
A. V. Gerbessiotis CS435

Spring 2016Dec 23, 2015

Mini-Project 1 160 points

(c) Copyright A. Gerbessiotis. CS435 : Spring 2016 . All rights reserved.

1 Mini-Project Logistics

Rule 1. Read Handout 2 and follow its guidelines before you go any further into this document. Be reminded
you may only submit in one shot (email) one archive file (tar or zip) up to two options of the 3 available. Each
option is worth 120 points and the combination of the two can earn you no more than 160 points . Observe
naming conventions (Handout 2). Thus there should be no huffman.java file but only a huffman 4567.java if
the last 4 digits of your NJIT ID are indeed 4567. Check my.njit.edu for your ID! AFS machines can deal only
with .c .cc .cpp .java .txt .tar .zip suffixes. Anything else will be REJECTED.

Rule 2. The assignment is due before noon time the day indicated in the calendar of Handout 1 (Syllabus).
This means that the assignment MUST BE received by us before noon. Make sure that the the three keywords
of the subject line are as in Handout 2 and separate them with spaces only.

2a. Grader’s Email: Check the course web-page under Email(Assistant)
2b. Instructor’s Email: alexg+cs435@njit.edu
2c. Yourself: CC the email to yourself, so that YOU DO NOT COMPLAIN about email issues!

Rule 3. Email message must be received

BEFORE NOON-time of 21 April 2016
For penalties check Handout 1 (Syllabus). If the NJIT email system breaks down that day, we will not grant
any extensions; submit it the day before.

Rule 4. Submissions that deviate from Rules 1-3 will be assigned 0 points.

You may submit files related to up to two of the three options listed below.

OPTION 1 (Heap and Data compression related). Do the programming related to Huffman coding.

OPTION 2 (Hash Table related). Do the programming related to the building of a Hash Table that can
maintain arbitrarily long strings; it is similar to that used by Google around 1997-1998.

OPTION 3 (Graph and numerical related). Do the programming related to the implementation of Google’s
PageRank algorithm.

1

2 OPTION 1: Huffman Coding (120 points)

This programming option can be implemented in C, C++ or Java. We will try to give a description of the
requirements in a programming language independent way.

It is an assignment that requires the use of heap-related structures and operations. Such operations must
adhere to the semantics of the corresponding operations defined in the textbook (CLRS); of course array in the
textbook start from 1 but in C/C++/Java start from 0. Some adjustments are thus necessary. You are not
allowed to use Java or C or C++ classes that implement a Heap or a Priority Queue. YOU MUST IMPLEMENT
YOUR OWN.

If the naming conventions below are not facilitated or accommodated by the programming language you plan
to use, you are free to modify the names of the various functions. If this happens, however, you MUST provide
sufficient information in the file indicated in Handout 2.
Huffman coding. Says all. Input argument file in the command-line is an arbitrary file-name. You need
to provide a correct Huffman coding implementation that implements the algorithm described in class and also
available in the notes or the textbook. Such an algorithm must work not just in text files but also binary files
(pdf, images, video, etc). For small files do not get bothered if savings due to compression are small or negligible.
In general for files less than 10MiB, an implementation should take more than a few seconds, may be 15 seconds
forgivingly

Note that henc for Huffman encoding, or hdec for Huffman decoding should adhere to the Handout 2
requirements (i.e. they are more likely to be henc 4567 or hdec 4567.

// converts file into file.huf myfile.pdf into myfile.pdf.huf and so on

% java henc file
% ./henc file
% java henc myfile.pdf
% ./henc myfile.pdf

// converts file.huf into file , myfile.pdf.huf into myfile.pdf and so on

% java hdec file.huf
% ./hdec myfile.pdf.huf

// Operation henc is NON destructive! myfile.pdf would coexist with myfile.pdf.huf
// Operation hdec is destructive! file created from file.huf
// would ovewrite a previous file

Test Files Example
% ./henc h1435s16.pdf
% ./henc nytimes_google3.pdf

Note 1: Reminder. Document your bugs.

Note 2: Deliverables. Include all implemented functions or classes in an archive per Handout 2 guidelines.
Command-line execution: do not prompt to read a file-name. Everything command-line based.

2

3 OPTION 2: Hashing (120 points)

This component may be implemented in Java, C, or C++. We are asking you to implement a Lexicon structure
maintained by Google in 1997-1998 to store words (aka arbitrarily long strings of characters) in main memory
extracted from a large collection of documents. This lexicon L used a Hash Table T structure along with an
Array A of NULL separated strings .

In our case the words are going to be English character words only (upper-case or lower case).
Table T will be organized as a hash-table using collision-resolution by open-addressing as specified in class.

You are going to use quadratic probing for h(k, i) and keep the choice of the quadratic function simple: i2 so that
h(k, i) = (h′(k) + i2) mod m. The keys that you will hash are going to be English words. Thus function h′(k) is
also going to be kept simple: the sum of the ASCII/Unicode values of the characters mod m, where m is the slot-
size of the hash table. Thus ’alex’ (the string is between the quotation marks) is mapped to 97 + 108 + 101 + 120
mod m whatever m is. In the example below, for m = 11, h(alex, 0) = 8.

Table T however won’t store key values k in it. This is because the keys are strings of arbitrary length. Instead,
T will store pointers/references to another array A. Furthermore pointers/references are programming-language
dependent: we will just use integer indexes to a second array named A.

The second table, array A will be a character array and will store the words maintained in T separated by
null values \0. A null, is one character not a two character string consisting of a back-slash and the digit zero;
it is a zero-bit filled word of the appropriate size (1B for ASCII; 2B for Unicode nowadays). If you don’t know
what B is, it is a byte; never use b for a bit, write instead bit or bits.

An insertion operation affects T and A. A word w is hashed, an available slot in T is computed and let that
slot be t. In T [t] we store an index to table A. This index is the first location that stores the first character of
w. The ending location is the \0 following w in A. New words that do not exist (never inserted, or inserted but
subsequently deleted) are appended in A. Thus originally you need to be wise enough in choosing the appropriate
size of A. If at some point you run-out of space, you need to increase the size of A accordingly. Doubling it, is
a wise choice. Likewise the size of T might also have to be increased. This causes more problems that you need
to attend to.

A deletion will modify T as needed but will not erase w from A. Let it be there. So A might get dirty (i.e.
it contains garbage) after several deletions. If several operations later you end up inserting w after deleting it
previously, you do it the insertion way and you reinsert w, even if a dirty copy of it might still be around. You
DO NOT DO a linear search to find out if it exists arleady in A; it is inefficient. There is not much to say for a
search.

However you need to support three more operations: Print , Create and Cleanup. (Moreover, the imple-
mentation probably will use a check for an empty or full table/array and a mechanism to perform operation in
batch: a HashBatch function/method.)
The former prints nicely T and its contents i.e. index values to A. In addition it prints nicely (linear-wise in one
line) the contents of A. (For a \0 you will do the SEMI obvious: print a backslash but not its zero). The intent
of Print is to assist the grader. Print however does not print the words of A for deleted words. It prints stars
for every character of a deleted word instead. (An alternative is that during deletion each such character has
already been turned into a star.) Function Create creates T , A and initializes them. The number of slots of T
would be m. Allocate for A size 8m characters and initialize A to spaces.

The following is a minimal interface maintained. We call the class that supports and realizes A and T a
lexicon: L is one instance of a lexicon.

HashCreate (lexicon L, int m); // Create T, A. T will have m slots; A should be 8m

HashEmpty (lexicon L); // Check if L is empty

HashFull (lexicon L); // Check if L can maintain more words

HashPrint (lexicon L); // Print of L

HashInsert (lexicon L, word w); //Insert w into L (and T and A)

HashDelete (lexicon L, word w); //Delete w from L (but not necessarily from A)

HashSearch (lexicon L, word w); //Search for string in L (and this means T)

HashBatch (lexicon L, file filename)

3

The testing will be performed through HashBatch. It uses as an argument a filename where several operations
will be listed and executed in batch.

Operation 10 is Insert, Operation 11 is Deletion, and Operation 12 is Search. Operation 13 is Print,
Operation 14 is Create. (Create accepts as its second parameter and that of HashCreate, an integer value next
to its code 14; this becomes m.) The HashBatch accepts an arbitrary filename such as command.txt or file.txt
that contains a sequence of commands. Instances are shown in the example below.

% java mplexicon command.txt

% ./mplexicon file.txt

Thus
14 11

10 alex

10 tom

10 jerry

13

will print the following. The T entries for 0, 5, 9 are the indexes (first position) for alex, tom, jerry respec-
tively. Note that the ASCII values for ’alex’ mod 11 give a 10, but for ’tom’ and ’jerry’ give 6, i.e. a collision
occurs. A minimal output for Print is available below.

T A: alex\tom\jerry\

0: CAUTION: \ means \0

1: \t is not a tab character !!!

2:

3:

4:

5:

6: 5

7: 9

8: 0

9:

10:

A subsequent
12 alex

12 tom

12 jerry

12 mary

11 tom

13

will generate on screen

alex found at slot 8

tom found at slot 6

jerry found at slot 7

mary not found

tom deleted from slot 6

and the following will be printed
T A: alex***\jerry\

0:

1:

2:

3:

4:

5:

6:

7: 9

8: 0

9:

10:

Note. In both Print operations we intentionally left blank what happens with the other slots and also slot 6
after the deletion of tom. It’s up to you to decide the meaning of empty.
Deliverables. Include all implemented functions or classes (no .class files) in an archive per Handout 2 guidelines.

4

4 OPTION 3: Google’s PageRank (120 points)

Implement the Google PageRank algorithm as explained below. The input for this problem would be a graph
represented through an adjacency list representation. The command-line interface that would be used is as
follows The first two of the three parameters hold integer values; the last parameter is a filename. (This is the
variant that will be implemented i.e. the first two lines of invocation.) You need to implement class or function
pagerank (in fact pagerank 4567 or whatever Handout 2 dictates). (The other variant, i.e. the lines using
oerrorate are implicit in the variant to be implemented.)

% ./pagerank iterations initialvalue filename
% java pagerank iterations initialvalue filename
% ./pagerank errorrate initialvalue filename
% java pagerank errorrate initialvalue filename

The PageRank algorithm is iterative. At iteration t all pagerank values are computed using results from iteration
t − 1. The initialvalue helps us to start this process. Moreover, in the PageRank computation, a parameter
d would be set to 0.85. The PageRank of vertex A depends on the PageRanks of vertices T1, . . . , Tm incident to
A, i.e. pointing to A. The contribution of Ti to the PageRank of A would be the PageRank of Ti i.e. PR(Ti)
divided by C(Ti)), where C(Ti) is the out-degree of vertex Ti.

PR(A) = (1− d)/n + d (PR(T1)/C(T1) + . . . + PR(Tm)/C(Tm))

When we compute ranks (or PageRanks) iteratively we use the previous iteration values to update the current
iteration values! Thus PR(A) is the value to be obtained in the current iteration t, but all PR (Ti) values are
from the previous iteration t − 1. This is called a synchronized update. (In an asynchronous update, we use
whatever we have!) Be careful! Be synchronized!

In order to run the ’algorithm’ we either run it for a fixed number of iterations and iterations determines
that, or for fixed errorate of 10−4 when iterations is set to a value of 0 that does not make sense otherwise!
We know (theory-wise) that PageRank should ”converge” within 60-70 iterations; if not we can increase from the
command-line iterations. Alternatively we may let it run until a desired errorate is achieved. Thus errorrate
is a single digit (minus the sign that is) negative integer such as -2 or -3 or etc or -6. In such an approach
at the end of iteration t when all PageRanks have been computed we compare for every vertex the current and
the previous iteration PageRank values. If the difference is less than 10errorrate for EVERY VERTEX, we can
stop: we have achieved convergence to the desired error-rate. Instead of asking you to implement both variant
for the general case we ask you to implement the first variant for the general case and the second variant for a
specific errorrate of 10−4: a value of iterations equal to 0 determines which variant is to be run!

The second parameter initialvalue shows the initial values for the ranks. If it is 0 all ranks are initialized
to 0, if it is 1 they are initialized to 1. If it is -1 they are initialized to 1/N , where N is the number of web-pages
(vertices of the graph). If it is -2 they are initialized to 1/

√
N , where N is the number of web-pages (vertices of

the graph). (In order to determine N you need to construct the graph described in file filename first.)
The third parameter filename describes the input (directed) graph and it has the following form. The first

line contains two numbers: the number of vertices (in the example below, this is equal to four and is denoted by
the first four) and the number of edges that follow on separate lines (the second four in the example). In each
line an edge (i, j) is represented by i j. Thus our graph has (directed) edges (0, 2), (0, 3), (1, 0), (2, 1).

Pageranks are printed to six decimal digits.
If N > 10 then the values for iterations, initialvalue are to be 0 and -1 respectively. In such a case

the pageranks at the stopping iteration are ONLY shown, one per line.
The graph below will be referred to as samplegraph.txt

4 4

0 2

0 3

1 0

2 1

5

The following invocations relate to samplegraph.txt, with a fixed number of iterations and the fixed error
rate that determines how many iterations will run. Your code should compute for this graph the same rank
values (intermediate and final). A sample of the output for the case of N > 10 is shown (output truncated to
first 4 lines of it).

% ./pagerank 15 -1 samplegraph.txt

Base : 0 :P[0]=0.250000 P[1]=0.250000 P[2]=0.250000 P[3]=0.250000

Iter : 1 :P[0]=0.250000 P[1]=0.250000 P[2]=0.143750 P[3]=0.143750

Iter : 2 :P[0]=0.250000 P[1]=0.159687 P[2]=0.143750 P[3]=0.143750

Iter : 3 :P[0]=0.173234 P[1]=0.159687 P[2]=0.143750 P[3]=0.143750

Iter : 4 :P[0]=0.173234 P[1]=0.159687 P[2]=0.111125 P[3]=0.111125

Iter : 5 :P[0]=0.173234 P[1]=0.131956 P[2]=0.111125 P[3]=0.111125

Iter : 6 :P[0]=0.149663 P[1]=0.131956 P[2]=0.111125 P[3]=0.111125

Iter : 7 :P[0]=0.149663 P[1]=0.131956 P[2]=0.101107 P[3]=0.101107

Iter : 8 :P[0]=0.149663 P[1]=0.123441 P[2]=0.101107 P[3]=0.101107

Iter : 9 :P[0]=0.142425 P[1]=0.123441 P[2]=0.101107 P[3]=0.101107

Iter : 10 :P[0]=0.142425 P[1]=0.123441 P[2]=0.098030 P[3]=0.098030

Iter : 11 :P[0]=0.142425 P[1]=0.120826 P[2]=0.098030 P[3]=0.098030

Iter : 12 :P[0]=0.140202 P[1]=0.120826 P[2]=0.098030 P[3]=0.098030

Iter : 13 :P[0]=0.140202 P[1]=0.120826 P[2]=0.097086 P[3]=0.097086

Iter : 14 :P[0]=0.140202 P[1]=0.120023 P[2]=0.097086 P[3]=0.097086

Iter : 15 :P[0]=0.139520 P[1]=0.120023 P[2]=0.097086 P[3]=0.097086

% ./pagerank 0 -1 samplegraph.txt

Base : 0 :P[0]=0.250000 P[1]=0.250000 P[2]=0.250000 P[3]=0.250000

Iter : 1 :P[0]=0.250000 P[1]=0.250000 P[2]=0.143750 P[3]=0.143750

Iter : 2 :P[0]=0.250000 P[1]=0.159687 P[2]=0.143750 P[3]=0.143750

Iter : 3 :P[0]=0.173234 P[1]=0.159687 P[2]=0.143750 P[3]=0.143750

Iter : 4 :P[0]=0.173234 P[1]=0.159687 P[2]=0.111125 P[3]=0.111125

Iter : 5 :P[0]=0.173234 P[1]=0.131956 P[2]=0.111125 P[3]=0.111125

Iter : 6 :P[0]=0.149663 P[1]=0.131956 P[2]=0.111125 P[3]=0.111125

Iter : 7 :P[0]=0.149663 P[1]=0.131956 P[2]=0.101107 P[3]=0.101107

Iter : 8 :P[0]=0.149663 P[1]=0.123441 P[2]=0.101107 P[3]=0.101107

Iter : 9 :P[0]=0.142425 P[1]=0.123441 P[2]=0.101107 P[3]=0.101107

Iter : 10 :P[0]=0.142425 P[1]=0.123441 P[2]=0.098030 P[3]=0.098030

Iter : 11 :P[0]=0.142425 P[1]=0.120826 P[2]=0.098030 P[3]=0.098030

Iter : 12 :P[0]=0.140202 P[1]=0.120826 P[2]=0.098030 P[3]=0.098030

Iter : 13 :P[0]=0.140202 P[1]=0.120826 P[2]=0.097086 P[3]=0.097086

Iter : 14 :P[0]=0.140202 P[1]=0.120023 P[2]=0.097086 P[3]=0.097086

Iter : 15 :P[0]=0.139520 P[1]=0.120023 P[2]=0.097086 P[3]=0.097086

Iter : 16 :P[0]=0.139520 P[1]=0.120023 P[2]=0.096796 P[3]=0.096796

Iter : 17 :P[0]=0.139520 P[1]=0.119776 P[2]=0.096796 P[3]=0.096796

Iter : 18 :P[0]=0.139310 P[1]=0.119776 P[2]=0.096796 P[3]=0.096796

Iter : 19 :P[0]=0.139310 P[1]=0.119776 P[2]=0.096707 P[3]=0.096707

% ./pagerank 0 -1 verylargegraph.txt

Iter : 3

P[0] = 0.021429

P[1] = 0.030536

P[2] = 0.027500

...

...

other vertices omitted

....

Deliverables. Include all implemented functions or classes in an archive per Handout 2 guidelines. Document
bugs; no bug report no partial points.

6

