
A. V. Gerbessiotis CS435

Dec 22, 2015 Spring 2016

Reb-black tree operations Handout 5

1 Insertion in red-black trees

Insertion of a node z in an r-b tree is similar to insertion in a BST tree.
z becomes the root. If node z is inserted into an empty tree, we color z BLACK, and make z the root of

the tree.
Otherwise, the tree is not empty and,
z is not the root. We perform the standard BST-Insert operations and color z red.
Possible Problem. When we color z red, if the parent pz of z is also red, we have a problem. Note that in

that case the grandparent gz of z must be black (or pz could not have been red). Towards this we need to apply a
function FIX(z) recursively to fix the RED color of z. (If z becomes the root, fixing the root is straightforward!)

Case Description. Call cases XYc. X is based on the pz:gz, Y on the z:pz and c on the color(uz)
relationship, where uz is the sibling of pz. Thus X,Y can be R or L and c can be r or b.

1.1 Case 1: LLr, LRr and RRr, RLr

Case 1. The first case involves the Insertion subcases LRr and LLr which are shown. Cases RRr and RLr
are not shown but are symmetric. These cases require node recolorings only. Note that if gz is the root its color
cannot change; this causes an increase to the blackheight of descendant nodes. FIX may cause a total of O(lg n)
recursive calls higher in the tree.

// LRr, LLr shown (RRr, RLr symmetric and not shown)
Case 1a: LRr ::gz b->r; gz and p(gz) may become red; Call Fix(gz) next.

gz/b *gz/r :FIX(gz) next if parent r
/ \ / \
/ \ / \

pz/r uz/r pz/b uz/b
/ \ / \ / \ / \
1 *z/r 4 5 1 z/r 4 5

/ \ / \
2 3 2 3

Case 1b: LLr :: Same as before (gz: b-->r)

gz/b *gz/r :FIX(gz) next if parent r
/ \ / \
/ \ / \

pz/r uz/r pz/b uz/b
/ \ / \ / \ / \

z/r* 3 4 5 z/r 3 4 5
/ \ / \
1 2 1 2

1

1.2 Case 2: LRb, and Case 3: LLb

Case 2 covers the case of LRb, and Case 3 the case of LLb. Case 2 is ALWAYS FOLLOWED by Case 3. RLb
and RRb are symmetric(not shown).

***** A star (*) shows the node on which FIX is run.
Case 2:LRb is reduced to Case 3:LLb and resolved.

gz/b gz/b
/ \ / \

pz/r uz/b z/r uz/b REDUCTION TO Case 3
/ \ / \ ----LRo(pz)--> / \ / \
1 z/r* 4 5 *pz/r 3 4 5 <<< This is LLb case
/ \ / \ Run Fix(pz)
2 3 1 2 by applying case 3.

Case 3:LLb
gz/b pz/b
/ \ / \

pz/r uz/b ----RRo(gz)--> z/r gz/r
/ \ / \ / \ / \

z/r 3/b4 5 1 2 3/b uz/b
/ \ / \
1 2 4 5

After the single rotation is performed there can be no way that there are two consecutive RED nodes in a
path from the root to pz (root of the subtree in Case 3). Therefore after a single rotation we are done.

Conclusion. Insertion requires O(lg n) recolorings (Case 1) and O(1) rotations (Cases 2 and 3).

2

2 Deletion in red-black trees

Deletion in an r-b tree is similar to Deletion in a BST tree. When we perform Delete(z), a node is spliced out;
this node is called x. If z has no or one child, then x is z otherwise x is the successor (or the predecessor) of
z. In any of these three cases we call y the only child of x (if x has no children, then y is the NULL only child
of x reminding ourselves that in an rb-tree there is only one NULL node), and py the new parent of y after the
spliceout, which was previously the parent of x.

a. (x,y,py)=(r,b,b). If x is red, then y must be black and p(y) must be black or otherwise x should have
been black. Splicing out x causes no violations whatsoever.

b. x=b. If x is black, we have a violation of RB3. We distinguish the following subcases.

b1. (x,y)=(b,r). If y is red, we recolor y black and the violation is resolved.

b2. (x,y)=(b,b) and y is root. If y is black and y becomes the root of the tree, no RB3 violation occurs,
because all the paths from the root y will have black height one less.

b3. (x,y)=(b,b) and y not root. If y is black but not the root, we have a violation of RB3 that can not
be resolved immediately. We “transfer” the BLACK color of x to y by coloring y DOUBLE-BLACK.
We then need to fix y by calling FIXDELETE(y), i.e. a node calling FIXDELETE is a node “colored”
BLACK twice.

Case Description. All cases are labeled Xcn, where X denotes the orientation of y:py, c the color of the
sibling u of y and n the number of red children of u (i.e. sibling of y).

2.1 Cases 1 and 2

Comment: Lr1 and Lr2 are not possible; a red node CANNOT have red children.
Case 1: Lr0 : A left rotation is performed and then Case 2a or 3 or 4 applies.

py/b v/b REMARK 1:
/ \ / \ [v and py switch colors]

** y/b *v/r ---LRo(py)--> py/r B/b
/ \ / \ / \
A/b B/b **y/b A/b* 5 6

5 6

Case 2. Lb0
Subcase 2a. If py is r (Case 1) color py with b and color v with r and stop

py/r py/b
/ \ / \

** y/b *v/b y/b v/r and stop
/ \ / \
A/b B/b A/b B/b

Subcase 2b, If py is b FIXDELETE(py) py plays the role of y and py
also carries the extra black inherited by y due to the x splice out.
py/b ** py/b
/ \ / \

** y/b *v/b y/b v/r
/ \ / \
A/b B/b A/b B/b

3

2.2 Cases 3 and 4

Case 3: Lb1rb : Is transformed into case 4 immediately A,v exchanging colors.
py/? py/?

/ \ / \ The suffix rb in Lb1rb
** y/b *v/b ---RRo(v)--> **y/b A/b * denotes the children of v

/ \ / \ / \ / \
1 2 A/r B/b 1 2 3 v/r

/ \ / \ / \
3 4 5 6 4 B/b

/\
5 6

Case 4: Lb2 and Lb1br (there is neither Lb1bb=Lb0 neither Lb1rr=Lb2)
py/? v/? Case4 terminates Case3

/ \ / \
** y/b *v/b ---LRo(py)-> py/b B/b

/ \ / \ / \ / \
1 2 A/? B/r y/b A/? 5 6

/ \ / \ /\ /\
3 4 5 6 1 2 3 4

Running time is O(lg n) as well. Cases 1, 2a, 3, 4 terminate in O(1) time, Case 2b advances (moves towards
the top) one level every time it is executed, and the height of the RB tree is O(lg n).

4

