1 Insertion in red-black trees

Insertion of a node z in an r-b tree is similar to insertion in a BST tree.
z becomes the root. If node z is inserted into an empty tree, we color z BLACK, and make z the root of the tree. Otherwise, the tree is not empty and,
z is not the root. We perform the standard BST-Insert operations and color z red.
Possible Problem. When we color z red, if the parent $p z$ of z is also red, we have a problem. Note that in that case the grandparent $g z$ of z must be black (or $p z$ could not have been red). Towards this we need to apply a function $\operatorname{FIX}(\mathrm{z})$ recursively to fix the RED color of z. (If z becomes the root, fixing the root is straightforward!)

Case Description. Call cases XYc. X is based on the $\mathrm{pz}: \mathrm{gz}, \mathrm{Y}$ on the $\mathrm{z}: \mathrm{pz}$ and c on the color(uz) relationship, where uz is the sibling of pz . Thus X, Y can be R or L and c can be r or b .

1.1 Case 1: LLr, LRr and $\mathrm{RRr}, \mathrm{RLr}$

Case 1. The first case involves the Insertion subcases $\mathbf{L R r}$ and $\mathbf{L L r}$ which are shown. Cases $\mathbf{R R r}$ and $\mathbf{R L r}$ are not shown but are symmetric. These cases require node recolorings only. Note that if gz is the root its color cannot change; this causes an increase to the blackheight of descendant nodes. FIX may cause a total of $O(\lg n)$ recursive calls higher in the tree.
// LRr, LLr shown (RRr, RLr symmetric and not shown)
Case 1a: LRr ::gz b->r; gz and p(gz) may become red; Call Fix (gz) next.

Case 1b: LLr :: Same as before (gz: b-->r)

1.2 Case 2: LRb, and Case 3: LLb

Case 2 covers the case of LRb, and Case 3 the case of LLb. Case 2 is ALWAYS FOLLOWED by Case 3. RLb and $R R b$ are symmetric(not shown).

```
***** A star (*) shows the node on which FIX is run.
Case 2:LRb is reduced to Case 3:LLb and resolved.
\begin{tabular}{|c|c|c|c|}
\hline gz/b & \multicolumn{3}{|c|}{gz/b} \\
\hline / \} & & / \} & \\
\hline \(\mathrm{pz/r} \quad \mathrm{uz} / \mathrm{b}\) & z/ & r uz/b & REDUCTION TO Case 3 \\
\hline / \ / \} & ----LRo(pz)--> / & \(1 / 1\) & \\
\hline \(1 \mathrm{z} / \mathrm{r} * 45\) & *pz/r & 345 & This is LLb case \\
\hline / \} & / & & Run Fix(pz) \\
\hline 23 & & & by applying case 3 . \\
\hline
\end{tabular}
```

Case 3:LLb

After the single rotation is performed there can be no way that there are two consecutive RED nodes in a path from the root to pz (root of the subtree in Case 3). Therefore after a single rotation we are done.

Conclusion. Insertion requires $O(\lg n)$ recolorings (Case 1) and $O(1)$ rotations (Cases 2 and 3).

2 Deletion in red-black trees

Deletion in an r-b tree is similar to Deletion in a BST tree. When we perform Delete(z), a node is spliced out; this node is called x . If z has no or one child, then x is z otherwise x is the successor (or the predecessor) of z. In any of these three cases we call y the only child of x (if x has no children, then y is the NULL only child of x reminding ourselves that in an rb-tree there is only one NULL node), and $p y$ the new parent of y after the spliceout, which was previously the parent of x.
a. $(\mathrm{x}, \mathrm{y}, \mathrm{py})=(\mathrm{r}, \mathrm{b}, \mathrm{b})$. If x is red, then y must be black and $p(y)$ must be black or otherwise x should have been black. Splicing out x causes no violations whatsoever.
b. ($\mathrm{x}, \mathrm{y}, \mathrm{py}$) $=(\mathrm{b}, ?$, ?) Splicing out a black x causes a violation of RB3. We distinguish the following subcases.
b1. $(x, y, p y)=(b, r, ?)$. If y is red, we recolor y black and the violation is resolved.
b 2 . $(\mathrm{x}, \mathrm{y}, \mathrm{py})=(\mathrm{b}, \mathrm{b}, ?)$ and y is root. If y is black and y becomes the root of the tree, no RB3 violation occurs, because all the paths from the root y will have black height one less.
b3. $(\mathrm{x}, \mathrm{y}, \mathrm{py})=(\mathrm{b}, \mathrm{b}, ?)$ and y not root. If y is black but not the root, we have a violation of RB3 that can not be resolved immediately. We "transfer" the BLACK color of x to y by coloring y DOUBLEBLACK. We then need to fix y by calling FIXDELETE(y), i.e. a node y of FIXDELETE is a node "colored" BLACK twice.

Reminder: delete(z) \rightarrow spliceout $(x) \rightarrow$ FixDelete (y).
Case Description. All cases are labeled Xcn, where X denotes the orientation of y:py, c the color of the sibling u of y and n the number of red children of u (i.e. sibling of y).

2.1 Cases 1 and 2

Case 2. Lb0
Subcase 2a. If py is r (Case 1) color py with b and color v with r and stop

py / r		py/b		
/	\backslash	/	\backslash	
** y / b	*v/b	y / b	v / r	and stop
	/ \}		/ \}	
	A/b B/b		b B/	

Subcase 2b, If py is b FIXDELETE(py) py plays the role of y and py also carries the extra black inherited by y due to the x splice out.
** y / b *v/b $\quad \mathrm{y} / \mathrm{b} \quad \mathrm{v} / \mathrm{r}$
/ \ / \
A/b B/b
A/b B/b

2.2 Cases 3 and 4

Case 3: Lb1rb : Is transformed into case 4 immediately A,v exchanging colors.

Running time is $O(\lg n)$ as well. Cases $1,2 \mathrm{a}, 3,4$ terminate in $O(1)$ time, Case 2 b advances (moves towards the top) one level every time it is executed, and the height of the RB tree is $O(\lg n)$.

