
A. V. Gerbessiotis CS435-102

Dec 30, 2017 Spring 2018

Computer Science Fundamentals Handout 3

TABLE OF CONTENTS.

SECTION PAGES TOPICS

p1 TABLE OF CONTENTS

1 p2 Powers of two ; Exponentials base two

2 p3 Logarithms base two (and e and 10)

3 p4 Floors and Ceilings; Sets and Sequences;

Conjunctions, Disjunction, Negations

4 p5 Factorial ; Stirling’s Approximation Formula

5 p6 Bits and Bytes

6 p7 Frequency and Time Domain

7 p8 Number Systems: Denary, Binary, Octal, Hexadecimal

8 p14 ASCII, Unicode, UTF-8

9 p16 von-Neumann and Harvard models

10 p17 Memory Hierarchies

11 p19 Constants, Variables, DataTypes, ADT, etc

12 p21 Limits

13 p22 Derivatives and Integrals

14 p23 Sums of Sequences; finite and infinite

15 p26 Self-Evaluation Quiz for CS 435

16 p27 Solutions for Self-Evaluation Quiz for CS435

17 p28 Asymptotics

18 p29 Asymptotic Notation and Recurrences

19 p32 Induction and Recurrences

20 p45 Solutions to Selected Problems

21 p46 FORMULA COLLECTION

1

1 Powers of two : Exponentials base two

1.1. Powers of 2. The expression 2n means the multiplication of n twos. Thus 22 = 2·2 is a 4, 28 = 2·2·2·2·2·2·2·2
is 256 and 210 = 1024. Moreover 21 = 2 and 20 = 1. Several times one might write 2 ∗ ∗n or 2ˆn for 2n (ˆ is the
hat/caret symbol usually co-located with the numeric-6 keyboard key).

Expression Value
20 1
21 2
24 16
28 256
210 1024
220 1048576
230 1073741824

Figure 1: Exponentials: Powers of two

Prefix Name Multiplier
d deca 101 = 10
h hecto 102 = 100

k kilo 103 = 1000
M mega 106

G giga 109

T tera 1012

P peta 1015

E exa 1018

d deci 10−1

c centi 10−2

m milli 10−3

µ micro 10−6

n nano 10−9

p pico 10−12

f femto 10−15

Figure 2: SI system prefixes

1.2. Properties of powers. Among these

1.2.1 (Multiplication.) 2m · 2n = 2m 2n = 2m+n. (Dot · optional.)

1.2.2 (Division.) 2m/2n = 2m−n. (The symbol / is the slash symbol)

1.2.3 (Exponentiation.) (2m)n = 2m·n.

1.3. Approximations for 210 and 220 and 230. Since 210 = 1024 ≈ 1000 = 103, we have that
220 = 210 · 210 ≈ 1000 · 1000 = 1, 000, 000 = 106.
Likewise, 230 = 210 · 210 · 210 ≈ 1000 · 1000 · 1000 = 1, 000, 000, 000 = 109.
Therefore 220 is roughly one million (a bit more) and 230 is roughly one thousand million (a bit more).
Is 230 always roughly a billion ? Think twice and after reading 1.4 below.

1.4 Billions and Trillions: SI notation. Note that in British English, one billion is one million millions i.e.
a trillion in American English! And a trillion in British English might have 18 zeroes following the one! So we
prefer to say 1G for 109 and 1T for 1012 using the SI (Systeme International d’ unites) prefixes (or prefices)!

1.5 Asymptotically large: Exponential vs Polynomial Growth. Let c > 1, d ≥ 1 be constants. There is
a constant n0 such that for all n ≥ n0 we have that cn > nd.

2

2 Logarithms base two (and e and 10)

2.1. Logarithm base two (y = lg (n)). The logarithm base two of n is denoted by y = lg (n) or just y = lg n
or sometimes y = log2 n, and it is the power y that we need to raise integer 2 to get n.

That is, y = lg n ⇐⇒ 2y = 2lgn = n.

We sometimes write lg lg n to denote lg (lg (n)) and the nesting can go on. Moreover the two writings: lgk n =
(lg n)k are equivalent. Note that lg(k) n with a parenthesized exponent means something else (see CLRS for the
iterated logarithm function).

Expression Value Explanation
lg (1) 0 since 20 = 1
lg (2) 1 since 21 = 2
lg (16) 4 since 24 = 16
lg (256) 8 since 28 = 256
lg (1024) 10 since 210 = 1024
lg (1048576) 20 since 220 = 1048576
lg (1073741824) 30 and so on

Figure 3: Logarithms: Base two

2.2 The other logarithms: log10(x) and ln (x). If one writes log n, then the writing will be ambiguous.
Mathematicians or engineers might assume that it is to the base 10, i.e. log10 n or they can confuse it with lnn,
that uses as base the base e of the Neperian logarithms, i.e. loge n = lnn, where e is the base of the Neperian
logarithms e = 2.7172

ln (x) is the base e logarithm i.e. loge (x)

log (x) MIGHT BE the base 10 logarithm i.e. log10 (x)

2.3 Example. lg 2 is one since 21 = 2. lg (256) is 8 since 28 = 256. lg (1) is 0 since 20 = 1.

2.4. Example. Since 210 = 1024 we have that lg (1024) is 10.

2.5. Properties of Logarithms. In general, 2lg (n) = n and thus,

2.5.1 (Product.) lg (n ·m) = lg n+ lgm.

2.5.2 (Division.) lg (n/m) = lgn− lgm.

2.5.3 (Exponentiation.) lg (nm) = m · lg n.

2.5.4 (Change of base.) nlgm = mlgn. Moreover lg a = log a
log 2 .

2.6. Example. Since 220 = 210 · 210 we have that lg (220) = lg (210 · 210) = lg (210) + lg (210) = 10 + 10 = 20.
Likewise lg (230) = 30. Similarly to paragraph 1.3 of the previous page, lg (1, 000) ≈ 10 , lg (1, 000, 000) ≈ 20 and
lg (1, 000, 000, 000) ≈ 30.

2.7 How much is n1/ lgn? Let z = n1/ lgn. Then by taking logs of both sides (and using 2.5.3) lg z =
(1/ lg n) lg n = 1, we have lg z = 1 which implies z = 2.

2.8 Logarithm base e: A Lower bound. For all real x, ex ≥ 1+x, where 2.7172 . . ., the base of the Neperian
logarithms.

2.9 Logarithm base e: An upper bound (and the lower bound above). For all x such that |x| < 1,
1 + x ≤ ex ≤ 1 + x+ x2.

3

3 Floors and Ceilings and Sets and Sequences

3.1 The floor bxc. The floor function is defined as follows: bxc is the largest integer less than or equal to x.

3.1.1 Exercise: The floor of b10.1c and b−10.1c . The b10c is 10 itself. The b10.1c is 10 as well. The b−10.1c
is −11.

3.2 The ceiling dxe. The ceiling function is defined as follows: dxe is the smallest integer greater than or equal
to x.

3.2.2 The ceiling of d10.1e and d−10.1e . The d10e is 10 itself. The d10.1e is 11 as well. The d−10.1e is −10.

3.3 For a set we use curly braces { and } to denote it. In a set the order of its elements does not mater.
Thus set {10, 30, 20} is equal to {10, 20, 30}: both represent the same set containing elements 10,20, and 30 and
thus {10, 30, 20} = {10, 20, 30}.

3.4 For a sequence we use angular brackets 〈 and 〉 to denote it. In a sequence the order of its elements
matters. Thus by using angular bracket notation sequence 〈10, 30, 20〉 represents a sequence where the first
element is a 10, the second a 30 and the third a 20. This sequence is different from sequence 〈10, 20, 30〉. The
two are different because for example the second element of the former is a 30, and the second element of the
latter is a 20. Thus those two sequences differ in their second element position. (They also differ in their third
element position anyway.) Thus 〈10, 30, 20〉 6= 〈10, 20, 30〉.

3.5 Sets include unique elements; sequences not necessarily. Note the other distinction between a set
and a sequence. The {10, 10, 20} is incorrect as in a set each element appears only once. The correct way to
write this set is {10, 20}. For a sequence repetition is allowed thus 〈10, 10, 10〉 is OK.

3.6 Sets or sequences with too many elements to write down: three periods (. . .) Thus {1, 2, . . . , n}
would be a way to write all positive integers from 1 to n inclusive. The three period symbol . . . is also known as
ellipsis (or in plural form, ellipses).

3.7 ”Forall”, ”there exists” and ”belongs to”. The symbols ∀ , ∃, ∈ mean ”forall”, ”there exists” and
”belongs to” respectively.

3.8 Conjunction, Disjunction and Negation. The symbols ∧, ∨ and ¬ denote Conjunction, Disjunction
and Negation respectively. For true, we might use true or t or 1; likewise false , or f , or 0 for false. Thus
1 ∧ 0 = 0 and 1 ∨ 0 = 1. And x ∧ ¬x = 0 and x ∨ ¬x = 1. Sometimes we write x̄ for ¬x. Alternatively we might
write x∧y or x AND y for conjunction. Alternatively we might write x∨y or x OR y for disjunction. Alternatively
we might write NOT(x) for negation.

4

4 The factorial and Stirling’s approximation formula

4.1 The factorial n!. The factorial n! is defined as follows:

n! = 1 · 2 · . . . · n.

By definition 0! = 1 and 1! = 1. Thus 2! = 2, 3! = 6 and so on.

4.2 An upper bound for the factorial n! ≤ nn. A trivial upper bound for the factorial is derived by
upper-bounding each one of its terms by n.

n! = 1 · 2 · . . . · n ≤ n · n · . . . · n = nn.

4.3 A lower bound for the factorial n! ≥ (n/2)(n/2). A trivial lower bound for the factorial is derived by
lower-bounding half of its lower-order terms by 1, and half of its higher-order terms by n/2.

n! = 1 · 2 · . . . · (n/2) · (n/2 + 1) · . . . · n ≥ 1 · 1 · . . . · 1 · (n/2) · . . . · (n/2)

= (n/2)(n/2).

Of course here we ”ignored” differences between odd and even values of n. The analysis above is true and correct
for even n. Think of for n = 6 and n/2 = 3 and n/2 + 1 = 4 that

6! = 1 · 2 · 3 · 4 · 5 · 6 ≥ 1 · 1 · 1 · 4 · 5 · 6 ≥ 1 · 1 · 1 · 3 · 3 · 3 = 33 = (6/2)(6/2)

Otherwise for an odd n one should write,

n! = 1 · 2 · . . . · bn/2c · dn/2e · . . . · n ≥ 1 · 1 · . . . · 1 · dn/2e · . . . · dn/2e
≥ 1 · 1 · . . . · 1 · (n/2) · . . . · (n/2)

= (n/2)(n/2).

Think of for n = 5 and b5/2c = 2 and d5/2e = 3 that

5! = 1 · 2 · 3 · 4 · 5 ≥ 1 · 1 · 3 · 4 · 5 ≥ 1 · 1 · 2.5 · 2.5 · 2.5 = 2.53 ≥ (5/2)(5/2)

4.4 An approximation for n!. The following is a simplified approximation of Stirling’s approximation formula
that follows in 4.5.

n! ≈
(n
e

)n
,

4.5 Stirling’s approximation formula for n!. It applies for n ≥ 10.

n! =
√

2πn
(n
e

)n(
1 + Θ

(
1

n

))
,

A corrolary is that lg(n!) is approximately n lg n or Θ(n lg n) after the assymtotic Θ symbol is introduced!

lg (n!) ≈ n lg n− n lg e = Θ(n lg n).

4.6 The choose symbol as in n choose k or choose k objects out of n.(
n

k

)
=

n!

k!(n− k)!
,

5

5 Bits and Bytes

5.1 Bits and bytes! (The capitalization is English grammar imposed and intended as an unintentional joke!)

5.2 Bit and its notation. A bit is an ACRONYM derived from BInary digiT and is the minimal amount of
digital information. A bit can exist in one of two states: 1 , 0 or High, Low or Up, Down or True, False or T,
F. The correct notation for a bit is a fully spelled lower-case bit. If we want to write down in English 9 binary
digits we write down 9bit; a transfer rate can be 9.2bit/s. The notation 9b should be considered nonsense. A
lower-case b should never denote a bit! Several publications mistakenly do so, however!

5.3 Byte and its notation. A byte is the minimal amount of binary information that can be stored into the
memory of a computer and it is denoted by a capital case B. Etymologically, a byte is the smallest amount of
data a computer could bite out of its memory! We cannot store in memory a single bit; we must utilize a byte
thus wasting 7 binary digits. Nowadays, 1B is equivalent to 8bit. Sometimes a byte is also called an octet.
Memory size is usually expressed in bytes or its larger multiples. We never talk of 8,000bit memory: 1,000B is
the correct way to write it! To store 9bit in memory we need 2B (the extra byte is for the 9th bit)! Sometimes
we write 10byte or 10Byte which are acceptable; don’t use them and write 10B instead.

5.4 Aggregates of a Byte. A word is defined to be 32-bit, i.e. 4B. A double-word is thus 8B. The metric
system (i.e. SI i.e. International System) notation for Byte multiples follows.

1 bit = 2 states (0 or 1) [NEVER use 1b] , 1 byte = 1B = 8bit [AVOID 1Byte or 1byte]

1 short = 1 wide-byte =2B= 16bit , 1 word = 4B = 32bit , 1 double-word = 8B = 64bit

Symbol Factor Short/Long Name Memory size and reading

Ki = 2**10 kibi kilobinary 1KiB= 1kibibyte = 2**10B,

Mi = 2**20 mebi megabinary 1MiB= 1mebibyte = 2**20B,

Gi = 2**30 gibi gigabinary 1GiB= 1gibibyte = 2**30B,

Ti = 2**40 tebi terabinary 1TiB= 1tebibyte = 2**40B,

Pi = 2**50 pebi petabinary 1PiB= 1pebibyte = 2**50B,

AVOID THE FOLLOWING CONFUSING NOTATION

It’s confusing to write 1kB for 1024B as 1k is 1000; Is 1MB equal to 1,000,000B, or 1000kB or 1024kB or 1MiB?

It’s confusing to write 1KB for 1024B as K is degree Kelvin not the 1024 multiplier!

Microsoft uses 1GB for 1GiB of main memory/RAM but hard-disk companies uses 1GB for 1,000,000,000B.

5.6 How many bytes in 1KB or 1MB or 1GB? Use 1KiB, 1MiB, 1GiB if you are thinking of 210B, 220B, 230B
respectively for main memory (RAM) size or disk-drive capacity. A K is degrees Kelvin so 1KB is not SI compli-
ant; yet it is being used for 1KiB. The original sinner was 1kB that was used to denote 1024B; Intel is using 1KB

for 1024B! Avoid 1kB, avoid 1KB and use instead 1KiB! For main memory (aka RAM) Intel or Microsoft use 1GB
to mean 230B. Hard-disk drive manufacturers such as Seagate use 1GB to mean 1, 000, 000, 000B. Yet Microsoft
uses 1GB to mean 230B of a hard-disk drive. Avoid all problems using 1GiB for 230B.
Final Question: When is 500GB equal to 453GB for the correct 453GiB? A hard-disk drive (say,
Seagate) with 500GB on its packaging, will offer you a theoretical 500,000,000,000B. However this is unformatted
capacity; the real capacity after formatting you can use would be 2-3% less, say 487,460,958,208B. Yet an
operating system such as Microsoft Windows 7 will report this latter number as 453GB. Microsoft would divide
the 487,460,958,208 number with 1024*1024*1024 which is 453.93GiB i.e. microsoft’s 453GB.

5.7 Memory is a linear vector. A memory is an array of bytes, i.e. a sequence of bytes. In memory M ,
the first byte is the one stored at M [0], the second one at M [1] and so on. A byte is also a sequence of 8bit.

5.8 Big Endian vs Little Endian. If we plan to store the 16-bit (i.e. 2B) integer 0101010111110000 in memory
locations 10 and 11, how do we do it? Left-part first or right-part first (in memory location 10)? This is what
we call byte-order and we have big-endian and little-endian. The latter is being used by Intel.

BigEndian LittleEndian(Intel architecture)

10: 01010101 11110000

11: 11110000 01010101

6

6 Frequency and Time Domain

6.1 Frequency: Hz vs cycles/s. The unit of frequency is cycles per second. The symbol for the unit of
frequency is the Hertz, i.e. 1Hz = 1cycle/s. Then 1kHz, 1MHz, 1GHz, and 1THz are 1000, 106, 109, 1012

cycles/s or Hz. Note that in all cases the H of a Hertz is CAPITAL CASE, never lower-case. (The z is lower
case everywhere.)

6.2 Time in seconds or submultiples or multipes. The unit of time is the second and it is denoted by 1s or
also 1sec. Submultiples are 1ms, 1µs, 1ns, 1ps which are 10−3, 10−6, 10−9, 10−12 respectively and are pronounced
millisecond, microsecond, nanosecond, and picosecond respectively. Note that millisecond has two ells.

6.3 Frequency (f) and time (t): f · t = 1. The relationship between frequency and time is given by the
following equality f · t = 1. Thus 5Hz, means that there are 5 cycles in a second and thus the period of a cycle is
one-fifth of a second. Thus f=5Hz implies t=1/5s=0.2s. Computer or microprocessor speed used to be denoted in
MHz and nowadays in GHz. Thus an Intel 80486DX microprocessor rated at 25MHz, used to execute 25,000,000
instructions per second; one instruction had a period or execution time of roughly 1/25, 000, 000 = 40µs. A
moderm CPU rated at 2GHz allows instructions to be completed in 1/2, 000, 000, 000 = 0.5ns. (And note that
in 1990s and also in 2010s retrieving one byte of main memory still takes 60-80ns.)

6.4 Nanosecond and Distance (and speed of light). In one nanosecond, light (in vacuum) can travel a
distance that is approximately 1 foot. Thus 1 foot is approximately ’’1nanosecond’’.

7

7 Number systems: Denary, Binary, Octal, and Hexadecimal

7.1 Number Systems: Radix or Base. When we write number 13, implicit in this writing is that the
number is a denary (base-10) integer, and thus we utilize digits 0-9 to write this integer down. Since we use
ten digits, the base or radix of this number is 10. We may write this explicitly by saying ”base-10 integer 13”
or ”radix-10 integer 13”. If every number that we write is in base-10 / radix-10 we usually omit to mention the
base/radix explicitly. Sometimes we just say that the number is in ”decimal” or it is a ”decimal integer” or a
”denary integer”. The former ”decimal” might cause confusion as ”decimal” is associated with the decimal digits
or decimal point of a real number. For this reason, the unfamiliar ”denary” may and should be used instead.
A more convenient way to describe the radix is as a subscript to the number itself: write 1310. (In computing
base-8 and base-16 utilize the special prefixes 0o or 0x or 0X as shown below, to indicate the radix/base for such
integers or numbers.)

Base or Radix # digits used digits notation

Binary 2 2 0, 1 1001011

2

Octal 8 8 0..7 113 or 0o113

8

Denary 10 10 0..9 75 or 75

(also, Decimal) 10

Hexadecimal 16 16 0..9 a..f 0x4b or 0X4B or 4b or 4B

0..9 A..F 16 16

7.2 Natural Integer Numbers: Unsigned Integers. A natural (integer) number is a positive integer.
Sometimes a zero is included. In computing we call such integers unsigned integers, i.e they are non-negative
integers (zero or positive).

7.3 Integer Numbers: Signed Integers. In general an integer number can be positive, negative or zero. In
computing we call such integers signed integers.

7.4 Real Numbers: Floating-point Numbers. A real number (that includes integer digits, possibly a
decimal point, and decimal digits) is called in computing a floating-point number. Thus 12.1 or 12.10 or
1.21 · 101 represent a real number. In exponential notation a × 10b might also be written as aEb or aeb. Thus
5.1× 103 is 5.1e3 or 5.1E3.

7.5 n-bit or n-digit numbers. When we talk about binary numbers we fix and express explicitly the binary
digits of the representation: thus n-bit denotes an n-bit or n-digit binary number. An n-digit number can be
base-2, base-10, base-8, or base-16. But for an n-bit number the ”bit” indicates a binary digit and thus implicit
in this description is the fact that the number is a binary number. Binary numbers can get quite lengthy. We
can group three bits or four bits and assign a special symbol to the group to generate its octal or hexadecimal
representation instead (23 = 8 and 24 = 16). For the 8-bit integer 11110000 the right-most zero is sometimes
called the least-significant bit or digit and the left-most one is sometimes called the most-significant bit or
digit. This is if all bits of 11110000 represent its magnitude i.e. its value. When signed integers are represented
and the left-most bit is the sign the remaining bits is the magnitude i.e. 1110000 and then the left-most bit of
the magnitude might be called the most-significant bit. However this is not universally followed/adhered.

7.6 Example.

101 is base-10, base-2, base-8, based-16 representation of 5, 101, 65, 257 respectively

41 cannot be in base-2 because it uses digit 4 which is not one of the binary digits

81 cannot be in base-2, nor base-8 because it uses an 8 available only for base-10, base-16

AB cannot be in base-2,base-8,base-10, becaused digits A,B are only used in hexadecimal.

7.7 How many (minimal number of) bits to represent unsigned integer n, where n > 0? The number
of bits for n is blg nc+ 1 or equivalently dlg (n+ 1)e. Thus for 1 we need 1 bit, for 2 i.e. 102 we need two, for 4
ie. 1002 we need three and for 7 i.e 1112 we also need three.

8

7.8 Table of some integers in binary, octal, hexadecimal and denary.

Binary Denary Hexadecimal Octal Notes

0000 0 0 0 Octal 17 is formally written as 0o17

0001 1 1 1

0010 2 2 2

0011 3 3 3 Hexadecimal 11 is formally written as 0x11

0100 4 4 4 Hexadecimal FF or ff is written 0XFF or 0xff respectively

0101 5 5 5

0110 6 6 6

0111 7 7 7

1000 8 8 10

1001 9 9 11

1010 10 A 12

1011 11 B 13

1100 12 C 14

1101 13 D 15

1110 14 E 16

1111 15 F 17

10000 16 10 20

10001 17 11 21

7.9 Example with b = 2. Convert n = 5-digit integer 110012 into decimal. Thus 110012 is 2510 i.e. 25.

24 23 22 21 20

· · · · ·
1 1 0 0 1
= = = = =
16+ 8+ 0+ 0+ 1 = 25

7.10 Example with b = 8. Convert n = 5-digit integer 110018 into decimal. Thus 110018 is 460910 i.e. 4609.

84 83 82 81 80

· · · · ·
1 1 0 0 1
= = = = =
4096+ 512 0+ 0+ 1 = 4609

7.11 Example with b = 2. Convert 12, 102, 1002, 10002, . . . , 1 0 . . . 0︸ ︷︷ ︸
x zeroes

into decimal.

12 is 110 i.e. 20 = 1.
102 is 21 = 2.
1002 is 22 i.e. 4.

10002 is 23 i.e. 8.

Likewise 1 0 . . . 0︸ ︷︷ ︸
x zeroes

is 2x.

7.12 Example with b = 2. Convert 12, 112, 1112, 11112, . . . , 1 . . . 1︸ ︷︷ ︸
x ones

into decimal.

12 is 110 is 21 − 1 i.e. a 1.
112 is 22 − 1 i.e. 3.
1112 is 23 − 1 i.e. 7.

11112 is 24 − 1 i.e. 15.

Likewise 1 . . . 1︸ ︷︷ ︸
x ones

is 2x − 1.

7.13 Example with b = 2. How many non-negative integers can be represented with n bits? Answer is 2n

from 0 to 2n − 1.

7.14 Example. Convert n = 8-bit binary 11111111 into octal

’ 11’111’111 : Group : Step 1.

’011’111’111 : Add leading zeroes : Step 2

3 7 7 : Convert groups into octal : Step 3

0o377 : Output : Step 4

9

7.15 Example. Convert n = 8-bit binary 11111111 into octal

’1111’1111 : Group : Step 1.

’1111’1111 : Add leading zeroes : Step 2

F F : Convert groups into octal : Step 3

0XFF : Output : Step 4

or

0xff : Output : Step 4

7.16 Example: Denary to Binary (left to right). Convert x = 77 into binary. The result is 10011012.

K=6 K=5 K=4 K=3 K=2 K=1 K=0

2**6 2**5 2**4 2**3 2**2 2**1 2**0

X=77

64 <= 77? 1

X=77-64=13

32 <= 13? 1 0

X = 13

16 <= 13? 1 0 0

X=13

8 <= 13? 1 0 0 1

X=13-8=5

4 <= 5 ? 1 0 0 1 1

X=5-4=1

2 <= 1 ? 1 0 0 1 1 0

X=1

1 <= 1 ? 1 0 0 1 1 0 1

X=1-1=0

Result is 1001101

7.17 Example: Denary to Binary (right to left). Convert x = 77 into binary right to left. The result is
10011012.

X= 77 is odd --------------------------------------

|

X=(77-1)/2=38 |

X=38 is even ----------------------------------- |

| |

X=38/2=19 | |

X=19 is odd ------------------------------- | |

| | |

X=(19-1)/2=9 | | |

X=9 is odd --------------------------- | | |

| | | |

X=(9-1)/2=4 | | | |

X=4 is even ----------------------- | | | |

| | | | |

X=4/2=2 | | | | |

X=2 is even ------------------- | | | | |

| | | | | |

X=2/2=1 | | | | | |

X=1 is odd --------------- | | | | | |

| | | | | | |

X=(1-1)/2=0 1 0 0 1 1 0 1

Output 1001101

7.18 Range of an 8-bit unsigned and signed integer.

8-bit unsigned can represent all 2**8 = 256 unsigned integers from 0..255

8-bit signed (two’s complement) can represent the 256 integers -128 .. -1 0 1 .. 127

consisting of 128 negative values, 127 positives values and zero

7.19 Signed integers. In order to be able to represent negative integers we need to somehow represent the
sign of the number as positive (say +) or negative (say −). We somehow need to incorporate this sign with the
binary digits of the number. The simplest way to accomplish this is to borrow one of the bits of a binary number
and use the 0 value of it to represent a positive number and the 1 value of it to represent a negative number.
That is too easy. The problem that we might face is zero: Will its sign be positive or negative, i.e. a 0 bit or

10

a 1 bit? How we handle zero, is going to affect the discussion that follows. But let us resolve first one more
issue. What bit of a bit sequence will denote the sign? The answer to this question is rather easy: the left-most
bit. Note that we use the term left-most rather than the dangerous (in this setting) most-significant digit or
most-significant bit. In addition, when we deal with binary (positive and negative) integers we also need to be
explicit about the number of digits in the representation. The are three major representations of (negative and
non-negative) integers.
7.19.2 A Signed mantissa. An n-bit integer in signed mantissa has one sign bit (the leftmost one) and n− 1
bits for the value (magnitude). Thus integers in the range −2n−1, . . . , 2n−1 can be represented with two zeroes,
a negative and a positive one available. 7.19.2.a Signed Mantissa Example. Thus for 8-bit integers, +43
becomes 00101011 and −43 becomes 10101011. The left-most (cautiously most-significant-bit) is the sign and
differs in +43 from −43; the remaining 7 bits are the same 0101011 and correspond to natural number 43. Note
that one NEEDS TO TELL US THAT 10101011 is in signed-mantissa representation. Otherwise we might think
that this a natural (unsigned) integer whose value is 171. Note that 128 + 43 = 171. Thus if x is a positive
integer number, then we can represent −x in signed-mantissa 8-bit notation by considering 128 + x, and writing
down its bits as if it was a natural number rather than the negative number −x. Moreover for 10101011 in signed
mantissa, we treat it first as if it is a non-negative integer and retrieve its magnitude 171. Given that we know
is in signed mantissa and the left most bit that is a one is the sign the negative representated is the negation of
171− 128 = 43 i.e it represent −43! Note that in signed mantissa there is a positive zero and a negative zero i.e.
00000000 and 10000000.
7.19.3 One’s complement. It is similar to the signed mantissa representation for range and number of zeros.
Thus an n-bit one’complement integer can represent all integers in the range −2n−1, . . . , 2n−1 with two zeroes
(the positive zero being an all-zero sequence and the negative zero an all-one bit sequence).
7.19.4 Two’s complement. An n-bit integer in two’s complement has a left-most bit used as a sign bit, and
the remaining n− 1 bits for its value. There is only one zero (all bits are zero) and the integers represented are
in the range −2n−1, . . . , 2n−1 − 1.
7.19.4.1. Two’s complement example. In two’s complement we have the left-most bit used as a sign bit as
well. There is only one zero. The two’s complement of a non-negative integer is the integer itself in binary. Thus
37 is represented as an 8-bit two’s complement integer by the bit sequence 00100101. If we plan to represent -38
though, we first flip the bits i.e. we generate 11011010 and add one to the result obtaining 11011011, which is
two’s complement for -38. Thus 00000000 corresponds to zero. What do we make out of 11111111? Definitely
it is a negative integer. We reverse the steps of converting a denary integer into two’s complement by first
subtracting one to get 11111110. Then we flip the bits to get 00000001. Thus 11111111 is −1. For the same
reason there is no negative zero as well: if we start with zero, flip the bits to get 11111111 and try to add one
to it we end up getting a 9-bit 100000000 that cause overflow problems!
7.20 Java’s numeric data types. In java a byte is an 8-bit signed two’complement integer whose range is
−27 . . . 27 − 1. In java a short is a 16-bit signed two’complement integer whose range is −215 . . . 215 − 1. In
java an int is a 32-bit signed two’complement integer whose range is −231 . . . 231 − 1. In java a long is a 64-bit
signed two’complement integer whose range is −263 . . . 263 − 1. The default value of a variable for the first three
primitive datatypes is 0 and for the latter a 0L.
7.21. Floating Point in Fixed-Point. One easy way to incorporate real numbers is to assume that in fixed-
point n-bit representation, some of the bits represent the integer part (say a of them) and the remaining n − a
bits the decimal If one does not want to commit that many bits, a floating-point representation is used where
the decimal point is not fixed to a digits or n− a decimals.

Integer Fixed-Point Fixed-Point

abcd.efgh abcde.fgh

00011100 28 1.75 3.50

abcd.efgh = a x 8 + b x 4 + c x 2 + d x 1 + e x 1/2 + f x 1/4 + g x 1/8 + h x 1/16

abcde.fgh = a x16 + b x 8 + c x 4 + d x 2 + e x 1 + f x 1/2 + g x 1/4 + h x 1/8

11

7.22. Floating Point Values. Let us start with some definitions affecting real numbers. A normalized binary
number is one that has a 1 just before (on the left of) the decimal point. Thus 100. looks like 4 but it is not
normalized. Its normalized form would be 1.0 × 22 resulting by shifting it to the right two positions. Thus a
normalized binary number is always of the form ±1.xxxx2 × 2yyyy where xxxx is the fraction or mantissa
and yyyy is the exponent. The fraction plus one i.e. 1.xxxx is known as the significand D. The significand
by definition is always a small real number between 1 and 2. Real number in floating-points are represented
using the IEEE 754-1985 standard. Be reminded that in IEEE 754-1985 neither addition nor multiplication are
associative any more. Thus it is possible that (a+ b) + c 6= a+ (b+ c). Thus errors can accumulate when we add
or multiply values! Do not forget that!

single precision (SP) double precision (DP)

32-bit 64-bit

Bias B=127 Bias B=1203

------------------------------ ------------------------------

|S| E 8-bit | F 23-bit | |S| E 11-bit | F 52-bit |

------------------------------ ------------------------------

Reserved Values

E F s E F

00000000 0..0 0 0..0 0..0 is positive zero +0.0

00000000 0..0 1 0..0 0..0 is negative zero -0.0

00000000 X..X NotNormalized (1-2S) x 0.F x 2**-126

11111111 0..0 0 1..1 0..0 is positive Infinity

11111111 0..0 1 1..1 0..0 is negative Infinity

11111111 X..X NaN Not-a-Number (eg 0/Inf, 0/0, Inf/Inf)

Smallest E: 0000 0001 = 1 - B = -126

Smallest F: 0000 ... 0000 implies Smallest D: 1.0000 ... 0000 = 1.0 [normalized]

Smallest Number = 0 00000001 0....0 = (1-2S) x 1.0 x 2**-126 ~ (1-2S) 1.2e-38 [normalized]

Largest E: 1111 1110 = 254 - B = 127

Largest F: 1111 ... 1111 implies Largest D: 1.1111 ... 1111 ~ 2.0 [normalized]

Largest Number = 0 11111110 1....1 = (1-2S) x 2.0 x 2**127 ~ (1-2S) 3.4e38 [normalized]

Smallest E: 0000 0000 reserved to mean 2**-126 for nonzero F

Smallest F: 0000 ... 0001 implies Smallest D: 0.0000 ... 0001 = 2**-23 [Unnormalized]

Smallest Number = 0 00000000 0....1 = (1-2S) x 2**-23 x 2**-126 = 2**-149 [Unnormalized]

Largest E: 0000 0000 reserved to mean 2**-126 for nonzero F

Largest F: 1111 ... 1111 implies Largest D: 0.1111 ... 1111 ~ 1-2**-23 [Unnormalized]

Largest Number = 0 00000000 1....1 = (1-2S) x 1-2**-23 x 2**-126 ~ 2**-126(1-2**-23) [Unnormalized]

7.23 Single Precision(SP). In single precision the sign S is one-bit (left-most one), the exponent E is 8-bit
and the fraction F is 23-bit. Viewing E as an unsigned integer and converting it into its value and converting all
the 23-bits into the corresponding fraction ala the fixed-point conversion, the floating-point number represented
by the bit-sequence (S,E, F,D = 1 + F) is n = (1− 2S)× (1 + F)× 2E−B = (1− 2S)× (1 + F)× 2E−127. The
relative precision is SP given that it uses a 23-bit fraction is roughly 2−23, thus 23 log10 2 ≈ 6 decimal digits
of precision can be expected. There are two zeroes: when all of E, F are the 0-bit sequences the positive and
negative zero is determined by the sign bit 7.24 Double Precision(DP). In double precision the sign S is

one-bit (left-most one), the exponent E is 11-bit and the fraction F is 52-bit. Viewing E as an unsigned integer
and converting it into its value and converting all the 52-bits into the corresponding fraction ala the fixed-point
conversion, the floating-point number represented by the bit-sequence (S,E, F) is n = (1−2S)×(1+F)×2E−B =
(1 − 2S) × (1 + F) × 2E−1203. The relative precision is DP given that it uses a 52-bit fraction is roughly 2−52,
thus 52 log10 2 ≈ 16 decimal digits of precision can be expected. Thus the first double precision number greater
than 1 is 1 + 2−52.

7.23.1 Single Precision Example(s). In order to represent −0.75 in single precision we first normalize it
i.e. −0.75 = −1 × 1.12 × 2−1. The binary number (in fixed point) 1.12 is 1.5 thus this expressions means that

12

−0.75 = −1× 1.5× 2−1 which is correct. To determine E, we add the B i.e. E = B + (−1) = 127− 1 = 126. Its
8-bit binary representation is 0111 1110. The fraction part F is 1 or in 23 bits 1000000 00000000 00000000.
Thus the result is

S E F

10111111 01000000 00000000 00000000 = 1 | 01111110 | 1000000 00000000 00000000 =

What number is 110000001010....0? Since the sign bit is S = 1 we know the number is negative. The
following 8 bits are the exponent E 10000001 i.e. they represent E = 129. Then the exponent is e = E − B =
129 − 127 = 2. The fractional part is F=010 . . . 0 and thus D = 1.010 . . . 0. Converting D into denary we get
d = 1 + 1/4 = 1.25. Thus the number reprsented is (1− 2S)× 1.25× 22 = −5.0

Then represent 1/10 i.e. the 0.110 in SP. The one-tenth representation caused problem in the 1991 Patriot
missile defense system that failed to intercept a Scud missile in the first Iraq war resulting to 28 fatalities.

7.24 Same algebraic expression, two results. The evaluations of an algebraic expression when commutative,
distributive and associative cancellation laws have been applied can yield at most two resulting values; if two
values are resulted one must be a NaN. Thus 2/(1 + 1/x) for x =∞ is a 2, but 2x/(x+ 1) is a NaN.

7.25 Double-Extended Precision(DP). In double-extended precision the sign S is one-bit (left-most one),
the exponent E is at least 15-bit and the fraction F is at least 64-bit; at least 10 bytes are used for a long double.

13

8 ASCII, Unicode, UTF-8

8.1 ASCII Characters. In the preceding pages we viewed several 8-bit or so sequences in a variety of ways
as positive or negative numbers. A 7-bit bit-sequence can also be viewed as an ASCII character code. Thus a
single byte (8 bits) can be used to store characters, not numbers (remember that a byte is the minimum storage
that can be used to store information). For ASCII characters that extra bit that goes unused is either a 0 or an
error-correction parity bit.

8.2 Table of ASCII characters. The table below contains all 128 ASCII character codes from 0 to 127
arranged in 8 rows (0-7 in octal or hexadecimal) and 16 columns (0-F in hexadecimal). The ASCII code for a
character can be retrieved by concatenating the row index (code) with the column index code. For example A is
in row 4 and column 1 i.e. its hexadecimal code is 0x41. Its row index 4 in 4-bit binary is 0100 and 1 in 4-bit
binary is 0001. Thus the code for A is 01000001 which is 65 in decimal or 0x41 in hexadecimal. Rows 0 and 1
contain Control Characters represented by the corresponding mnemonic code/symbol. Code 32 or 0x20 is the
space symbol (empty field).

8.3 Unicode characters. The Unicode character set uses 2 or more bytes to represent one character. The
Unicode character for an ASCII character remains the same if one adds extra zeroes. Thus DEL which is 0x7F in
ASCII has UNICODE code 0x007F. We also write this as U+007F.

8.4 Java character primitive data types. In jave a char data type is a single 16-bit Unicode character. Its
minimum value is ’\u0000’ (or U+0000) and its maximum value ’\uFFFF’ (or U+FFFF).

8.5 UTF-8. In UNICODE only numeric values are assigned to characters. These numeric values are not required
to be ordered in a specific sequence of bytes, of the same number or variable number. There are several encoding
schemes to represent Unicode. One of the is UTF-8 where characters are encoded using 1 to 6 bytes. In UTF-8
all ASCII characters are encoded within the 7 least significant digits of a byte and its most-significant bit is
set to 0. Thus Unicode characters U+0000 to U+007F that is the ASCII characters are encode simply as byte
0x00 to 0x7F. Thus ASCII and UTF-8 encoding look the same. All characters larger than U+007F use 2 or more
bytes each of which has the most significant bit set to 1. This means that no ASCII byte can appear as part of
any other character since only ASCII characters have a 0 in the most signficant bit position. The first byte of
a non-ASCII character is one of 110xxxxx, 1110xxxx, 11110xxx, 111110xx, 1111110x and it indicates how
many bytes there are altogether or the number of 1s following the first 1 and before the first 0 indicates the
number of bytes in the rest of the sequence. All remaining bytes other than the first start with 10yyyyyy.

14

========================

ASCII CHARACTER SET

========================

===

\ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS TAB LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 ! " # $ % & ’ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ‘ a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

===

NUL = null BS = Backspace DLE = Datalink escape CAN = cancel

SOH = start of heading TAB = horizontal tab DC1 = Device control 1 EM = end of medium

STX = start of text LF = linefeed/newline DC2 SUB = substitute

ETX = end of text VT = vertical TAB DC3 ESC = escape

EOT = end of transmission FF = form feed/newpage DC4 FS = file separator

ENQ = enquiry CR = carriage return NAK = negative ACK GS = group separator

ACK = acknowledge SO = shift out SYN = synchronous idle RS = record separator

BEL = bell SI = shift in ETB = end of trans. block US = unit separator

===

UTF-8 ENCODING

===

UTF-8 Number of bits in code point Range

0xxxxxxx 7 00000000-0000007F

110xxxxx 10xxxxxx 11 00000080-000007FF

1110xxxx 10xxxxxx 10xxxxxx 16 00000800-0000FFFF

11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 21 00010000-001FFFFF

111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 26 00200000-03FFFFFF

1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 31 04000000-FFFFFFFF

1110xxxx 10xxxxxx 10xxxxxx

===

15

9 Computer Architectures: von-Neumann and Harvard

9.1 Architecture and Model of computation: Von-Neumann model. Under this architectural model, a
central processing unit, also known as the CPU, is responsible for computations. A CPU has access to a program
that is being executed and the data that it modifies. The program that is being executed and its relevant data
both reside in the same memory usually called main memory. Thus main memory stores both program and
data, at every cycle the CPU retrieves from memory either program (in the form of an instruction) or data,
performs a computation, and then writes back into memory data that were computed at the CPU by one of its
units in a current or prior cycle.

9.2 Architecture and Model of computation: Harvard model. An alternative architecture, the so called
Harvard model of computation or architecture as influenced by (or implemented into) the Harvard Mark
IV computer for USAF (1952) was also prevalent in the early days of computing. In the Harvard architecture,
programs and data are stored separately into two different memories and the CPU maintains distinct access
paths to obtain pieces of a program or its associated data. In that model, a concurrent access of a piece of a
program and its associated data is possible. This way in one cycle an instruction and its relevant data can both
and simultaneously reach the CPU as they utilize different data paths.

9.3 Hybrid Architectures.
The concepts of pipelining, instruction and data-level caches can be considered Harvard-architecture

intrusions into von-Neumann models. Most modern microprocessor architectures are using them.

9.4 CPU vs Microprocessor. CPU is an acronym for Central Processing Unit. Decades ago all the units that
formed the CPU requires multiple cabinets, rooms or building. When all this functionality was accommodated
by a single microchip, it became known as the microprocessor. The number of transistors in modern processor
architectures can range from about a billion to 5 billion or more (Intel Xeon E5, Intel Xeon Phi, Oracle/Sun Sparc
M7). A chip is the package containing one or more dies (actual silicon IC) that are mounted and connected on a
processor carrier and possibly covered with epoxy inside a plastic or ceramic housing with gold plated connectors.
A die contains or might contain multiple cores, a next level of cache memory adjacent to the cores (eg. L3),
graphics, memory, and I/O controllers.

9.5 Multi-core, Many-core, GPU and more. In the past 10-15 years uni-processor (aka single core aka
unicore) performance has barely improved. The limitations of CPU clock speeds (around 2-3GHz), power con-
sumption, and heating issues have significantly impacted the improvement in performance by just increasing
the CPU clock speed. An alternative that has been pursued is the increase of the number of “processors” on a
processor die (computer chip). Each such “processor” is called a core. Thus in order to increase performance,
instead or relying to increasing the clock speed of a single processor, we utilize multiple cores that work at the
same clock speed (boost speed), or in several instance at a lower (clock) speeds (regular speed).

Thus we now have multiple-core (or multi-core) or many-core processors. Dual-core or Quad-core refer
to systems with specifically 2 or 4 cores. The number of cores is usually (2016) less than 30 (eg Intel’s Xeon
processors). Sometime many-core processors (eg Intel’s Phi) are attached to the CPU and work in ’parallel’ with
the CPU or independetly of it. In such a case a many-core is called a coprocessor. A GPU (Graphics Processing
Unit) is used primarily for graphics processing. CUDA (Compute Unified Device Architecture) is an application
programming interface (API) and programming model created by NVIDIA (TM). It allows CUDA-enabled GPU
units to be used for General Purpose processing, sequential or massively paprallel. Such GPUs are also known
as GPGPU (General Purpose GPU) when provided with API (Application Programming Interface) for general
purpose work. A GPU processor (GK110) contains a small number (up to 16 or so) of Streaming Multiprocessors
(SM, SMX, or SMM). Each streaming multiprocessor has up to 192 32-bit cores supporting single-precision
floating-point operations and up to 64 64-bit cores supporting double-precisions operations. Other cores support
other operations (eg. transendental functions). Thus the effective ”core count” is in the thousands.

16

10 Computer Architectures: Memory Hierarchies

10. CPU and Main Memory Speed. A CPU rated at 2GHz can execute 2G or 4G operations per second or
roughly two-four operations per nanosecond, or roughly one operation every 0.25-0.5ns. A CPU can fetch one
word from maim memory (”RAM”) every 80-100ns. Thus there is a differential in performance between memory
and CPU. To alleviate such problems, multiple memory hierarchies are inserted between the CPU (fast) and
Main Memory (slow): the closer the memory to the CPU is the faster it is (low access times) but also the costlier
it becomes and the scarcier/less of it also is. A cache is a very fast memory. Its physical proximity to the CPU
(or core) determines its level. Thus we have L1 (closest to the CPU, in fact ”inside” the CPU), L2, L3, and L4
caches. Whereas L2 and L3 are ”static RAM/ SRAM”, L4 can be ”dynamic RAM / DRAM” (same composition
as the main ”RAM” memory) attached to a graphics unit (GPU) on the CPU die (Intel Iris).

10.1 Level-1 cache. A level-1 cache is traditionally on-die (same chip) within the CPU and exclusive to a
core. Otherwise performance may deteriorate if it is shared by multiple cores. It operates at the speed of the
CPU (i.e. at ns or less, currently). Level-1 caches are traditionally Harvard-hybrid architectures. There is an
instruction (i.e. program) cache, and a separate data-cache. Its size is very limited to few tens of kilobytes per
core (eg. 32KiB) and a processor can have separate jevel-1 caches for data and instructions. In Intel architectures
there is a separate L1 Data cache (L1D) and a L1 Instruction cache (L1I) each one of them 32KiB for a total of
64KiB. They are implemented using SDRAM (3GHz typical speed) and latency to L1D is 4 cycles in the best
of cases (typical 0.5-2ns range for accessing an L1 cache) and 32-64B/cycle can be transferred (for a cumulative
bandwidth over all cores as high as 2000GB/s). Note that if L1D data is to be copied to other cores this might
take 40-64 cycles.

10.2 Level-2 cache. Since roughly the early 90s several microprocessors have become available utilizing sec-
ondary level-2 caches. In the early years those level-2 caches were available on the motherboard or on a chip
next to the CPU core (the microprocessor core along with the level-2 cache memory were sometimes referred to
as the microprocessor slot or socket). Several more recent microprocessors have level-2 caches on-die as well. In
early designs with no L3 cache, L2 was large in size (several Megabytes) and shared by several cores. L2 caches
are usually coherent; changes in one are reflected in the other ones. An L2 cache is usually larger than L1 and
in recent Intel architectures 256KiB and exclusive to a core. They are referred to as ”static RAM”. The Its size
is small because a larger L3 cache is shared among the cores of a processor. An L2 cache can be inclusive (older
Intel architectures such as Intel’s Nehalem) or exclusive (AMD Barcelona) or neither inclusive nor exclusive (Intel
Haswell). Inclusive means that the same data will be in L1, L2, and L3. Exclusive means that if data is in L2,
it can’t be in L1 and L3. Then if it is needed in L1, a cache ”line” of L1 will be swapped with the cache line
of L2 containing it, so that exclusivity can be maintained: this is a disadvantage of exclusive caches. Inclusive
caches contain fewer data because of replication. In order to remove a cache line in inclusive caches we need only
check the highest level cache (say L3). For exclusive caches all (possibly three) levels need to be checked in turn.
Eviction from one requires eviction from the other caches in inclusive caches. In some architectures (Intel Phi),
in the absence of an L3 cache, the L2 caches are connected in a ring configuration thus serving the purpose of an
L3. The latency of an L2 cache is approximately 12-16 cycles (3-7ns), and up to 64B/cycle can be transferred
(for a cumulative bandwidth over all cores as high as 1000-1500GB/s). Note that if L2 data is to be copied to
other cores this might take 40-64 cycles.

10.3 Level-3 cache. Level-3 caches are not unheard of nowadays in multiple-core systems/architectures. They
contain data and program and typical sizes are in the 16-32MiB range. They are available on the motherboard
or microprocessor socket. They are shared by all cores. In Intel’s Haswell architecture, there is 2.5MiB of L3
cache per core (and it is write-back for all three levels and also inclusive). In Intel’s Nehalem architecture L3
contained all the data of L1 and L2 (i.e. (64 + 256) ∗ 4KiB in L3 are redundantly available in L1 and L2). Thus
a cache miss on L3 implies a cache miss on L1 and L2 over all cores! It is also called LLC (Last Level Cache) in
the absence of an L4 of course. It is also exclusive or somewhat exclusive cache (AMD Barcelona/Shanghai, Intel
Haswell). An L3 is a victim cache. Data evicted from the L1 cache can be spilled over to the L2 cache (victim’s

17

cache). Likewise data evicted from L2 can be spilled over to the L3 cache. Thus either L2 or L3 can satisfy an
L1 hit (or an access to the main memory is required otherwise). In AMD Barcelona and Shanghai architectures
L3 is a victim’s cache; if data is evicted from L1 and L2 then and only then will it go to L3. Then L3 behaves as
in inclusive cache: if L3 has a copy of the data it means 2 or more cores need it. Otherwise only one core needs
the data and L3 might send it to the L1 of the single core that might ask for it and thus L3 has more room for
L2 evictions. The latency of an L3 cache varies from 25 to 64 cycles and as much as 128-256cycles depending on
whether a datum is shared or not by cores or modified and 16-32B/cycle. The bandwidth of L3 can be as high
250-500GB/s (indicative values).

10.4 Level-4 cache. It is application specific, graphics-oriented cache. It is available in some architecture (Intel
Haswell) as auxiliary graphics memory on a discrete die. It runs to 128MiB in size, with peak throughput of
108GiB/sec (half of it for read, half for write). It is a victim cache for L3 and not inclusive of the core caches
(L1, L2). It has three times the bandwidth of main memory and roughly one tenth its memory consumption. A
memory request to L3 is realized in parallel with a request to L4.

10.5 Main memory. It still remains relatively slow of 60-110ns speed. Latency is 32-128cycles (60-110ns)
and bandwidth 20-128GB/s (DDR3 is 32GiB/sec). It is available on the motherboard and in relatively close
proximity to the CPU. Typical machines have 4-512GiB of memory nowadays. It is sometimes referred to as
”RAM”. As noted earlier, random access memory refers to the fact that there is no difference in speed when
accessing the first or the billionth byte of this memory. The cost is uniformly the same.

10.6 Multi-cores and Memory. To support a multi-core or many-core architecture, traditional L1 and L2
memory hierarchies (aka cache memory) are not enough. They are usually local to a processor or a single core. A
higher memory hierarchy is needed to allow cores to share memory ”locally”. An L3 cache has been available to
support multi-core and more recently (around 2015) L4 caches have started appearing in roles similar to L3 but
for specific (graphics-related) purposes. When the number of cores increases beyond 20, we talk about many-
core architectures (such as Intel’s Phi). Such architectures sacrifice the L3 for more control logic (processors).
To allow inter-core communication the L2 caches are linked together to form a sort of shared cache.

18

11 Constants, Variables, Data-Types

11.1 Constant. If the value of an object can never get modified, then it’s called a constant. 5 is a constant, its
value never changes (ie. a 5 will never have a value of 6).

11.2 Variable. In computer programs we also use objects (names, aliases) whose values can change. Those
objects are known as a variable. Every variable has a data-type. What is the data-type of a variable? In most
programming languages a statement such as the one below, assigns the value of constant 10 (right hand-side of
equality) to become the value of variable x on the left-hand side of the equality.

x=10

11.3. Data-type. In a programming language, every variable has a data-type, which is the set of values the
variable takes. Moreover, the data-type defines the operations that are allowable on it.

11.4 Built-in or primitive data-types. Composite data-types. In mathematics, an integer or a natural
number is implicitly defined to be of arbitrary precision. Computers and computer languages have built-in (also
called primitive) data-types for integers of finite precision. These primitive integer data-types can represent
integers with 8-, 16-, 32- or (in some cases) 64-bits or more. An integer data-type of much higher precision is only
available not as a primitive data-type but as a composite data-type through aggregation and composition
and built on top of primitive data-types. Thus a composite data-type is built on top of primitive data types.
One way to build a composite data-type is through an aggregation called an array: an array is a sequence of
objects of (usually) the same data-type. Thus we can view memory as a vector of bytes. But if those bytes are
organized in the form of a data-type a sequence of elements of the same data-type becomes known as an array
(rather than a plain vector). Sometimes the data type of a variable is assigned by default, depending on the
value assigned to the variable. The data-type of the right-hand side determines the data-type of x in x = 10:
in this case it is of ”number data type”. In some other cases we explicitly define the data type of a variable.
A programming language such as C++ consists of primitive data-types such as int, char, double and also
composite data types that can be built on top of them such as array, struct and class. The whole set of data
types and the mechanisms that allow for the aggregation of them define the data model of C++.

11.5 What is a Data Model (DM)? It is an abstraction that describes how data are represented and used.

11.6 Weakly-typed and strongly-typed languages. In a weaky-typed language the data type of a variable
can change during the course of a program’s execution. In a strongly-type language as soon as the variable is
introduced its data-type is explicitly defined, and it cannot change from that point on. For example

Weakly Typed Language such as MATLAB

x=int8(10); % x is integer (data type)

x=10.12; % x is real number (data type)

x=’abcd’; % x is a string of 4 characters (data type)

Strongly Typed Language such as C, C++, or Java

int x ; % x is a 32-bit (4B) integer whose data type can not change in the program

x=10;x=2; % ok

x=10.10 ; % Error or unexpected behavior: right hand-side is not an integer.

11.7 Definition vs Declaration. In computing we use the term definition of a variable to signify where space
is allocated for it and its data-type explicitly defined for the first time, and declaration of a variable to signify
our intend to use it. A declaration assumes that there is also a definition somewhere else, does not allocate space
and serves as a reminder. For a variable there can be only ONE definition but MULTIPLE declarations. This
discussion makes sense for compiled languages and thus int x serves above as a definition of variable x. For
interpreted languages, separate definitions are usually not available and declarations coincide with the use of a

19

variable. Thus we have three declarations that also serve as definitions of x in the weakly-typed example each
one changing the data type of x. In the latter example variable x is defined once and used twice (correctly) after
that definition.

11.8 What is an abstract data type (ADT)? An abstract data type (ADT) is a mathematical model and
a collection of operations defined on this model.

11.8.1 The ADT Dictionary. For example a Dictionary is an asbtract data type consisting of a collection of
words on which a set of operations are defined such as Insert, Delete, Search.

11.9 What is a data-structure? A data structure is a representation of the mathematical model underlying
an ADT, or, it is a systematic way of organizing and accessing data.

11.9.1 Does it matter what data structures we use? For the Dictionary ADT we might use arrays, sorted
arrays, linked lists, binary search trees, balanced binary search trees, or hash tables to represent the mathematical
model of the ADT as expressed by its operations. What data structure we use, it matters if economy of space
and easiness of programming are important. As running/execution time is paramount in some applications,
we would like to access/retrieve/store data as fast as possible. For one or the other among those data structures,
one operation is more efficient than the other.

11.10 Mathematical Function: Input and Output Interface. When we write a function such as f(x) = x∗x
in Mathematics we mean that x is the unknown or parameter or ideterminate of the function. The function
is defined in terms of x. The computation performed is x2 i.e. x∗x. The value ’returned’ or ’computed’ is exactly
that x ∗ x. When we call a function with a specific input argument we write f(5). In this case 5 is the input
argument or just argument. Then the 5 substitutes for x i.e. it becomes the value of parameter x and the
function is evaluated with that value of x. The result is a 25 and thus the value of ’f(5)’ becomes ’25’. If we
write a = f(5), the value of f(5) is also assigned to the value of variable a. Sometimes we call s the output
argument, which is provided by the caller of the function to retrieve the value of the function computed.

11.11 Algorithms. We call algorithms the methods that we use to operate on a data structure. An
algorithm is a well-defined sequence of computational steps that performs a task by converting an (or a set of)
input value(s) into an (or a set of) output value(s).

11.12 Computational Problem. A (computational) problem defines an input-output relationship. It has
an input, and an output and describes how the output can be derived from the input.

11.13 Computational Problems and (their) Algorithms. An algorithm describes a specific procedure
for achieving this relationship, i.e. for each problem we may have more than one algorithms.

20

12 Limits

12.1. Limits in computing: Asymptotics. In computing limits are for n→∞ i.e. for asymptotically large
values of some parameter n. The parameter n is problem size or problem size-related. Thus for a sequence of
n keys represents the number of elements in the sequence. For an 2d-array (aka matrix) n× n it represents the
number of its rows or columns: in this latter examples the size of the matrix is n2.

12.2.
lim
n→∞

n =∞

lim
n→∞

n lg n =∞

lim
n→∞

lg n =∞

lim
n→∞

2n =∞

12.3.

lim
n→∞

(a/b)n =

0 a < b

1 a == b

∞ a > b

12.4.

lim
n→∞

2n

n!
= 0

12.5. Example Apply L’Hospital if needed. Forget about conversion (multiplicative) constants; they won’t
affect a 0 or an ∞ limit. Thus in the third equality do not spend time thinking of whether 1/n must be
multiplied with ln 2 or divided by ln 2, let alone with lg 2 (which by the way is equal to one)!

lim
n→∞

n lg n

n2
= lim

n→∞

lg n

n
= lim

n→∞

(lg n)′

(n)′
= lim

n→∞

(1/n)

1
= 0

BTW, derivatives are in Section 13.

21

13 Derivatives and Integrals

13.1.

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x),

(
f(x)

g(x)

)′
=
f ′(x)g(x)− f(x)g′(x)

g2(x)
,

13.2. For fixed constant k > 0.(
xk
)′

= k · xk−1, (ex)′ = ex, (ax)′ = ax · ln (a), (ln (x))′ = 1/x,

As also discussed in 12.5, ignore the multiplicative constant ln (a) in all calculations involving
the limits 0 and ∞

13.3. For fixed constant k > 0, and for n in place of x we shall ignore multiplicative constants in our calculations.(
nk
)′
≡ nk−1, (2n)′ ≡ 2n, (an)′ ≡ an, (ln (n))′ ≡ 1/n, (lg (n))′ ≡ 1/n,

13.4.∫
xkdx = xk+1/(k+1)+c,

∫
(1/x)dx = ln (|x|)+c,

∫
(ex)dx = ex+c,

∫
(ax)dx = ax/ ln (a)+c,

22

14 Sums of sequences: finite and infinite

14.1. Some constants: Neperian base, π, Euler’s gamma, Golden ratio phi φ and its Fibonacci-related counter-
part.

e ≈ 2.718281, π ≈ 3.14159, γ ≈ 0.57721, φ =
1 +
√

5

2
≈ 1.61803, φ̂ =

1−
√

5

2
≈ −.61803.

14.2. Finite Sum of integers, integer squares and integer cubes. The first is the arithmetic series.

An =
n∑
i=1

i =
n(n+ 1)

2
,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
,

n∑
i=1

i3 =
n2(n+ 1)2

4
.

14.3. For a 6= 1 we have the following finite sums. The first one is the geometric series.

Gn =
n∑
i=0

ai =
an+1 − 1

a− 1
,

n−1∑
i=0

iai =
(n− 1)an+1 − nan + a

(1− a)2
, (1 + d)n =

∞∑
i=0

(
n

i

)
di

14.4. For | a |< 1 we have the following infinite sums derived from Gn as n→∞.

∞∑
i=0

ai = 1 + a+ a2 + . . .+ ai + . . . =
1

1− a
,

∞∑
i=1

ai =
a

1− a

14.5. For | a |< 1 we have the following infinite sum by taking the first derivative of 14.4 and multiplying by a.

∞∑
i=0

iai = a+ 2a2 + . . .+ iai + . . . =
a

(1− a)2
; For a = 1/2, we have

∞∑
i=0

i(1/2)i = 2

14.6. The first sum is the Harmonic series.

Hn =

n∑
i=1

1

i
≈
∫

(1/x)dx ≈ ln (n) + γ,

n∑
i=1

Hi = (n+ 1)Hn − n,
n∑
i=1

iHi =
n(n+ 1)

2
Hn −

n(n− 1)

4
.

14.7. For |a| < 1.

ea = 1 + a+
a2

2!
+ . . .+

ai

i!
+ . . . =

∞∑
i=0

ai

i!
.

14.8. For |a| < 1.

ln(1 + a) = a− a2

2
+ . . .+

(−1)i+1ai

i
+ . . . =

∞∑
i=1

(−1)i+1a
i

i
, ln

1

1− a
= a+

a2

2
+ . . .+

ai

i
+ . . . =

∞∑
i=1

ai

i
,

23

14.9. For |a| < 1.

1

(1− a)n+1
=
∞∑
i=0

(
i+ n

i

)
ai,

1√
1− 4a

=
∞∑
i=0

(
2i

i

)
ai,

a

1− a− a2
= a+ a2 + 2a3 + 3a4 + . . . =

∞∑
i=0

Fia
i

14.10.(
n

k

)
=

n!

k!(n− k)!
,

n∑
k=0

(
n

k

)
= 2n,

(
n

k

)
=

(
n

n− k

)
,

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

14.11.

(1 + x)n =

∞∑
i=0

(
n

i

)
xi

14.A.1. Proof for 14.2 An. Let An = 1 + 2 + . . . + (n − 1) + n. Write forwards and backwards An and add
up the two.

An = 1 + 2 + . . .+ (n− 1) + n

An = n+ (n− 1) + . . .+ 2 + 1 Add up this and the previous equation

2An = (n+ 1) + (n+ 1) + . . .+ (n+ 1) + (n+ 1)

2An = n(n+ 1)

An = n(n+ 1)/2

14.A.2. How to calculate sums without using induction.

Proposition 1 For all n ≥ 0,
n∑
i=0

i =
n(n+ 1)

2
.

Proof. One can show this proposition by using induction. But what if we don’t know how much the sum is?
How can we find the answer n(n+ 1)/2?

We use the following trick to find sums of the following form

Sk =
n∑
i=1

ik.

First consider (i+ 1)k+1 and expand it. Substitute in the expansion i = 1, i = 2, . . ., i = n, a total of n times
and write the resulting n equalities one after the other. Then, sum these n equalities by summing up the left
hand sides and the right hand sides. Solve for Sk and Sk can then be found as a function of n.

For the sum in question k = 1. Therefore we consider

(i+ 1)2 = i2 + 2i+ 1

We substitute for i = 1, 2, . . . , n writing one equality after the other

(1 + 1)2 = 12 + 2 · 1 + 1

(2 + 1)2 = 22 + 2 · 2 + 1

(3 + 1)2 = 32 + 2 · 3 + 1

(4 + 1)2 = 42 + 2 · 4 + 1

. . . = . . .

(n+ 1)2 = n2 + 2 · n+ 1

24

When we sum up the n equalities we realize that say, (3 + 1)2 of the third line is equal to 42 of the fourth
line and therefore.

(1 + 1)2 + (2 + 1)2 + . . .+ (n+ 1)2 = (12 + 22 + 32 + . . .+ n2) + 2 · (1 + 2 + . . .+ n) + (1 + . . .+ 1)

We note that 2 · (1 + 2 + . . .+ n) = 2S1 and (1 + . . .+ 1) = n (number of ones is number of equations). Then,

(n+ 1)2 = 1 + 2S1 + n

Solving for S1 we get that S1 = ((n+ 1)2− n− 1)/2, ie S1 = (n2 + 2n+ 1− n− 1)/2 = (n2 + n)/2 = n(n+ 1)/2,
which proves the desired result.

Example 1 For all n ≥ 0, find
i=n∑
i=0

i2

Example 2 For all n ≥ 0, find
i=n∑
i=0

i3

Example 3 Calculate the following sum for any x 6= 1

x+ 2x2 + 3x3 + . . .+ nxn =
n∑
i=1

ixi.

Hint: Consult the appendix (Appendix A) around page 1060.

25

15 Self-Evaluation Quiz for Topics 1-4 and 12-14 for CS435

Start doing this quiz. It will give you a guidance on where you stand re your DISCRETE MATH
background. The more questions you don’t know the more time you need to review this and other
handouts, and your favorite discrete math book.

1) How much is the following sum if x 6= 1?

1 + x+ x2 + x3 + . . .+ xn =?

2) What if x = 1 below?
1 + x+ x2 + x3 + . . .+ xn =?

3) How much is the following sum?
n∑
i=1

i =?

4) How much is the following sum?
n∑
i=1

i2 =?

5) Let a+ b = 100000, for some 0 ≤ a, b ≤ 100000. What are the values a, b that maximize the product a · b?
6) For x ∈ R, we define y = lg(x) such that 2y = x. Answer the following.

• lg(1) =?

• lg(128) =?

• lg(2(x+y)) =?

• lg(32 · 2(x+y)) =?

7) For x 6= 1, let 1 + x+ x2 + . . .+ xn = f(x). Let us assume that the first derivative of f with respect to x
is known, ie f ′(x) is known. Express the following sum in terms of x, f(x) and f ′(x).

x+ 2x2 + 3x3 + . . .+ nxn =?

8) How many times is the statement x = x+ 1 of line 3 executed? Express the result in terms of n. Operator
/ divides two numbers x and y so that x/y is the quotient of the division, i.e. the result of 10/4 is 2.

1. int i,x=0;

2. for(i=1;i<=n;i++)

3. if ((i-(i/5)*5) == 0) x=x+1;

26

16 Solutions for Self-Evaluation Quiz

1) How much is the following sum if x 6= 1?

1 + x+ x2 + x3 + . . .+ xn =
xn+1 − 1

x− 1

2) What if x = 1 below?
1 + x+ x2 + x3 + . . .+ xn = n+ 1

3) How much is the following sum?
n∑
i=1

i = n(n+ 1)/2

4) How much is the following sum?
n∑
i=1

i2 = n(n+ 1)(2n+ 1)/6

5) The product ab is maximized for a = b = 100000/2 = 50000. One way to prove it is solve for b in a + b =
100000, ie b = 100000 − a, substitute for b in ab to get a function f(a) = a(100000 − a). The first derivative
f ′(a) = 100000 − 2a and has a root for a = 100000/2 = 50000. This root is maximum as the second derivative
at a = 50000 of f(a) is negative (f

′′
(a) = −2).

6) For x ∈ R, we define y = lg(x) such that 2y = x. Answer the following.

• lg(1) = 0

• lg(128) = 7

• lg(2(x+y)) = (x+ y)

• lg(32 · 2(x+y)) = lg 32 + lg 2x + lg 2y = (x+ y + 5)

7) Start from 1+x+x2+ . . .+xn = f(x). Take the first derivative of both sides. We get 0+1+2x+ . . .+nxn−1 =
f ′(x). Multiply both sides by x and the answer follows.
8) The test term (i− (i/5) ∗ 5) computes the remainder of the division of i by 5. It is zero for i = 5, 10, 15,
Therefore the number of times x = x+ 1 will be executed is floor(n/5) i.e. bn/5c.

27

17 Asymptotics

Fact 1 The expression “for large enough n ” means “there is a positive constant n0 such that for all
n > n0 ”.

Fact 2 For any positive constant k,m and integer n > 0, we have that nm > lgk n for large enough n.

Fact 3 For any positive constant m and integer n > 0, we have that 2n > nm for large enough n.

Example 4 lg 1 = 0 as 20 = 1. lg 2x = x. lg 2x+y = x+ y.

Example 5 For any integer n > 0 and constant k > 0, show that for large enough n 2n > nk, ie show that there
is a constant n0 such that for all n > n0, we have that 2n > nk.

28

18 Asymptotic Notation and Recurrences

18.1 Little-oh (definition). f(n) = o(g(n)), iff limn→∞
f(n)
g(n) = 0.

18.2 Little-omega (definition). f(n) = ω(g(n)), iff limn→∞
f(n)
g(n) =∞.

18.3 If little-oh then Big-oh. If f(n) = o(g(n)), then f(n) = O(g(n)).

18.4 If little-omega then Big-omega. If f(n) = ω(g(n)), then f(n) = Ω(g(n)).

18.5 Theta (version 1). f(n) = Θ(g(n)), iff f(n) = Ω(g(n)) and f(n) = O(g(n)).

18.6 Theta (definition). f(n) = Θ(g(n)) iff ∃ positive constants c1, c2, n0 : 0 ≤ c1g(n) ≤ f(n) ≤
c2g(n) ∀ n ≥ n0.

18.7 Big-Omega (definition). f(n) = Ω(g(n)) iff ∃ positive constants c1, n0 : 0 ≤ c1g(n) ≤ f(n) ∀ n ≥ n0.

18.8 Big-Oh (definition). f(n) = O(g(n)) iff ∃ positive constants c2, n0 : 0 ≤ f(n) ≤ c2g(n) ∀ n ≥ n0.

The master method is one of three methods to solve recurrence relations i.e. recursive formulae/expressions.
The solution however it provides is an asymptotic one.

18.9 Master Method. T (n) = aT (n/b)+f(n), such that a ≥ 1, b > 1 are constant and f(n) is an asymptotically
positive function. Then T (n) is bounded as follows..

M1 If f(n) = O(nlgb a−ε) for some constant ε > 0, then T (n) = Θ(nlgb a).

M2 If f(n) = Θ(nlgb a), then T (n) = Θ(nlgb a lg n).

M3 If f(n) = Ω(nlgb a+ε) for some constant ε > 0, and if af(n/b) ≤ cf(n) for some constant 0 < c < 1 and for
large n, then T (n) = Θ(f(n)).

18.10 Master Method (alternative fomrmulation of M2). There is an alternative formulation for Case 2
(aka M2) of the master method.

M2′ If f(n) = Θ(nlgb a(lg n)k), for some non-negative constant k, then T (n) = Θ(nlgb a(lg n)k+1).

18.11 Never forget: O(f(n)) is a set (and treat it as such)! O(f(n)) is not a function, it is a SET.
It includes all functions that have (asymptotic) growth at most f(n). Thus O(n2) includes all functions that
have growth linear, quadratic, log-linear (aka n lg n), but also constant, logarithmic and so on. Thus we can say
1 ∈ O(n2), or lg n ∈ O(n2), or n2 ∈ O(n2), or n lg n ∈ O(n2), but we prefer to write instead 1 = O(n2), or
lg n = O(n2), or n2 = O(n2), or n lg n = O(n2). Moreover because O(f(n)) is or should be treated as a set, a
relation of the form 1 ≤ O(n) is nonsense as one thus compares a constant function (1) to a set using ≤. This
symbol can only be used to compare two numbers, not a function and a set!

29

18.12 Some obvious results (constant k, l): nk = ω(lgl n). This derives from the fact that in general
nk > lgl n for any constant k, l and large enough n.

18.13 Some obvious results (constant k): 2n = ω(nk). This derives from the fact that in general 2n > nk

for any constant k and large enough n.

18.14 Some obvious results (constant k): n! = ω(nk). This derives from the fact that n! > nk for any
constant k and large enough n.

18.15 Some obvious results (constant k): lg (n!) = Θ(n lg n). Implied or proven through the results of 4.2
and 4.3 and 18.6/18.5. Also a result of Stirling’s approximation formula for the factorial n! ≈ (n/e)n

√
2πn.

18.16 Some obvious results.

Example 6 Which of a0 + a1n+ a2n
2 + a3n

3 and n2 is asymptotically larger, where ai > 0 for all i?

Proof. Consider a0 + a1n+ a2n
2 + a3n

3. As all ai are positive, then a0 > 0 and a1n > 0 and a2n
2 > 0 and

thus a0 + a1n+ a2n
2 + a3n

3 > a3n
3.

Hint. When we intend to prove f(n) = Ω(g(n)), it sometimes helps to find a lower bound h(n) for f(n) ie one
such that f(n) ≥ h(n) and then show that h(n) = Ω(g(n)). In our case a lower bound for a0 +a1n+a2n

2 +a3n
3

is a3n
3.

We now show that our lower bound a3n
3 is Ω(n2). As a3 > 0, it is obvious that a3n

3 > 1 ·n2 for any n > 1/a3
(note that a3 > 0 DOES NOT MEAN THAT a3 > 1, as a3 is real and not necessarily an integer).

Therefore for c = 1 and n0 = 1/a3 we have shown that a0 + a1n+ a2n
2 + a3n

3 = Ω(n2).

18.17 Some obvious results.

Example 7 Which of the two functions is asymptotically larger a0 + a1n+ a2n
2 + a3n

3 or n4, where ai > 0 for
all i?

Hint. When we intend to prove f(n) = O(g(n)), as is the case here, it sometimes helps to find an upper
bound h(n) for f(n) ie one such that f(n) ≤ h(n) and then show that h(n) = O(g(n)).

Since in a0 + a1n+ a2n
2 + a3n

3 all ai are positive we take the maximum of all ai and we call it A. Then we
have that ai < A for all i. Also, Ani < An3 for i ≤ 3. Then

a0 + a1n+ a2n
2 + a3n

3 ≤ A+An+An2 +An3 ≤ An3 +An3 +An3 +An3 = 4An3

Finally 4An3 ≤ n4 for all n > 4A.
We have shown that

a0 + a1n+ a2n
2 + a3n

3 ≤ 4An3 ≤ 1 · n4

for all n ≥ n0 = 4A, where A is the maximum of a0, a1, a2, a3. As all ai are constant, so is 4A. Therefore the
constants in the O definition are c = 1 and n0 = 4A, where A = max{a0, a1, a2, a3}.

30

18.18 Exercise 1.
Do the Exercises of the textbook for the chapters/sections covered in class. The more you do of them the

more you practice.

18.19 Exercise 2.
Show that

n∑
i=1

i2 = Θ(n3).

What are the values of c1, c2 and n0? Justify your answer.

18.20 Exercise 3.
TRUE or FALSE?

1. lg (n!) = O(n2).

2. n+
√
n = O(n2).

3. n2 +
√
n = O(n2).

4. n3 + 2
√
n = O(n2).

5. 1/n3 = O(lg n).

6. n2 sin2(n) = Θ(n2). (sin is the well-known trigonometric function).

18.21 Exercise 4.
Prove the following.

1. (n− 10)2 = Θ(n2).

2. n4 + 10n3 + 100n2 + 1890n+ 98000 = Ω(n4).

3. n4 + 10n3 + 100n2 + 1890n+ 98000 = Ω(n2).

4. n4 − 10n3 − 100n2 − 1890n+ 100000 = O(n4).

5. n2 − 20n− 20 = Ω(n).

6. n2 + 20n = O(n2).

31

19 Induction

Definition 1 The ∀ quantifier is also called the universal quantifier. It means ”for all”.

Definition 2 The ∃ quantifier is also called the existential quantifier and it means there exist(s).

Definition 3 Symbol ∈ is the belongs to set membership symbol.

Definition 4 N is the set of natural (non negative integer) numbers.

Definition 5 X ⇒ Y is also known as implication and can be stated otherwise as “X implies Y ”.

In computer science we prove statements. Such statements need to be expressed/stated precisely.

19.1. An axiom is a statement (or proposition) accepted to be true without proof.
An axiom forms the basis for logically deducing other statements.

19.2 A proposition is a statement that is either true or false.
We can also define an axiom as,

19.2.a An axiom is a proposition that is assumed or accepted to be true.

19.3 A proof is a verification of a proposition by a sequence of logical deductions derived from a base set of
axioms.

19.4. A theorem is a proposition along with a proof of its correctness.
Every proposition is true or false with reference to a space we first define axiomatically and then build on by

establishing more theorems.

19.5 Axioms of Arithmetic.

For example, Peano’s axioms, on whose inductive proofs are based, define natural (non negative) numbers.
The set of natural (non-negative integers) numbers is denoted by N .

Axiom 1 (Peano). 0 is a natural number.
Axiom 2 (Peano). If n is a natural number, then its successor s(n) is also a natural number.

(We prefer to write n+ 1 for the successor s(n) of n.)

Theorems in mathematics are true because the space to which these theorems apply are based on simple
axioms that are usually true.

We give the first proposition.

Proposition 2 ∀n ∈ N , n2 + 7 is prime.

This proposition states that for all natural (non-negative) numbers n = 0, 1, . . . , the number n2 +7 is a prime
number, i.e. it is a number divisible only by 1 and itself.

This proposition can be easily shown to be false by counterexample.
For n = 3, n2 + 7 = 32 + 7 = 16 and one divisor of 16 other than 1 and 16, is 2. Therefore 16 is not a prime

number, it is in fact a composite number and therefore this simple counterexample shows that Proposition 2 is
false because it is not true for n = 3. 2

Counterexample. To prove that this proposition is false it suffices to find a single integer of the form n2 +7
that is not a prime number. Thus determining that for n = 3, 32 + 7 is not prime, completes the proof that the
proposition is FALSE.

Proposition 3 ∃n ∈ N such that n2 + 7 is prime.

In order to prove that Proposition 3 is true, we only need prove it for a single value of n. For n = 2, we can
easily establish that 22 + 7 = 11 is a prime number. Proposition 3 is not, however, very interesting.

32

Induction is a proof technique to prove a proposition P (n) that depends on a natural number n.

19.6 Induction (the Principle). Let P (n) be a proposition that depends on a natural (integer)
number n. If

(Base case): P (0) is true, and
(Inductive Step): P (n) implies P (n+ 1) for all natural numbers n, then
(Conclusion): P (k) is true for all natural numbers k.

19.6.1 Why does induction work?
The base case establishes P (0). The Inductive step establishes the chain of implications,

P (0)⇒ P (1), P (1)⇒ P (2), P (2)⇒ P (3), . . . , P (n)⇒ P (n+ 1),

To fire-up the chain reaction, P (0) must be true. This is established by the base case!

19.7 Strong Induction.
(Base case): P (0) is true, and
(Inductive Step): P (0), P (1), . . . , P (n) jointly imply P (n+ 1) for all natural numbers n, then
(Conclusion): P (k) is true for all natural numbers k.

19.8 Induction: Base case other than P (0).
If P (0) cannot be proven true, find the smallest value a, where a is a natural number such that P (a) is

true. The conclusion would then be true for all P (k) such that k ≥ a. For Strong induction the changes for the
Inductive step and Conclusion are shown below.

(Base case): P (a) is true, and
(Inductive Step): P (a), P (a+ 1), . . . , P (n) jointly imply P (n+ 1) for all natural numbers n ≥ a, then
(Conclusion): P (k) is true for all natural numbers k ≥ a.

Induction sometimes is referred to as ordinary or weak induction. This is show to distinguish it from strong
induction.

33

19.9 An example.

Proposition 4 For all natural number n ≥ 1, we have that S1(n) = 1 + 2 + . . .+ n = n(n+ 1)/2.

The first step in induction is to identify in a proposition a predicate that depends on a natural-valued variable
and also that same natural-valued variable). An example proposition is given below. Let Sk(n) = 1k+2k+. . .+nk

for any integer k > 0. We also write Sk(n) =
∑n

i=1 i
k. The latter term

∑n
i=1 i

k indicates a sum that runs from
i = 1 through (inclusive) i = n. Each term of the sum is a function of i. In our case the i-th term of the sum is
ik. We shall show that S1(n) = 1 + . . .+ n = n(n+ 1)/2. Here S1(n) is an alias for 1 + . . .+ n.

Proof of Proposition 4.
Let us call P (n) the predicate S1(n) = n(n + 1)/2. We are going to show that S1(n) = n(n + 1)/2 i.e.

we are going to show that the predicate P (n) is true for all n. The proof is by induction.

1. Base case: Show that P (1) is true. The left hand side sum of P (1) is S1(1) i.e. the sum of one term
(and that term is 1), which is 1. The right hand side of P (1) is 1(1 + 1)/2 which is also 1. Therefore P (1) is true
since the left and right hand sides of = are equal to zero and thus equal to each other.

2. Inductive Step: ∀n ∈ N P (n)⇒ P (n+ 1). That is, we show that if P (n) is true then P (n+ 1) is true.
Show that P (n)⇒ P (n+ 1) for all n ≥ 1. To prove so, we start from (assume it is true) the left-hand side (the
induction hypothesis) to reach the right hand side (show that the conclusion is true).

Induction hypothesis. Let us assume that P (n) is true, i.e. S1(n) = 1 + 2 + . . .+n =
∑n

i=1 i = n(n+ 1)/2.
We need to prove that P (n+ 1) is then true i.e. 1 + 2 + . . .+ (n+ 1) =

∑n+1
i=1 i = (n+ 1)(n+ 2)/2.

We start from the left-hand side of the latter equality to derive the right-hand side utilizing the induction
hypothesis, i.e. the assumption that P (n) is true which is equivalent to S1(n) = n(n+ 1)/2.

1 + 2 + . . .+ (n+ 1) =
n+1∑
i=1

i

=

(
n∑
i=1

i

)
+ (n+ 1)

= n(n+ 1)/2 + (n+ 1)

= n(n+ 1)/2 + 2(n+ 1)/2

= (n+ 1)(n+ 2)/2

We got the third equality from the second one by observing that the sum in the former equality is the one in the
induction hypothesis. .

This completes the induction. We proved two things

• We first proved that P (1) is true.

• and then showed that P (n)⇒ P (n+ 1) for all n ≥ 1.

An alternative would have been to show

• that P (1) is true,

• and then show that P (n− 1)⇒ P (n) for all n ≥ 2.

In the latter, we just changed indices. In induction we can go from n to n+ 1 or n− 1 to n or from any value
to its successor value.

34

19.10 Another example.
Below, we prove the following more elaborate theorem. Note that the base case is now 0 not 1, and the

variable that takes natural values is m not n.

Theorem 1 Show that for all integer m ≥ 0, 1 + x+ . . .+ xm = xm+1−1
x−1 , for any x 6= 1.

We relabel the natural variable in this example m instead of n. Proof. We prove the theorem by induction.
The natural variable in the theorem is m. The predicate P (m) in the theorem that depends on m is

P (m) : 1 + x+ . . .+ xm = xm+1−1
x−1 , for any x 6= 1.

There are various ways to represent the sum; one is 1 + x+ . . .+ xm, another one is
∑i=m

i=0 x
i or

i=m∑
i=0

xi

We proceed to presenting the inductive proof.
Base case. We show that P (0) is true. The series 1+x+ . . .+xm for m = 0 has as its last term xm = x0 = 1,

i.e. the first term of the sum is also the last one. This means that the series collapses into a single term. On the
other hand the right hand side for m = 0 gives

x0+1 − 1

x− 1
=
x− 1

x− 1
= 1

Therefore,

1 + . . .+ x0 = 1 =
x0+1 − 1

x− 1
=
x− 1

x− 1

which is obviously true for any x 6= 1 (this is required to avoid division be zero problems).
Inductive Step. We show that for all m ≥ 0, if P (m) is true, then P (m+ 1) is also true. Our induction

hypothesis is “P (m) is true”.
If P (m) is true, then the following equality will hold.

1 + x+ . . .+ xm =
xm+1 − 1

x− 1

We then need to prove that P (m+ 1) is also true, i.e. we need to prove that

1 + x+ . . .+ xm+1 =
xm+2 − 1

x− 1

To prove this we start from the left hand side of P (m+ 1) and we rewrite it so that we can use the fact that
P (m) is true.

1 + x+ . . .+ xm+1 = 1 + x+ . . .+ xm + xm+1

= (1 + x+ . . .+ xm) + xm+1

We observe that the term (1 + x+ . . .+ xm), by the trueness of P (m), is known.

1 + x+ . . .+ xm+1 = 1 + x+ . . .+ xm + xm+1

= (1 + x+ . . .+ xm) + xm+1

=
xm+1 − 1

x− 1
+ xm+1

35

By completing the calculations we get that

1 + x+ . . .+ xm+1 =
xm+1 − 1

x− 1
+ xm+1

=
(xm+1 − 1) + xm+1(x− 1)

x− 1

=
(xm+1 − 1) + xm+2 − xm+1

x− 1

=
xm+2 − 1

x− 1
,

which proves that P (m + 1) is true. We proved the base case and the inductive step and this concludes the
induction. .

Just because we set up the induction description by using n to represent the natural number, it doesn’t mean
that we should always use n or have n in a Proposition. In this example m was the natural number, and the
proposition dependend on m (i.e. we had P (m)).

19.11 Practice Makes Perfect.
Do for practice the following examples.

Example 1. Show that for any n ≥ 0

i=n∑
i=0

i2 = n(n+ 1)(2n+ 1)/6

Example 2. Show that for any n > 1, n2 − 1 > 0.
Example 3. Show that for any n ≥ 2,

∑n
i=1 i ≤ 3n2/4.

Example 4. Show that for any x ≥ 3,
∑n−1

i=0 x
i ≤ xn/2.

Example 5. Show that for any n ≥ 1,
∑n

i=0 i
2 ≤ (n3 + 2n2)/3.

Example 6. What is wrong with the proof of Theorem 2 below? Explain.

Theorem 2 All horses of the world are of the same color.

Proof. The proof is by induction on the number of horses n.

P(n): In any set of n ≥ 1 horses, all the horses of the set are of the same color.

1. Base Case: Show P (1) is true. P (1) is always true as in a set consisting of a single horse, all the
horses (there is only one) of the set have the same color.

2. Inductive step : ∀n ∈ N, i.e. n ≥ 1, P (n)⇒ P (n+ 1).
Let us assume (induction hypothesis) that for any n ≥ 1, P (n) is true. Since we assume P (n) to be true,

every set of n horses have the same color. Then we will prove that P (n+ 1) is also true (inductive step), i.e. we
will show that in every set of n+ 1 horses, all of them are of the same color.

To show the inductive step, i.e. that P (n+1) is true let us consider ANY set of n+1 horsesH1, H2, . . . Hn, Hn+1.
The set of horses H1, H2, . . . ,Hn, consists of n horses, and by the induction hypothesis any set of n horses

are of the same color. Therefore color(H1) =color(H2) = . . . =color(Hn).
The set of horses H2, H3, . . . ,Hn+1, consists of n horses, and by the induction hypothesis any set of n horses

are of the same color. Therefore color(H2) =color(H3) = . . . =color(Hn+1).
Since from the first set of horses color(H2) =color(Hn), and from the second set color(H2) =color(Hn+1), we

conclude that the color of horse Hn+1 is that of horse H2, and since all horses H1, H2, . . . ,Hn are of the same
color, then all horses H1, H2, . . . ,Hn, Hn+1 have the same color. This proves the inductive step.

The induction is complete and we have thus proved that for any n, in any set of n horses all horses (in that
set) are of the same color.
EndofProof.

(Hint: The key to this proof is the existence of horse H2. More details in section 19.18.)

36

19.12 Examples on Strong Induction.
A recursive function is a function that invokes itself. In direct recursion a recursive function f invokes

directly itself, whereas in indirect recursion function f invokes function g that invokes f . A quite well-known
recursive function from discrete mathematics is the Fibonacci function Fn. The Fibonacci function is defined as
follows.

Fn = Fn−1 + Fn−2 if n > 1

where
F0 = 0 and F1 = 1

Proposition 5 For any n ≥ 0, we have that Fn ≤ 2n.

Proof. Proof is by strong induction. Let the predicate P (n) be Fn ≤ 2n.
Base case: Show P (0) is true. We have a base case for n = 0 i.e. we show that F0 ≤ 20 = 1. Since F0 = 0,

and we have that 0 ≤ 1 the base case follows.
Inductive Step. Show that P (0) ∧ . . . ∧ P (n − 1) ⇒ P (n). Not only was our base case 0 and not

1, but our induction hypothesis will be of the type “n − 1 induces n”. We shall show that if Fi ≤ 2i for all
i = 0, 1, . . . , n− 1, then Fn ≤ 2n, i.e. that if P (i) is true for all i = 0, 1, . . . , n− 1, then P (n) is also true.

In order to prove the inductive step we assume the induction hypothesis i.e. that for all i < n we have indeed
P (i) true, i.e. Fi ≤ 2i. Since n− 1 and n− 2 are less than n by the induction hypothesis we thus have that

Fn−1 ≤ 2n−1

and
Fn−2 ≤ 2n−2.

The inductive step is then shown by using the recurrence.

Fn = Fn−1 + Fn−2

≤ 2n−1 + Fn−2

≤ 2n−1 + 2n−2

≤ 2n−1 + 2n−1

= 2 · 2n−1

= 2n

The second and third line are by the way of the induction hypothesis for n− 1 and n− 2 respectively. Therefore
we have shown that if Fi ≤ 2i for all i = 0, . . . , n− 1, then Fn ≤ 2n. This completes the strong induction.

We have thus shown that Fn ≤ 2n for all n ≥ 0.
We can do a little better with the upper bound on Fn.

Example 4. Show that for any n ≥ 0
Fn ≤ 2n−1.

Example 5. Show that for any n ≥ 1
Fn ≥ 2(n−1)/2.

Note. The method of solving recurrences through induction and in particular strong induction is known
as the substitution or the guess-and-check method. In order to use it we need to know what to show, i.e. the
predicate must be given to us in advance, eg Fn ≤ 2n. The inductive proof is straightforward and is shown in
two steps : (a) Show the base case by using the boundary values of the recurrence (i.e. F0, F1), (b) Show the
inductive step by using the induction hypothesis for the terms on the right hand side of the recurrence (i.e. use
the induction hypothesis on Fn−1 and Fn−2) and then combine the conclusion for the terms on the right hand
side of the recurrence using the recurrence itself (in our case Fn = Fn−1 + Fn−2).

37

19.13 A more complicated example: Merge Sort recurrence (Upper Bound).

A recurrence
T (n) = 2T (n/2) + n

where T (n) is non-negative for all n, n is a power of two, and with a boundary condition

T (1) = 1

This is sometimes referred to as the divide-and-conque merge-sort recurrence and shows up in the analysis
of merge-sort. We can formalize the solution T (n) of the recurrence in the following proposition. Somehow we
have ”guessed” the solution (answer) by providing an upper bound.

Proposition 6 For any n ≥ 1, we have that T (n) ≤ n lg n+ n, where lg n is the base two logarithm of n.

Proof. Define P (n) as follows. The solution of T (n) = 2T (n/2) + n, with n > 1 and n a power of two, and
T (1) = 1, is given by the following upper bound: T (n) ≤ n lg n+ n.

Base case: P (1) is true? We will attempt to show that P (1) is true i.e. that for n = 1 T (n) ≤ n lg n + n
which is equivalent to showing that T (1) = 1 is at most 1 · lg 1 + 1 = 1. We know that T (1) = 1 by assumption
(boundary condition of the recurrence) and 1 · lg 1+1 is 1 as well. Therefore T (1) ≤ 1 lg 1+1, and this completes
the base case.

Inductive Step:P (1) ∧ . . . ∧ P (n− 1)⇒ P (n), for all n ≥ 2.
We shall show that if T (i) ≤ i lg i+ i for all i = 0, 1, . . . , n− 1, then T (n) ≤ n lg n+ n.

Induction Hypothesis for i = n/2 < n: T (n/2) ≤ (n/2) lg (n/2) + (n/2).
Since P (i) is true for all i < n it is also true for i = n/2 < n since n/2 < n for n ≥ 2. Therefore we have

P (n/2) to be true (induction hypothesis) and thus

T (n/2) ≤ (n/2) lg (n/2) + n/2 = n/2 lg n− n/2 + n/2 = n lg n/2.

Right-hand side of the recurrence is T (n/2). T (n/2) is a term on the right-hand side of the recurrence.
We apply the induction hypothesis on all T (.) terms of the right hand-side of the given recurrence. For our case
there is only one such term: T (n/2). We then use the recurrence and the induction hypothesis to establish P (n)

Recurrences and Induction Hypothesis on the right hand size terms of the recurrence.

T (n) = 2T (n/2) + n

≤ 2(n lg n/2) + n

≤ n lg n+ n

Conclusion: Induction has established validity of P (n) for all n ≥ 1.
Therefore we have shown that P (n) is true, i.e. that if T (i) ≤ i lg i + i for all i = 0, . . . , n − 1, then

T (n) ≤ n lg n+ n. This completes the inductive step and thus the strong induction as well. .
We have thus shown that T (n) ≤ n lg n+ n for all n ≥ 1.

38

19.14 A more complicated example: Less clarity. We reformulate the previous recurrence as follows.

Example 8 Solve T (n) = 2T (n/2) + n by proving that T (n) = O(n lg n). (T (n) is nonnegative for all n.)

Proof. We observe that no boundary condition is given; we can thus assume T(constant) = some-constant as
long as the chosen constants are positive (and thus non-zero).

19.14.0 Guessing the answer! We guess T (n) ≤ cn lg n for all n ≥ n0 where c, n0 are positive constants (that
we will fix in due time). This is equivalent to showing that T (n) = O(n lg n). We call this the predicate P (n).
We are going to show that P (n) is true for all n ≥ n0, ie. we are going to show that the guessed solution is the
solution to the recurrence. Note that the base case is thus n0!

19.14.1 Base Case. Deferred.

19.14.2 Inductive Step: P (n0) ∧ P (n0 + 1) ∧ . . . P (n− 1)⇒ P (n).
We assume that the guessed solution is true for all integer values less than n ie that for all i ≤ n − 1 we have
that

T (i) ≤ ci lg i for all n0 ≤ i < n− 1,

We shall then show the inductive step by showing P (n) i.e.

T (n) ≤ cn lg n

19.14.3 Induction Hypothesis for i = n/2 i.e. P (n/2). As n/2 < n, the induction hypothesis applies to
i = n/2. Therefore,

T (n/2) ≤ c(n/2) lg (n/2) (1)

19.14.4 Recurrence and Induction Hypothesis for i = n/2 i.e. P (n/2). In order to prove the inductive
step we use the only piece of information that we have available for T (n). This is the recurrence relation.
The inequality below is a result of the induction hypothesis.

T (n) = 2T (n/2) + n

≤ 2(c(n/2) lg (n/2)) + n

= 2(c(n/2)(lg n− 1)) + n

= cn lg n− cn+ n

19.14.5 Completing the inductive step. In order to show that T (n) ≤ cn lg n, the last expression cn lg n−
cn + n must be less than or equal to cn lg n. This is so provided that c ≥ 1. (A condition on c is thus
established.)

Therefore for c ≥ 1 we have that

T (n) = 2T (n/2) + n ≤ cn lg n− cn+ n

≤ cn lg n

19.14.1 Base Case: Resolved. Now that c has been resolved since c ≥ 1 and we could choose c = 1 for
simplicity we need to resolve the base case n0. Let arbitrarily pick T (2) = 1 and thus fix n0 = 2. For the base
case to be true we need P (2) to be true i.e. T (2) = 1 ≤ c · 2 lg (2) = 2c. Given that c = 1 for this to be true it
suffices that T (2) = 1 ≤ 2. This is obviously true. Thus we have just proven T (n) = O(n lg n) with n0 = 2 and
c = 1. (We were wise to avoid picking 1 as lg (1) = 0 as opposed to 2 that has lg (2) = 1!)

39

19.15 An exact solution for the Merge Sort recurrence : Iteration or Recursion tree method.

Solve exactly the recurrence the following recurrence, where where T (n) is non-negative for all n, n is a power
of two, and with a boundary condition

T (n) = 2T (n/2) + n, T (1) = 1.

19.15.0 Renaming variables. Let us write T (n) by using variable k instead of n.

T (k) = 2T (k/2) + k

19.15.1 Recurrence for k = n: unforlding it once.

T (n) = 2T (n/2) + n

19.15.2 Recurrence for k = n/2.

T (n/2) = 2T (n/4) + n/2 = 2T (n/22) + n/2.

19.15.3 Recurrence for k = n/4 = n/22.

T (n/22) = 2T (n/8) + n/4 = 2T (n/23) + n/22.

19.15.1.a Rewriting 19.15.1 using 19.15.2: unfolding it twice!

T (n) = 2T (n/2) + n = 2(2T (n/22) + n/2) + n = 22T (n/22) + 2 · n

19.15.1.b Rewriting 19.15.1 using 19.15.2 and 19.15.3: unfolding it thrice!

T (n) = 22T (n/22) + 2 · n = 22(2T (n/23) + n/22) + 2 · n = 23T (n/23) + 3 · n.

19.15.i Recurrence for k = n/2i−1.

T (n/2i−1) = 2T (n/2i) + n/2i−1

19.15.1.i Rewriting 19.15.1 using 19.15.2-19.15.i: unfolding it i times!

T (n) = 2T (n/2) + n = 22T (n/22) + 2 · n = 23T (n/23) + 3 · n = . . . = 2iT (n/2i) + i · n

The latter is equivalent to the following aggregated steps.

T (n) = 2T (n/2) + n

= 2(2T (n/22) + n/2) + n

= 22T (n/22) + 2 · n/2 + n

= 22(2T (n/23) + n/22) + 2 · n/2 + n

= 23T (n/23) + 22(n/22) + 2 · n/2 + n

= 23T (n/23) + n+ n+ n

= 23T (n/23) + 3n

= . . .

= 2iT (n/2i) + i · n

40

19.15.2 General form after i unfolding.

T (n) = 2iT (n/2i) + i · n

The unfolding stops when n/2i inside of T (n/2i) is equal to the boundary case. From the boundary condition
T (1) = 1 we have that n/2i = 1 for an i that results by taking logarithms base two of both sides. Then we get
that lg n− i = lg 1 = 0 ie i = lg n. Then,

19.15.3 General form for i = lg n (after using base case to resolve T (n/2i)).

T (n) = 2lgnT (n/2lgn) + lg n · n = n · T (1) + n lg n

19.15.4 General form for i = lg n (after using base case to resolve T (1)).

T (n) = n · T (1) + n lg n = n · 1 + n lg n = n lg n+ n

19.15.5 Does the answer satisfy the base case T (1) = 1?. We verify that T (n) = n lg n + n satisfies
T (1) = 1. We just substitute 1 for n in the solution obtained in 19.15.4.

T (n) = n lg n+ n⇒ T (1) = 1 · lg 1 + 1 = 0 + 1 = 1!

19.15.6 Does the answer satisfy the recurrence T (n) = 2T (n/2) + n? The left hand side of T (n) =
2T (n/2)+n is T (n) = n lg n+n. The right hand side of T (n) = 2T (n/2)+n is 2T (n/2)+n. Since T (n) = n lg n+n
this implies T (n/2) = (n/2) lg (n/2) + n/2. We use the latter in 2T (n/2) + n to obtain

2T (n/2) + n = 2((n/2) lg (n/2) + n/2) + n = (n lg n− n) + n+ n = n lg n+ n = T (n)

Thus starting from the right hand side of the recurrence and using 19.15.4 we reached the left-hand side i.e.
verified the recurrence for the solution of 19.15.4. Thus the solution in 19.15.4 verified both the boundary case
and the recurrence! It is a solution.

41

19.16 An exact solution for a more complicated case.

Example 9 Solve the recurrence T (n) = 8T (n/2) + n using the iteration/recursion tree method. Assume that
T (1) = 5.

Proof.

T (n) = 8T (n/2) + n

= 8(8T (n/22) + n/2) + n

= 82T (n/22) + 8n/2 + n

= 82T (n/22) + (8/2)1n+ (8/2)0n

= 82(8T (n/23) + n/22) + (8/2)1n+ (8/2)0n

= 83T (n/23) + 82n/22 + (8/2)1n+ (8/2)0n

= 83T (n/23) + (8/2)2n+ (8/2)1n+ (8/2)0n

= . . .

= 8iT (n/2i) + (8/2)i−1n+ . . .+ (8/2)1n+ (8/2)0n

Again the boundary case is T (1) = 5. We set n/2i = 1, ie i = lg n. Then for i = lg n, T (n/2i) = T (1) = 5. We
therefore get for i = lg n.

T (n) = 8T (n/2) + n

= 8iT (n/2i) + (8/2)i−1n+ . . .+ (8/2)1n+ (8/2)0n

= 8lgnT (n/2lgn) +
(8/2)lgn − 1

8/2− 1
· n

= 23 lgnT (1) +
(4)lgn − 1

3
· n

= n3T (1) +
(4)lgn − 1

3
· n

= 5n3 +
n2 − 1

3
n

To verify our calculations we observe that T (1) = 5 + (1− 1)/3 = 5 and

T (n) = 8T (n/2) + n

= 8(5(n/2)3 +
(n/2)2 − 1

3
n) + n

= 5n3 +
n2 − 1

3
n

= T (n),

ie the recurrence is verified.

42

19.17 Practice Makes Perfect.

Exercise 19.17.1.
Solve the following recurrences. You may assume T (1) = Θ(1), where necessary. Make your bounds as tight

as possible. Use asymptotic notation to express your answers. Justify your answers.
a. T (n) = 2T (n/8) + n
b. T (n) = 9T (n/3) + n lg2 n
c. T (n) = 3T (n/9) + n2

d. T (n) = 2T (n/4) +
√
n

e. T (n) = 4T (n/2) + n.
f. T (n) = 2T (n/16) + n1/4.
g. T (n) = T (n/2) + 1 , T (1) = 1.

Exercise 19.17.2.
Solve the following recurrences. Make your bounds as tight as possible. Use asymptotic notation to express

your answers. Justify your answers.
a. T (n) = T (n/8) + T (7n/8) + n lg n T (1) = 100
b. T (n) = T (n/5) + T (3n/4) + 10n , T (1) = 20.

Exercise 19.17.3.
Find an asymptotically tight bound for the following recurrence. You may assume T (1) = Θ(1). Justify your

answer.
T (n) = T (n/8) + T (3n/4) + 8n.

Exercise 19.17.4.
Solve exactly using the iteration method the following recurrence. You may assume that n is a power of 3,

ie n = 3k.
T (n) = 3T (n/3) + n, where T (1) = 1.

Example 19.17.5. Show that for any n ≥ 1

T (n) = T (n/2) + T (n/4) + n

is such that T (n) ≤ 20n for all n ≥ 1. Let T (1) = 1.
Hint. Apply the induction hypothesis twice to T (n/2) and T (n/4) and then use the recurrence for the inductive
step.
Example 19.17.6. Show that there exist constant n0 > 0 and c > 0 such that for any n ≥ n0

T (n) = T (n/2) + T (n/4) + n

is such that T (n) ≤ cn for all n ≥ n0. Let T (1) = 100.
Hint. If we change the boundary condition in Example 6 from T (1) = 1 to say T (1) = 100 as we did in Example
7, things might break down. T (1) ≤ 20 · 1 is not true any more since T (1) = 100. Therefore we need to try
something else other than 20.

43

19.18 On horses and cows.

On horses, cows, and tricky inductive arguments.

In a previous example we “showed” by induction that all horses are of the same color. Where is the bug?
Particularly, we showed that

A1. P (1) was true,
and

A2. P (n)⇒ P (n+ 1) for all n ≥ 1,

where P (n) is the predicate

P(n): In any set of n ≥ 1 horses, all the horses of the set are of the same color.

Many may argue that the error is in the logic of the inductive step.
The logic is fine, the quantification “for all n” is not, since the assumption of alwyas having horse H2 might

not be true. The crux of the inductive step is the existence of three ’different’ horses H1, H2, Hn+1. We first
form a set of n horses H1, H2, . . . ,Hn and apply the induction hypothesis and then form another set of n horses,
H2, . . . Hn, Hn+1, and apply the induction hypothesis again. Crucial to the proof is that c(H1) = c(H2) from
the first application of the induction hypothesis, and c(H2) = c(Hn+1) from the second thus concluding that
c(H1) = c(H2) = . . . = c(Hn).

Let’s see what happens for n = 1, i.e. let’s try to show that P (1)⇒ P (2), i.e. show the inductive step for a
certain value of n equal to 1. If we try to form H1, . . . Hn this set contains only one ’horse’ element for n = 1:
H1 ! If we try to form H2, . . . ,Hn+1 this set contains only one ’horse’ element H2. There is no common third
’horse’ Hk in the set containing H1 nor in the set containing H2. This is because the argument in the previous
paragraph works only for n ≥ 2. In that case one set is formed from H1, H2 and the other set from H2, H3.
However even if we can prove the inductive step nicely in that case there is no way to prove the base case set for
n = 2 i.e. P (2)!

Therefore the inductive step that “we proved” before (19.11, Theorem 2) P (n)⇒ P (n+ 1) is not true for all
n ≥ 1 but only for n ≥ 2. This however can not establish the trueness of P (n) for all n ≥ 1 because P (2) may
or may not be true.

What is P (2)?

P (2) is “in any set of two horses, both horses are of the same color”.

We know from nature that this predicate is false because there are white horses, black horses etc, i.e. there
exist two horses not of the same color and thus P (2) is not true for all pairs of horses.

In conclusion, the whole “horsy argument” breaks down because

A2. P (n)⇒ P (n+ 1) for all n ≥ 1,
was not shown, for all n ≥ 1; it was only proved for all n ≥ 2, i.e.

A2. P (n)⇒ P (n+ 1) for all n ≥ 2,

and thus the base case “P (1) is true” can not be used with the latter version of the inductive step; for the
latter we need P (2) to be true WHICH IS NOT!

44

20 Solutions to selected problems

Match solution to Problems.
A solution.∑n

i=1 i
2 = n(n+ 1)(2n+ 1)/6. One can show this by induction, or refer to Handout 3, pages 3 and 4, or use

the technique of page 7. We thus focus ourselves on n(n+ 1)(2n+ 1)/6.
Case 1.

n(n+ 1)(2n+ 1)/6 ≤ n(n+ 1)(2n+ 1) ≤ n(n+ n)(2n+ n) = n(2n)(3n) = 6n3

This shows that n(n+ 1)(2n+ 1)/6 is O(n3).
Case 2.

n(n+ 1)(2n+ 1)/6 ≥ n(n)(2n)/6 ≥ n3/3

This shows that n(n+ 1)(2n+ 1)/6 is Ω(n3).
The combination of Cases 1 and 2 shows the result.

A solution.
1. n! by Sterling’s approximation formula is n! ≈ (n/e)n. Therefore lg n! = Θ(n lg n) and the results follows

(i.e. answer is TRUE).

A solution.
1. (n− 10)2 = n2 − 2 · 10n+ 102 = n2 − 20n+ 100.
We first show the O(.) part.

n2 − 20n+ 100 ≤ n2 + 0 + 100n2 = 101n2

We have just shown that (n− 10)2 ≤ 101n2 for all n ≥ 0, ie. established c2 = 101 and n2 = 0.
We then show the Ω(.) part.

n2 − 20n+ 100 ≥ n2 − 20n ≥ n2/2

For the second inequality to be true n2 − 20n ≥ n2/2 i.e. n2/2 ≥ 20n, i.e. n ≥ 40. I.e. We have just shown
that (n− 10)2 ≥ n2/2 for all n ≥ 40, ie. established c1 = 1/2 and n1 = 40.

Therefore for the Θ(.) definition the constants are c1 = 1/2, c2 = 101 and n0 = max{n1, n2} = 40.

A solution.
a. Hint. Show that T (n) = O(n lg2 n). Can you show T (n) = Θ(n lg2 n)?
b. Hint. Show that T (n) = Θ(n).

A solution.
Similar to T (n) = 2T (n/2) + n, but do not forget that lg n was lg2 n in the former.

45

A formula collection.

The mathematics (not discrete mathematics) that you need can be summarized in the following one-page sum-
mary.

n∑
i=1

i =
n(n+ 1)

2
,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
,

n∑
i=1

i3 =
n2(n+ 1)2

4
.

For a 6= 1, and | b |< 1 we have that

n∑
i=0

ai =
an+1 − 1

a− 1
,

n−1∑
i=0

iai =
(n− 1)an+1 − nan + a

(1− a)2
,

∞∑
i=0

bi =
1

1− b
,

∞∑
i=1

bi =
b

1− b
,

∞∑
i=0

ibi =
b

(1− b)2
.

Hn =

n∑
i=1

1

i
,

n∑
i=1

iHi =
n(n+ 1)

2
Hn −

n(n− 1)

4
.

n! =
√

2πn
(n
e

)n(
1 + Θ

(
1

n

))
, n! ≈

(n
e

)n
, alogb n = nlogb a,

e ≈ 2.718281, π ≈ 3.14159, γ ≈ 0.57721, φ =
1 +
√

5

2
≈ 1.61803, φ̂ =

1−
√

5

2
≈ −.61803.(

n

k

)
=

n!

k!(n− k)!
,

n∑
k=0

(
n

k

)
= 2n,

(
n

k

)
=

(
n

n− k

)
,

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

L1.
lg (ab) = lg a+ lg b, lg (a/b) = lg a− lg b, lg (ab) = b lg a, 2lg (a) = a,

L2.
ax ay = ax+y, ax/ay = ax−y, (ax)y = axy.

D1.

(f(x)g(x))
′

= f ′(x)g(x) + f(x)g′(x),

(
f(x)

g(x)

)′
=
f ′(x)g(x)− f(x)g′(x)

g2(x)
, (cx)′ = ln (c) cx.

S1.
1

1− x
= 1 + x+ x2 + . . .+ xi + . . . =

∞∑
i=0

xi,

S2.
x

(1− x)2
= x+ 2x2 + . . .+ ixi + . . . =

∞∑
i=0

ixi,

S3.

ex = 1 + x+
x2

2!
+ . . .+

xi

i!
+ . . . =

∞∑
i=0

xi

i!
.

46

