h of iteration 0]
L= 1|0 0 0 1 0 H: [use a of iteration 1]--->h =(5 3 5 1 0)

2|0 0 0 1 1 Scale: a=(.26 0 0 .80 .53) h =(.64 .38 .64 .12 0)
3|1 0 0 0 0 [Note sqrt(14)=3.74 and sqrt(60)=7.74]
4|0 0 0 0 0 after few more iterations

a=(0 0 0 .78 .61) h =(.65 .36 .65 0 0)

As a result of those computations the ranking of the 5 pages based on authority values is 3, 4, 0, 1, 2 since page 3 has
authority rank 0.78.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 10

Ranking
HITS: Example 1 continued

(a) vectors are initialized to = 1.000000

Base : 0 :A/H[0]=1.00000/1.00000 A/H[1]=1.00000/1.00000 A/H[2]=1.00000/1.00000 A/H[3]=1.00000/1.00000 A/H[4]=1.00000/1.00000

Iterat : 1 :A/H[0]=0.26726/0.64550 A/H[1]=0.00000/0.38730 A/H[2]=0.00000/0.64550 A/H[3]=0.80178/0.12910 A/H[4]=0.53452/0.00000

Iterat : 2 :A/H[0]=0.06086/0.65634 A/H[1]=0.00000/0.37097 A/H[2]=0.00000/0.65634 A/H[3]=0.79115/0.02854 A/H[4]=0.60858/0.00000

Iterat : 3 :A/H[0]=0.01337/0.65712 A/H[1]=0.00000/0.36924 A/H[2]=0.00000/0.65712 A/H[3]=0.78856/0.00626 A/H[4]=0.61481/0.00000

Iterat : 4 :A/H[0]=0.00293/0.65719 A/H[1]=0.00000/0.36907 A/H[2]=0.00000/0.65719 A/H[3]=0.78824/0.00137 A/H[4]=0.61536/0.00000

Iterat : 5 :A/H[0]=0.00064/0.65719 A/H[1]=0.00000/0.36905 A/H[2]=0.00000/0.65719 A/H[3]=0.78821/0.00030 A/H[4]=0.61541/0.00000

Iterat : 6 :A/H[0]=0.00014/0.65719 A/H[1]=0.00000/0.36905 A/H[2]=0.00000/0.65719 A/H[3]=0.78821/0.00007 A/H[4]=0.61541/0.00000

Iterat : 7 :A/H[0]=0.00003/0.65719 A/H[1]=0.00000/0.36905 A/H[2]=0.00000/0.65719 A/H[3]=0.78821/0.00001 A/H[4]=0.61541/0.00000

Iterat : 8 :A/H[0]=0.00001/0.65719 A/H[1]=0.00000/0.36905 A/H[2]=0.00000/0.65719 A/H[3]=0.78821/0.00000 A/H[4]=0.61541/0.00000

Iterat : 9 :A/H[0]=0.00000/0.65719 A/H[1]=0.00000/0.36905 A/H[2]=0.00000/0.65719 A/H[3]=0.78821/0.00000 A/H[4]=0.61541/0.00000

Iterat : 10 :A/H[0]=0.00000/0.65719 A/H[1]=0.00000/0.36905 A/H[2]=0.00000/0.65719 A/H[3]=0.78821/0.00000 A/H[4]=0.61541/0.00000

(b) vectors are initialized to = 0.447214

Base : 0 :A/H[0]=0.44721/0.44721 A/H[1]=0.44721/0.44721 A/H[2]=0.44721/0.44721 A/H[3]=0.44721/0.44721 A/H[4]=0.44721/0.44721

Iterat : 1 :A/H[0]=0.26726/0.64550 A/H[1]=0.00000/0.38730 A/H[2]=0.00000/0.64550 A/H[3]=0.80178/0.12910 A/H[4]=0.53452/0.00000

Iterat : 2 :A/H[0]=0.06086/0.65634 A/H[1]=0.00000/0.37097 A/H[2]=0.00000/0.65634 A/H[3]=0.79115/0.02854 A/H[4]=0.60858/0.00000

Iterat : 3 :A/H[0]=0.01337/0.65712 A/H[1]=0.00000/0.36924 A/H[2]=0.00000/0.65712 A/H[3]=0.78856/0.00626 A/H[4]=0.61481/0.00000

Iterat : 4 :A/H[0]=0.00293/0.65719 A/H[1]=0.00000/0.36907 A/H[2]=0.00000/0.65719 A/H[3]=0.78824/0.00137 A/H[4]=0.61536/0.00000

Iterat : 5 :A/H[0]=0.00064/0.65719 A/H[1]=0.00000/0.36905 A/H[2]=0.00000/0.65719 A/H[3]=0.78821/0.00030 A/H[4]=0.61541/0.00000

Iterat : 6 :A/H[0]=0.00014/0.65719 A/H[1]=0.00000/0.36905 A/H[2]=0.00000/0.65719 A/H[3]=0.78821/0.00007 A/H[4]=0.61541/0.00000

Iterat : 7 :A/H[0]=0.00003/0.65719 A/H[1]=0.00000/0.36905 A/H[2]=0.00000/0.65719 A/H[3]=0.78821/0.00001 A/H[4]=0.61541/0.00000

Iterat : 8 :A/H[0]=0.00001/0.65719 A/H[1]=0.00000/0.36905 A/H[2]=0.00000/0.65719 A/H[3]=0.78821/0.00000 A/H[4]=0.61541/0.00000

Iterat : 9 :A/H[0]=0.00000/0.65719 A/H[1]=0.00000/0.36905 A/H[2]=0.00000/0.65719 A/H[3]=0.78821/0.00000 A/H[4]=0.61541/0.00000

Iterat : 10 :A/H[0]=0.00000/0.65719 A/H[1]=0.00000/0.36905 A/H[2]=0.00000/0.65719 A/H[3]=0.78821/0.00000 A/H[4]=0.61541/0.00000

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 11

HITS
How to fool HITS: Catching conspirators and the tyranny of majority

2.15.1 Terminology: Transverse link information. Links between pages with different domain names.

2.15.2 Intrinsic link information. Links within the same domain.

2.16.1 Question 1. What if someone creates hundreds of pages each one pointing to all the other ones with each one of those
pages including lots of “hot” keywords so that they are included in the initial BS(q) set?

2.16.2 Question 2. What if some one does the same over a set of web-sites rather than web-pages of the same site?

Answer to Questions 1 and 2. One can use different weights for the two types of transverse and intrinsic links or ignore
the second type (e.g. weight becomes 0).

2.16.3 Question 3. Say x web-pages (or web-sites if we got wised up by the prior page discussion) point to page/URL X
and y pages point to URL Y where x � y. What happens with the hubs and authority values of X and Y respectively? Or
one page X points to x pages and one page Y points to y pages and nothing else. What happens to the pointed pages?

Answer to Question 3. We show what happens with the HITS algorithm after a single iteration of it for this case. For
page X its authority value becomes x and for page Y it becomes y after the A step. Since x� y X’s authority is larger than
Y ’s. When the hub step H is performed, the hub values of the pages pointing to X get upped to x and those of Y get (less)
upped to y. After scaling, whatever the scaled values will be, we still expect x′ � y′ and of course d′ � f ′.

X Y x-pages y-pages X Y x-pages y-pages
Iteration 0 : a=(1 1 1 ... 1 1 ... 1) h=(1 1 1 ... 1 1 ... 1)

Iteration 1 : A: a=(x y 0 0 0 0)
H: h=(0 0 x x y y)

Scale : a=(x’ y’ 0 0 0 0) h=(0 0 d’ d’ f’ f’)

The important observation is that a(X)/a(Y) = x/y � 1. After another iteration, a(X)/a(Y) = (x/y)2 � 1 and so on. Thus
after i iterations we expect a(X)/a(Y) = (x/y)i � 1 and thus a(X) would be much larger than a(Y). Thus the more popular
X will dominate the less popular Y completely. (The same would apply to hub values as well of the x and y pages.) So if
x/y = 10 after 3-4 iterations the X-related values will grow to become 1000 to 10000 larger than the Y -related values. X will
completely dominate Y . In the example next page x = 3 and y = 2, and the 4 vertices 3, 4, 5, 6 dominate the triplet 0, 1, 2 in
hub and authority values.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 12

HITS
How to fool HITS: Example 2 (two variations)

Kleinberg Hub and Authority Algorithm

0 : 0 0 1 0 0 0 0 2 is pointed by 0 and 1 but 6 is pointed by 3,4,5

1 : 0 0 1 0 0 0 0 After few iterations 6 has high authority value

2 : 0 0 0 0 0 0 0 which reinforced the hub value of 3,4,5

3 : 0 0 0 0 0 0 1 0,1,2 have low hub/authority values

4 : 0 0 0 0 0 0 1

5 : 0 0 0 0 0 0 1

6 : 0 0 0 0 0 0 0

Base:0 :A/H[0]=1.00000/1.00000 A/H[1]=1.00000/1.00000 A/H[2]=1.00000/1.00000 A/H[3]=1.00000/1.00000 A/H[4]=1.00000/1.00000 A/H[5]=1.00000/1.00000 A/H[6]=1.00000/1.00000

Iter:1 :A/H[0]=0.00000/0.33806 A/H[1]=0.00000/0.33806 A/H[2]=0.55470/0.00000 A/H[3]=0.00000/0.50709 A/H[4]=0.00000/0.50709 A/H[5]=0.00000/0.50709 A/H[6]=0.83205/0.00000

Iter:2 :A/H[0]=0.00000/0.24121 A/H[1]=0.00000/0.24121 A/H[2]=0.40614/0.00000 A/H[3]=0.00000/0.54272 A/H[4]=0.00000/0.54272 A/H[5]=0.00000/0.54272 A/H[6]=0.91381/0.00000

Iter:3 :A/H[0]=0.00000/0.16627 A/H[1]=0.00000/0.16627 A/H[2]=0.28409/0.00000 A/H[3]=0.00000/0.56116 A/H[4]=0.00000/0.56116 A/H[5]=0.00000/0.56116 A/H[6]=0.95880/0.00000

Iter:4 :A/H[0]=0.00000/0.11259 A/H[1]=0.00000/0.11259 A/H[2]=0.19379/0.00000 A/H[3]=0.00000/0.56998 A/H[4]=0.00000/0.56998 A/H[5]=0.00000/0.56998 A/H[6]=0.98104/0.00000

Iter:5 :A/H[0]=0.00000/0.07559 A/H[1]=0.00000/0.07559 A/H[2]=0.13056/0.00000 A/H[3]=0.00000/0.57404 A/H[4]=0.00000/0.57404 A/H[5]=0.00000/0.57404 A/H[6]=0.99144/0.00000

Iter:6 :A/H[0]=0.00000/0.05056 A/H[1]=0.00000/0.05056 A/H[2]=0.08746/0.00000 A/H[3]=0.00000/0.57587 A/H[4]=0.00000/0.57587 A/H[5]=0.00000/0.57587 A/H[6]=0.99617/0.00000

Iter:7 :A/H[0]=0.00000/0.03375 A/H[1]=0.00000/0.03375 A/H[2]=0.05843/0.00000 A/H[3]=0.00000/0.57669 A/H[4]=0.00000/0.57669 A/H[5]=0.00000/0.57669 A/H[6]=0.99829/0.00000

Iter:8 :A/H[0]=0.00000/0.02252 A/H[1]=0.00000/0.02252 A/H[2]=0.03899/0.00000 A/H[3]=0.00000/0.57706 A/H[4]=0.00000/0.57706 A/H[5]=0.00000/0.57706 A/H[6]=0.99924/0.00000

Iter:9 :A/H[0]=0.00000/0.01501 A/H[1]=0.00000/0.01501 A/H[2]=0.02600/0.00000 A/H[3]=0.00000/0.57722 A/H[4]=0.00000/0.57722 A/H[5]=0.00000/0.57722 A/H[6]=0.99966/0.00000

Iter:10:A/H[0]=0.00000/0.01001 A/H[1]=0.00000/0.01001 A/H[2]=0.01734/0.00000 A/H[3]=0.00000/0.57729 A/H[4]=0.00000/0.57729 A/H[5]=0.00000/0.57729 A/H[6]=0.99985/0.00000

0 : 0 1 1 0 0 0 0 In this variation 0 points to 1 and 2, and 3 points to 4,5,6

1 : 0 0 0 0 0 0 0 After few iterations the hub value of 3 and authority values of 4,5,6 exceed

2 : 0 0 0 0 0 0 0 by 30-40 times the values of 0,1,2. Note that 1.5**10 ~ 57

3 : 0 0 0 0 1 1 1

4 : 0 0 0 0 0 0 0

5 : 0 0 0 0 0 0 0

6 : 0 0 0 0 0 0 0

Base:0 :A/H[0]=1.00000/1.00000 A/H[1]=1.00000/1.00000 A/H[2]=1.00000/1.00000 A/H[3]=1.00000/1.00000 A/H[4]=1.00000/1.00000 A/H[5]=1.00000/1.00000 A/H[6]=1.00000/1.00000

Iter:1 :A/H[0]=0.00000/0.55470 A/H[1]=0.44721/0.00000 A/H[2]=0.44721/0.00000 A/H[3]=0.00000/0.83205 A/H[4]=0.44721/0.00000 A/H[5]=0.44721/0.00000 A/H[6]=0.44721/0.00000

Iter:2 :A/H[0]=0.00000/0.40614 A/H[1]=0.33806/0.00000 A/H[2]=0.33806/0.00000 A/H[3]=0.00000/0.91381 A/H[4]=0.50709/0.00000 A/H[5]=0.50709/0.00000 A/H[6]=0.50709/0.00000

Iter:3 :A/H[0]=0.00000/0.28409 A/H[1]=0.24121/0.00000 A/H[2]=0.24121/0.00000 A/H[3]=0.00000/0.95880 A/H[4]=0.54272/0.00000 A/H[5]=0.54272/0.00000 A/H[6]=0.54272/0.00000

Iter:4 :A/H[0]=0.00000/0.19379 A/H[1]=0.16627/0.00000 A/H[2]=0.16627/0.00000 A/H[3]=0.00000/0.98104 A/H[4]=0.56116/0.00000 A/H[5]=0.56116/0.00000 A/H[6]=0.56116/0.00000

Iter:5 :A/H[0]=0.00000/0.13056 A/H[1]=0.11259/0.00000 A/H[2]=0.11259/0.00000 A/H[3]=0.00000/0.99144 A/H[4]=0.56998/0.00000 A/H[5]=0.56998/0.00000 A/H[6]=0.56998/0.00000

Iter:6 :A/H[0]=0.00000/0.08746 A/H[1]=0.07559/0.00000 A/H[2]=0.07559/0.00000 A/H[3]=0.00000/0.99617 A/H[4]=0.57404/0.00000 A/H[5]=0.57404/0.00000 A/H[6]=0.57404/0.00000

Iter:7 :A/H[0]=0.00000/0.05843 A/H[1]=0.05056/0.00000 A/H[2]=0.05056/0.00000 A/H[3]=0.00000/0.99829 A/H[4]=0.57587/0.00000 A/H[5]=0.57587/0.00000 A/H[6]=0.57587/0.00000

Iter:8 :A/H[0]=0.00000/0.03899 A/H[1]=0.03375/0.00000 A/H[2]=0.03375/0.00000 A/H[3]=0.00000/0.99924 A/H[4]=0.57669/0.00000 A/H[5]=0.57669/0.00000 A/H[6]=0.57669/0.00000

Iter:9 :A/H[0]=0.00000/0.02600 A/H[1]=0.02252/0.00000 A/H[2]=0.02252/0.00000 A/H[3]=0.00000/0.99966 A/H[4]=0.57706/0.00000 A/H[5]=0.57706/0.00000 A/H[6]=0.57706/0.00000

Iter:10:A/H[0]=0.00000/0.01734 A/H[1]=0.01501/0.00000 A/H[2]=0.01501/0.00000 A/H[3]=0.00000/0.99985 A/H[4]=0.57722/0.00000 A/H[5]=0.57722/0.00000 A/H[6]=0.57722/0.00000

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 13

PageRank algorithm
Page and Brin (1998)

3.0.1 Limitations of the HITS algorithm. The HITS algorithm has certain limitations. To start with we need access to
a similarity search engine to obtain RS plus the additional steps to formulate BS. Subsequent ranking depends on the BS
that depends on the given query q. For this reason we write BS(q) to indicate that BS depends on the query q. Moreover,
HITS uses two vectors a, h. If the web-graph related to BS(q) has isolated components the HITS algorithm may focus on one
such component and miss the other ones (midredirection). It is not clear whether the a vector should be used for rank, or the
h vector or it makes sense to use a combination of the two and what that combination should be!

3.0.2 Nice features of HITS. The iterative (aka power method) form of the HITS algorithm makes it easy (though time
consuming) to establish hub and authority values and makes matters of convergence and existence of a, h values contingent of
explicit conditions of the matrix of document (web-page) connections.

3.1 Google’s PageRank algorithm. The algorithm used to ranking Google query results is now presented. The original
algorithm, named PageRank was introduced in 1998. How much it is still being used in Google is open to discussion.

3.1.1 Overview. We will be introducing the mathematics behind PageRank through some linear and matrix algebra consider-
ations related to adjacency-matrix/adjacency-list properties of graphs. A more thorough and mathematical oriented discussion
starts with page 20. (One can skip directly this latter discussion that starts on page 20.)

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 14

PageRank algorithm
Mathematical background

3.2.1 Eigenvectors and Eigenvalues. For an n × n matrix A, vector x is called the (right) eigenvector of eigenvalue λ of
A if and only if Ax = λx.

3.2.2 Spectral theorem. The spectral theorem for matrices states that if there are n eigenvectors of A that form a basis
(i.e. they are linearly independent) of dimension n, then A can be written as A = QΛQ−1, where Q is a matrix whose i-th
column is the i-th eigenvector and Λ is a diagonal matrix whose i-th diagonal entry is λi (i.e. the eigenvalue corresponding to
the i-th eigenvector).

3.2.3 Determinant of A and its eigenvalues. From matrix theory we also have that the determinant of A is the products
of its eigenvalues, i.e. | A |= λ1 . . . λn.

3.2.4 Convention. From now on we will assume that the eigenvalues are relabeled and numbered so that λ1 > λ2 > . . . i.e.
we list the eigenvalues from the largest to the smallest one. This might work for positive and real eigenvalues; such a listing
can also be extended for negative and/or complex eigenvalues if we use | λ1 | where | . | represents the measure of a complex
number or the absolute value of a real number.

3.2.5 Unit vector e. Vector e is the unit vector i.e. it is an all-one vector i.e. et = (1, 1, . . . , 1).

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 15

PageRank algorithm
Graph Theory background

3.3 Some graph theory: Adjacency Matrix representation of a graph. Let G = (V,E) be a graph on a set of vertices
V and a set of edges E. The vertices of the graph may correspond to the web and its edges to the links of web-pages. Let n
be the number of vertices of V and m be the number of edges in E. It is m ≤ n2.

3.3.1 Adjacency matrix L. L is the adjacency matrix of a graph whose (i, j)-th entry is 1 if (i, j) ∈ E and 0 otherwise.

3.3.2 Transpose of adjacency matrix L. Lt is the transpose of L i.e. its (i, j)-th entry is 1 if (j, i) ∈ E and 0 otherwise.

3.4 Weighed adjacency matrix C. The weighed adjacency matrix C can be obtained from L if its (i, j)-th entry is
normalized so that cij = 1/d(i) for (i, j) ∈ E and 0 otherwise. Here, d(i) is the degree (out-degree for directed graphs) for
vertex i. Thus if the i-th row of L is (0 1 1), then the corresponding row of C would become (0 1/2 1/2).

3.4.1 An eigenvector of C. Matrix C obtained from the adjacency matrix of a graph has a nice property: Ce = 1e, i.e. for
matrix C the unit vector is an eigenvector for eigenvalue 1. This is because the rows of C add up to 1.

3.4.2 Sinks and matrix C. For the graph of the web, matrix C might fail to hold this property (sum of rows equal to 1)
if the graph contains a sink, i.e. a vertex with no outgoing edges. In that case all elements of a row are equal to 0! We can
”fix” this, if sink rows are ”adjusted to have 1/n everywhere, i.e. a row becomes et/n, where n is the number of vertices of
the graph. This “corrected” matrix has the specified in 3.4.1 property.

3.4.3 Transpose Ct of C. Transposing matrix C to get Ct we obtain a matrix that has an (i, j)-th entry that is 1/d(j) for
(j, i) ∈ E.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 16

Page Rank
Introduction

3.5 Idea behind Google’s view of the Web: PageRank vs HITS. View the web as a directed graph G = (V,E). The
HITS algorithm views as a directed graph not the web but only the base set BS(q); to obtain BS(q) one has to submit q
to a similarity-based search engine, obtain RS(q) and then enhance it into BS(q). Google’s view of the web is a direct view
skipping all those intermediate steps.

3.5.1 Forward (outgoing) links and backlinks (incoming) establish a rank independent of q. Each page p has
outgoing/forward links and incoming/backlinks. Each backlink is a citation of the named page p; each outgoing link cites the
page pointed by p. Google’s original ranking algorithm named PageRank is a measure of global web-page importance not of
an importance based on the search query results of a similarity search-engine.

3.5.2 1998 PageRank and Google Toolbar PageRank. With respect to that measure Google’s rank is (naturally) very
high, MIT’s is a bit less, and NJIT scores a little less than both. Note that this PageRank algorithm that we will be discussing
in the remainder of this Subject reflects Google’s state in 1998. Google is currently using a slightly different “PageRank”
measure and makes it available to Google users through what is known as Google Toolbar (Internet Explorer); around 2012 it
was a number between 0 and 10 (Google itself used to be a 10, MIT had a 9 rank, and NJIT an 8).

3.6 Graph of the Web and Browsing: Random Surfing. The idea behind PageRank is simple. Consider the web to be
a graph and do the following random walk on it by following the protocol described by the following two rules.

Rule 1. For d × 100% (say 85%) of the time, a user follows (outgoing) links (uniformly) at random when the user
browses a web-page. (For example, if a web-page has 5 links the user picks one of them at random.) Then the
user follows such a selected outgoing link and browses it.

Rule 2. For (1−d)× 100% of the time, a web-page might become a sink (no linked pages) or the user just gets bored
browsing the current web-page. So instead of using Rule 1 the user decides to pick a random page (not pointed
by the current page) to visit next. (The choice of a random page is one among the n web-pages of the whole
Web.)

3.7 Parameter 1− d decides how often the user gets ”bored”. Parameter d is a number between 0 and 1. For example
one might choose d = 0.85.

3.8 Fundamental Question. What is the probability that a given page A will be visited? This determines the ”importance”
i.e. the ”rank” of the page!

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 17

Page Rank
Introduction

3.9 Idea of ranking web-pages. If a page p is linked by many pages then p is important. If a page p is linked by few but
important pages then p should also be important. The importance or not of a page is divided evenly and also inherited to
the pages pointed by it. Suppose we have pages T1, . . . , Tm pointing to page A. The PageRank PR(A) of A is then defined by
the pagerank of the pages pointing to A.

PR(A) =
(1− d)

n
+

1

d
·
(
PR(T1)

C(T1)
+ . . .+

PR(Tm)

C(Tm)

)
, (3)

where PR(Ti) is the page rank of Ti and C(Ti) is the number of outgoing links of Ti, and n is the total number of pages in
the corpus (web). (Sometimes instead of (1 − d)/n one can use (1 − d) this cause some matrix or algebra-related problems
though.)

3.9.1 Technical issues to resolve: How to avoid sinks. Each page has its own PageRank (eg. PR(A), PR(Ti)). Each
page is recording its number of outgoing links i.e. C(Ti). The RageRank of a page Ti is evenly distributed among the pages
pointed by Ti and one of them is A. Each such page gets a rank contribution of PR(Ti)/C(Ti). Even if a page has no citations
(i.e. incoming links) it will still have a non-zero rank of (1− d)/n (though for n a billion or so it would be negligibly small).
To be fair to every web page, all pages’ ranks get pumped up by (1 − d)/n. The choice of d is important in controlling the
rate of convergence in a PageRank computation. (We have (1 − d)/n instead of 1 − d to avoid instability issues by keeping
PageRanks smaller than one, and also because we do not want to be too generous.)

3.9.2 PageRank PR(A) for A. The PageRank PR(A) of web-page A thus

PR(A) =
(1− d)

n
+

1

d
·
(
PR(T1)

C(T1)
+ . . .+

PR(Tm)

C(Tm)

)
=

1− d
n

+ d ·
m∑

i=1

PR(Ti)

C(Ti)
(4)

3.9.3 Note: Rank as ”probability”. The normalized rank of Eq. (4) could be interpreted to signify probabilities. Thus one
might interpret PR(A) as the probability of visiting web-page A during the random walk obtained through the application of
the two rules, Rule 1 and Rule 2.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 18

Page Rank
Computing PR(A)

3.10.1 In order to compute PR(A) we need to know PR(Ti). To evaluate the rank PR(A) of A one needs to know the
ranks PR(Ti) of all pages Ti pointing to A.

3.10.2. In order to obtain PR(Ti) we need to know Ti. And this requires that we know in advance all the pages that
point to A which is a little bit more elaborate than finding the pages pointed by A. The latter is easy : scan document A and
locate all anchor fields to determine pages pointed by A. But finding Ti has not yet been resolved.

3.10.3. Even if we know Ti to find PR(Ti) we need to find the pages pointing to Ti! Not only that but in order to
find these ranks PR(Ti) of Ti’s one needs to know the ranks of the pages pointing to the Ti’s.

3.10.4. Chicken and egg problem? What if we have a cycle or a very long back-chain?.

3.10.5. Matrix theory to the rescue. Matrix theory and the power method alluded in the HITS algorithm (see pages
5 and 6) can be used to show that using a simple iterative algorithm (that was also employed in a different form in HITS),
PR(A) can be computed in a few iterations and the rank vector (of all n web-pages) computed corresponds to the principal
eigenvector of the normalized (and weighed) link matrix of the web. The term normalized/weighed means that all sinks have
been eliminated and the graph is used by employing the C matrix rather than the original L form and thus rank is expressed
through Eq. 4.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 19

Page Rank
Computational issues

3.11. Rank vector. If we have pages A,B,C, . . . we formulate the PageRank vector PR which is then the vector PR =
(PR(A), PR(B), PR(C), . . . ,)t of PageRanks of the n pages of the Web.

3.12. Rank vector initialization. In any rank computation we need to determine the initial values of PR(.). Are they zero?
One (similarly to HITS) ? Or something else? Avoid zeroes! Use 1/n or 1/

√
n if you want small numbers (aka probabilities).

Or may 1 everywhere.

3.13. Asynchronous vs synchronous approach. Kleinberg’s algorithm requires the use of two vectors: the ”old” and
the ”new” set of values. ”old” refers to those values of the previous iteration and ”new” to the ones of the current iteration.
We define this, in the context of PageRank, as the synchronous approach. One additional reason to use the asynchronous
approach and the two set of vectors is to determine when the error rate is small and thus whether the desirable convergence
has been achieved. Such convergence can be confirmed when the difference between ”old” and ”new” values of every rank is
less than a given error bound. For example if the pagerank of a page at iterations i− 1, i and i + 1 are 1.00032 and 1.00021
and 1.00020 respectively, the first two are within 10−3 and thus stopping at iteration i allows for a 10−3 error bound; to get a
10−4 bound one has to stop at i+ 1. In an asynchronous approach we use one vector. We update a rank by using whatever
values are available. Thus the result is possibly dependent on the order of rank evaluations.

3.14 Example 3. A points B and B points to A ranks. Two pages A and B each one pointing to the other. C(A) =
C(B) = 1. Consider starting first with PR(A) = PR(B) = 1/n and then PR(A) = PR(B) = 1.

3.14.1 Case 3.a: Example 3 with 1/n initial values. Convergence is quite fast.

[IN][OUT]

0[1][1] : 0 1

1[1][1] : 1 0

(a) initialization to 1/n = 1/2

Base : 0 :P[0]=0.50000 P[1]=0.50000

Iter : 1 :P[0]=0.50000 P[1]=0.50000

Iter : 2 :P[0]=0.50000 P[1]=0.50000

Iter : 3 :P[0]=0.50000 P[1]=0.50000

(b) initialization to 1/n ; asynchronous update

avalue= -1.000000 but all vectors are initialized to = 0.500000

Base : 0 :P[0]=0.50000 P[1]=0.50000

Iter : 1 :P[0]=0.50000 P[1]=0.50000

Iter : 2 :P[0]=0.50000 P[1]=0.50000

Iter : 3 :P[0]=0.50000 P[1]=0.50000

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 20

Page Rank
Example 3 continued

3.14.2 Case 3.b: Example 3 with 1 initial values. Convergence is achieved in 70 plus or 40 plus iterations. The wave-like
synchronous approach results in a slower convergence. Details follow. (Synchronous first, asynchronous next.)

[IN][OUT]

0[1][1] : 0 1

1[1][1] : 1 0

(c) initialization to 1.0

Base : 0 :P[0]=1.00000 P[1]=1.00000

Iter : 1 :P[0]=0.92500 P[1]=0.92500

Iter : 2 :P[0]=0.86125 P[1]=0.86125

Iter : 3 :P[0]=0.80706 P[1]=0.80706

Iter : 4 :P[0]=0.76100 P[1]=0.76100

...

Iter : 40 :P[0]=0.50075 P[1]=0.50075

Iter : 41 :P[0]=0.50064 P[1]=0.50064

...

Iter : 60 :P[0]=0.50003 P[1]=0.50003

Iter : 61 :P[0]=0.50002 P[1]=0.50002

...

Iter : 70 :P[0]=0.50001 P[1]=0.50001

Iter : 71 :P[0]=0.50000 P[1]=0.50000

Iter : 72 :P[0]=0.50000 P[1]=0.50000

(d) initialization to 1.0 ; asynchronous update

Base : 0 :P[0]=1.00000 P[1]=1.00000

Iter : 1 :P[0]=0.92500 P[1]=0.86125

Iter : 2 :P[0]=0.80706 P[1]=0.76100

Iter : 3 :P[0]=0.72185 P[1]=0.68857

...

Iter : 35 :P[0]=0.50001 P[1]=0.50001

Iter : 36 :P[0]=0.50000 P[1]=0.50000

Iter : 37 :P[0]=0.50000 P[1]=0.50000

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 21

Page Rank
Example 4

3.15 Example 4. We use the synchronous approach first and then the asynchronous one. For both cases initial values are
1/n.

0
2

3

1

Figure 3: Simple Example 4

(a) Synchronous: All vectors are initialized to = 0.250000

Base : 0 :P[0]=0.25000 P[1]=0.25000 P[2]=0.25000 P[3]=0.25000 [IN][OUT]

Iter : 1 :P[0]=0.67500 P[1]=0.10833 P[2]=0.10833 P[3]=0.10833 0[3][3] : 0 1 1 1

Iter : 2 :P[0]=0.31375 P[1]=0.22875 P[2]=0.22875 P[3]=0.22875 1[1][1] : 1 0 0 0

Iter : 3 :P[0]=0.62081 P[1]=0.12640 P[2]=0.12640 P[3]=0.12640 2[1][1] : 1 0 0 0

... 3[1][1] : 1 0 0 0

Iter : 66 :P[0]=0.47972 P[1]=0.17343 P[2]=0.17343 P[3]=0.17343

Iter : 67 :P[0]=0.47973 P[1]=0.17342 P[2]=0.17342 P[3]=0.17342

Iter : 68 :P[0]=0.47973 P[1]=0.17342 P[2]=0.17342 P[3]=0.17342

(b) Asynchronous: All vectors are initialized to = 0.250000

Base : 0 :P[0]=0.25000 P[1]=0.25000 P[2]=0.25000 P[3]=0.25000

Iterat : 1 :P[0]=0.67500 P[1]=0.22875 P[2]=0.22875 P[3]=0.22875

Iterat : 2 :P[0]=0.62081 P[1]=0.21340 P[2]=0.21340 P[3]=0.21340

Iterat : 3 :P[0]=0.58166 P[1]=0.20230 P[2]=0.20230 P[3]=0.20230

....

Iterat : 28 :P[0]=0.47976 P[1]=0.17343 P[2]=0.17343 P[3]=0.17343

Iterat : 29 :P[0]=0.47975 P[1]=0.17343 P[2]=0.17343 P[3]=0.17343

Iterat : 30 :P[0]=0.47975 P[1]=0.17343 P[2]=0.17343 P[3]=0.17343

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 22

Page Rank
Example 5: Effects of collusion

3.16 Example 5. Say we have a collusion graph (cycle) i.e. one page points to another page on a cycle. If the calculations
tell us something is that 1/n is preferable to 1 as initial values. And the asynchronous approach somehow works better.

A

B

C

Figure 4: Collusion graph

(a) Synchronous (all 1/n) [IN][OUT]

Base : 0 :P[0]=0.33333 P[1]=0.33333 P[2]=0.33333 0[1][1] : 0 1 0

Iter : 1 :P[0]=0.33333 P[1]=0.33333 P[2]=0.33333 1[1][1] : 0 0 1

(b) Asynchronous (all 1/n) 2[1][1] : 1 0 0

Base : 0 :P[0]=0.33333 P[1]=0.33333 P[2]=0.33333

Iterat : 1 :P[0]=0.33333 P[1]=0.33333 P[2]=0.33333

(c) Synchronous (all 1)

Base : 0 :P[0]=1.00000 P[1]=1.00000 P[2]=1.00000

Iter : 1 :P[0]=0.90000 P[1]=0.90000 P[2]=0.90000

Iter : 2 :P[0]=0.81500 P[1]=0.81500 P[2]=0.81500

....

Iter : 79 :P[0]=0.33334 P[1]=0.33334 P[2]=0.33334

Iter : 80 :P[0]=0.33333 P[1]=0.33333 P[2]=0.33333

Iter : 81 :P[0]=0.33333 P[1]=0.33333 P[2]=0.33333

(d) Asynchronous (all 1)

Base : 0 :P[0]=1.00000 P[1]=1.00000 P[2]=1.00000

Iterat : 1 :P[0]=0.90000 P[1]=0.81500 P[2]=0.74275

Iterat : 2 :P[0]=0.68134 P[1]=0.62914 P[2]=0.58477

Iterat : 3 :P[0]=0.54705 P[1]=0.51499 P[2]=0.48774

....

Iterat : 27 :P[0]=0.33334 P[1]=0.33333 P[2]=0.33333

Iterat : 28 :P[0]=0.33333 P[1]=0.33333 P[2]=0.33333

Iterat : 29 :P[0]=0.33333 P[1]=0.33333 P[2]=0.33333

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 23

Page Rank
The algorithm

3.17 The PageRank algorithm (final version). We present below algorithm PageRank that uses Eq. (4) to compute the
rank of web-pages. The initialization vector is et/n i.e. a vector whose all entries are 1/n. This might work slightly better than
et (an all-one vector) and is always preferable to an all-zero vector. For the algorithm to be efficient a proper representation
of the Web-graph must be available. A compact form of it is through an adjacency list representation of the link structure i.e.
for every vertex we maintain its out-degree and a list of end-points for outgoing edges as shown below

Source-vertex Out-degree Endpoints-of-outgoing edges

u m k1 k2 k3 ... km

PageRank(G,V,E) //The code performs a SYNCHRONOUS Rank update
1. for all vertices u in V /* Initialization Step */
2. Src[u] = 1/n;
3. small = something-small;
4. while (convergence-distance > small) {
5. for all v in V
6. D[v]=0;
7. for(i=0;i<|V|;i++) {
8. Read-Adjacency-List(u,m,k1,k2,...,km);
9. for(j=1;j<=m;j++)
10. D[kj] = D[kj] + Src[u]/m
11. }
12. for all v in V
13. D[v] = d * D[v] + (1-d)/n
14. convergence-distance = ||Src-D|| /* Euclidean distance */
15. Src=D;
16. }

Figure 5: PageRank

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 24

Page Rank
Practical issues

3.18.1 Practical Issue 1. What if we run out of space ? Split Vectors Src and D into B blocks.

3.18.2 Practical Issue 2. Split adjacency list (endpoint-list) into B blocks with the i-th block containing only edges with
endpoints the set of vertices of the i-th block of Src/D. Run Algorithm above for i-th block, for all i = 1, . . . , B.

3.18.3 Practical Issue 3. Parallelization of this scheme is possible if we assign each block or groups of blocks of size B/p
to the p processors of a system. Details omitted.

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 25

Page Rank
Example 0 revisited.

3.19 Example 0 revisited. We first present the two cases (synchronous and asynchronous) for the graph of Example 0 and
then for the graph in which the sink has been eradicated even if the PageRank model does so with the additive (1−d)/n term
in the PageRank formula of Eq. (4).

(a) Synchronous all 1/3

Base : 0 :P[0]=0.33333 P[1]=0.33333 P[2]=0.33333

Iter : 1 :P[0]=0.05000 P[1]=0.19167 P[2]=0.47500

Iter : 2 :P[0]=0.05000 P[1]=0.07125 P[2]=0.23417

Iter : 3 :P[0]=0.05000 P[1]=0.07125 P[2]=0.13181

Iter : 4 :P[0]=0.05000 P[1]=0.07125 P[2]=0.13181

(b) Asynchronous all 1/3

Base : 0 :P[0]=0.33333 P[1]=0.33333 P[2]=0.33333

Iterat : 1 :P[0]=0.05000 P[1]=0.07125 P[2]=0.13181

Iterat : 2 :P[0]=0.05000 P[1]=0.07125 P[2]=0.13181

(c) Synchronous all 1/3

Base : 0 :P[0]=0.33333 P[1]=0.33333 P[2]=0.33333

Iter : 1 :P[0]=0.14444 P[1]=0.28611 P[2]=0.56944

Iter : 2 :P[0]=0.21134 P[1]=0.27273 P[2]=0.51593

...

Iter : 10 :P[0]=0.19758 P[1]=0.28155 P[2]=0.52086

Iter : 11 :P[0]=0.19758 P[1]=0.28155 P[2]=0.52087

Iter : 12 :P[0]=0.19758 P[1]=0.28155 P[2]=0.52087

(d) Asynchronous all 1/3

Base : 0 :P[0]=0.33333 P[1]=0.33333 P[2]=0.33333

Iterat : 1 :P[0]=0.14444 P[1]=0.20583 P[2]=0.36748

Iterat : 2 :P[0]=0.15412 P[1]=0.21962 P[2]=0.38779

...

Iterat : 17 :P[0]=0.16832 P[1]=0.23986 P[2]=0.41762

Iterat : 18 :P[0]=0.16833 P[1]=0.23987 P[2]=0.41763

Iterat : 19 :P[0]=0.16833 P[1]=0.23987 P[2]=0.41763

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 26

Page Rank
The theory behind PageRank (part 1)

’ t

Graph L = [0 1 1 1] L= L = [0 1 0 0]

^ 0 [1 0 1 1] [1 0 1 0]

/ / | \ [0 1 0 1] [1 1 0 0]

/ / | \ [0 0 0 0] [1 1 1 0]

/ v | v

1 ----|---> 2 C = [0 1/3 1/3 1/3] M = [0 1/3 1/3 1/3] s= [0]

\ <---|--- / [1/3 0 1/3 1/3] [1/3 0 1/3 1/3] [0]

\ | / [0 1/2 0 1/2] [0 1/2 0 1/2] [0]

\ | / [0 0 0 0] [1/4 1/4 1/4 1/4] [1] vertex 3 is a sink

v v v

3

Figure 6: Sinks and their effects

4.1 Example of Figure 6. We use the example of Figure 6 as guidance to the rest of this discussion. We simplify notation
and use ri to denote the rank of page i. Then r is the (column) vector of ranks i.e. an n×1 matrix. Therefore r′ is a row-vector
of 1× n ranks, the transpose of r. L is the adjacency matrix and L′ = Lt is the transpose of the adjacency matrix. Moreover
C is derived from L if row i is divided by the number of ones of row i (for non sink rows). Thus rows 0 and 1 are divided by
3, row 2 by 2 and row 3 (last row) is a sink. We can then derive from C matrix M (modified C) that for a sink it has 1/n on
every element of a row. Then M = C + s(1/n)e′. In this expression e is an n× 1 vector of ones, and e′ its transpose, a 1× n
row vector. Moreover s is an n × 1 vector with entries zeros except for the sinks that have an 1. Thus for our example only
the last entry of s is a one. Then the PageRanks of the 4 vertices are computed by Equation 4 as follows.

r0 =
1− d

4
+ d

(
1

3
r1

)
r1 =

1− d
4

+ d
(

1

3
r0 +

1

2
r2

)
r2 =

1− d
4

+ d
(

1

3
r0 +

1

3
r1

)
r3 =

1− d
4

+ d
(

1

3
r0 +

1

3
r1 +

1

2
r2

)

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 27

Page Rank
The theory behind PageRank (part 2)

4.2 An (eigenvalue) property of matrix M . Matrix M = C + s(1/n)e′ has a interesting property: M · e = 1 · e, where e
is the all-one vector. This is because all rows of M add up to 1. Thus (e, 1) is an eigvenvector and eigenvalue pair of M : we
might call it an eigenpair. Moreover 1 is the largest eigenvalue of M .

4.3 Creating the Google matrix G from M or C. Then let

G = dM +
1− d
n

e e′ = d(C + s(1/n)e′) +
1− d
n

e e′ = d · C + (ds+ (1− d)e)
1

n
e′

Then for the example in hand,

M =

0 1/3 1/3 1/3

1/3 0 1/3 1/3
0 1/2 0 1/2

1/4 1/4 1/4 1/4

4.4 The largest eigenvalues of M and G, eigenpair (e, 1), and the second largest eigenvalue. Note that both in M
and in G the elements of any row add up to 1. Thus for G the (e, 1) is still an eigenpair and thus 1 is the largest eigenvalue
of both. All eigenvalues (other than the largest one which is one) are smaller than 1 (or in general their magnitude is smaller
than 1) because the sum of the rows is 1. The difference between G and M is that in G the second largest eigenvalue λ2(G) is
guaranteed to be less than d. Thus λ2(G) ≤ d. Thus the | λ1(G)− λ2(G) |=| 1− λ2(G) |≤ 0.15. The distance 0.15 determines
how fast the algorithm on the next page converges!

4.4.1 A matrix G and its transpose G′ = Gt. The two matrices G and G′ have the same eigenvalues. This is a fact from
linear algebra! So do M and M ′. (It is one thing though to have the same eigenvalues and another thing to also have the
same eigenvectors...)

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 28

Page Rank
The theory behind PageRank (part 3)

4.5 Finding the rank vector r. For a matrix such as G the rank vector r is a probability vector: its i-th element ri denotes
the probability of visiting page i. (Note that the subscript i is not in parentheses!) Moreover,

r1 + r2 + . . .+ rn =
∑

ri = 1.

By linear algebra/probability theory(Markov chains) r is the solution of r′ = r′G. That is, r is the dominant ”left” eigenvector
of G i.e. the ”left” eigenvector that corresponds to the largest eigenvalue of it. In 1 ·r′ = r′G, the r′ is on the ”left” of G, that’s
why it is a ”left eigenvector”; the left hand side implies an eigenavalue of 1, as noted. Since this is the largest eigenvalue, it is
the dominant or principal eigenvalue and its eigenvector is the dominant or principal eigenvector as well.) By 4.4 whether we
talk about G or G′ the largest eigenvalue of either is equal to 1. If we transpose both sides of r′ = r′G we get that r = G′r.
That is the solution r is the ”right eigenvector” of G′ as it gets multiplied with it from the right. Likewise its corresponding
eigenvalue is 1. We drop the right from ”right eigenvector” to just say eigenvector. Given that G and G′ have the same
eigenvalues (Item 4.4) this does not affect their eigenvalues. In conclusion, to find the dominant ”left” eigenvector of G we
find the eigenvector corresponding to the dominant eigenvalue (1) of G′.

4.5.1 How do we find r? Power Method, i.e. iterative convergence. How can we find r? We can use iterative methods
such as the power method where

r′(i) = r′(i−1)G

The subscript indicates the iteration. That is why it is in parentheses. The solution at convergence will have an i-th element
whose value would be ri or an approximation to ri. We move from iteration i− 1 to i by performing a multiplication with G
as indicated above. The process stops when at some iteration k we have convergence i.e. the entries of the r vector remain the
same to a given accuracy, i.e. | r(k) − r |< error or given that we do not know r, when | r(k) − r(k−1) |< error. The Google
authors, Brin and Page, claimed that k = 50 works for most cases.

4.5.2 Initial value. For the iterative process r′(i) = r′(i−1)G what is r(0) i.e. the initial or boundary value? Any vector r(0)

is OK as long as it is orthogonal to the solution r! For example the unit vector e or e/n could work. A requirement for
convergence implies the need for scaling! This would require the use of e/n over the unscaled e. A e/

√
n will also work! Never

try however an initial vector of zeroes!

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 29

Page Rank
The theory behind PageRank (part 4)

4.6 Why does it work? Linear algebra and (e, 1) eigenpair of G.
Eigenvalue 1 is the largest eigenvalue of non-negative matrix M (or G or M ′ or G′). Every other eigenvalue is smaller.

Therefore λ1 = 1 > λ2 > Let the corresponding eigenvectors be x1, . . . , xn. From matrix theory we have that G′x = λx
for eigenpair (x, λ). Let us call in the remainder A = G′ to avoid problems with transposes. Thus Ax = λx given that A is
an alias for G′. Therefore A2x = A(Ax) = Aλx = λ(Ax) = λ2x and in general Akx = λkx. Let the starting vector r(0) be a
linear combination of the eigenvectors i.e. r(0) = x1 + a1x2 + . . .+ anxn. Then using the fact that Akxi = λk

i xi we obtain the
following.

r(0) = x1 + a1x2 + . . .+ anxn

r(1) = Ar(0) = Ax1 + Aa2x2 + . . .+ Aanxn

= 1x1 + . . .+ anλnxn

r(k) = Ar(k−1) = 1x1 + a2λ
k
2x2 + . . .+ anλ

k
nxn (5)

Therefore

r(k) = x1

(
1 + a2(λ2/1)kx2 + . . .+ an(λn/1)kxn

)
(6)

From the latter we obtain that r(k) converges to x1 as long as λk
2, . . . , λ

k
n → 0. Given that λ1 = 1 > λ2 > . . . > λn, this is

indeed the case. Moreover, the rate of convergence depends on λk
2.

4.6.1 Rate of convergence. The reate of converge is λk
2 after k iterations. Given that λ2(G) = λ2(G

′) ≤ d = 0.85, this
implies indeed that the rate of convergence is 0.85k. The ”Given” part of the claim of the previous paragraph has not been
proven yet! Its proof appears on the following page(s) under section 4.7. (Note that 0.8550 ≈ 0.00029 and 0.8560 ≈ 0.000058.)

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 30

Page Rank
Properties of the G matrix

4.7 Theorem. If matrix M has eigenvalues 〈1 ≥ λ2 ≥ . . . ≥ λn〉, then matrix G and also G′ has eigenvalues 〈1 ≥ dλ2 ≥ . . . ≥
dλn〉. The two matrices G,M are defined as follows: G = dM + 1−d

n
e et.

(Note we use in the remainder for clarity t instead of ′ for the transpose operation.)

Proof. Consider G = ((1− d)/n)eet + dM . For M , an eigenpair is (e, 1) i.e. Me = e.

Consider matrix Q formed by the eigenvectors of M listed so that e appears first, i.e. Q = (e X) then Q−1 =

(
zt

Zt

)
.

Since Q−1Q = I we obtain that Q−1Q =

(
zte ztX
Zte ZtX

)
=

(
1 0
0 I

)
. From the last equality we conclude that

ztX = 0, zte = 1 , Zte = 0, ZtX = I (7)

Consider now the product Q−1MQ. We have

Q−1MQ =

(
zt

Zt

)
·
(
Me MX

)
=

(
ztMe ztMX
ZtMe ZtMX

)
=

(
1 ztMX
0 ZtMX

)
(8)

The last equality was derived because Me = e implies ztMe = zte = 1 and the fact that zte = 1 by Eq. (7). In addition
ZtMe = 0 by Zte = 0 again from Eq. (7).

Q−1GQ = Q−1(dM + ((1− d)/n)eet)Q = dQ−1MQ+ (1− d)/nQ−1eetQ (9)

=

(
d dztMX
0 dZtMX

)
+

(1− d)

N
·
(
zte
Zte

)
·
(
ete etX

)
. (10)

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 31

Page Rank
Properties of the G matrix

The last two matrices are the expanded form of Q−1e and etQ respectively. Therefore we get after observing again from
Eq. (7) that zte = 1, Zte = 0.

Q−1GQ =

(
d dztMX
0 dZtMX

)
+

(1− d)

N
·
(
zte(ete) zte(etX)
Zte(ete) Zte(etX)

)

=

(
d dztMX
0 dZtMX

)
+

(1− d)

N
·
(

(ete) (etX)
0 0

)

=

(
d+ ((1− d)/N) ∗N dztMX + ((1− d)/N)etX

0 dZtMX

)

=

(
1 dztMX + ((1− d)/N)etX
0 dZtMX

)
(11)

Since ZtX = I from Eq. (7), and from the rightmost side of Eq. (8) we have ZtMX has eigenvalues the vector (λ2, . . . , λn),
and thus we can conclude that dZtMX will have as eigenvalues the d multiples of them, i.e. (dλ2, . . . , dλn).

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 32

Page Rank
The theory behind PageRank

Exercise 1 You are given the graph below. Apply each one of the ranking algorithms till convergence and find the ranks/au-
thority values/ hub values for each one of the nodes A, . . . , E. Use the following algorithms. Use appropriate initial conditions.

• Kleinberg’s hub and authority algorithm.

• PageRank with d = 0.85. Initial condition 1/N synchronous.

• PageRank with d = 0.85. Initial condition 1/N asynchronous.

A

B

C

D

E

Figure 7: Document Processing

(c) Copyright A. Gerbessiotis. CS 345 : Fall 2015 . All rights reserved. 33

