Posting this document on the Web, other than its original location at NJIT, is strictly prohibited unless there is an explicit written authorization by its author (name on top line of this first page of this document).
(c) Copyright A. Gerbessiotis. CS435-102: Spring 2018. All rights reserved.

1 Mini-Project Logistics

WE URGE YOU TO START WORKING ON COMMAND LINE and FILE-BASED INPUT/OUTPUT AS SOON AS POSSIBLE. ERRORS AT SUCH LEVEL CAUSE SEVERAL SUBMISSIONS TO RECEIVE 0 POINTS BECAUSE THEY MAKE ALTERNATE TESTING DIFFICULT.

STEP-1. Read carefully Handout 2 and follow all the requirements specified there.
STEP-2. Moreover, observe naming conventions, comments, testing, etc as specified in sections 2, 3,4, of Handout 2. Some testing files are text files. The default encoding on an AFS machine might be different from your own 'development' machine. Moreover some OSes treat differently the end of a line. Be careful and stick to afs/linux. Testing on afs means using tools exclusively available on an afs machine. When the archive is ready, upload it to moodle

BEFORE NOON-time of Wed 18 April 2018

For penalties check Handout 1 (Syllabus). If you submit the day before the deadline, there would be enough time to fix any problems. If you want to get 0 pts, ignore Handout 2.

You may do up to two of the 3 options. You may utilize the same language or not. We provide descriptions that are to the extent possible language independent: thus a reference in Java is a pointer in C or $\mathrm{C}++$ for example.

OPTION 1 (Heap and Data compression related). Do the programming related to Huffman coding in C, C++, or Java.

OPTION 2 (Hash Table related). Do the programming related to the building of a Hash Table that can maintain arbitrarily long strings in C, C++, or Java; it is similar to that used by Google around 1997-1998.

OPTION 3 (Graph and Numerical-related). Do the programming related to the implementation of Google's PageRank algorithm in C, C++, or Java.

2 OPTION 1: Huffman Coding (120 points)

Huffman coding will involve compressing and decompressing Operating System files of various types (text-based or binary files such as a .pdf or .jpg or .mp4.) For small file sizes or a file that is already 'compressed' (eg .jpg) do not expect miracles. You will be writing bit aligned codes into files: practice with bit operations and packing or unpacking bits into/from bytes.

YOU MUST IMPLEMENT YOUR OWN heap/priority queue using a binary heap per CLRS (eg. Heapify, Insert, etc). Of course a binary heap array in the textbook starts from 1 but in $\mathrm{C} / \mathrm{C}++/ \mathrm{Java}$ starts from 0 . Some adjustments are thus necessary. No java supplied functions or classes should be used for heap/priority queue operations. The use of a HashMap for example is referred to Handout 2 item 4.8. WE SHALL REVIEW YOUR CODE TO VERIFY ADHERENCE TO THESE GUIDELINES. Your code must write into files bits; naturally bits should be packed into bytes (and unpacked). If instead of writing bit 1 you write character 1 (in ASCII or UNICODE) this defeats the compression objective of this option. If the naming conventions below are not facilitated or accommodated by the programming language you plan to use, you are free to modify the names of the various functions. If this happens, however, you MUST provide sufficient information in the file indicated in Handout 2.
Huffman coding. Says all. Input argument file in the command-line is an arbitrary file-name. You need to provide a correct Huffman coding implementation that implements the algorithm described in class and also available in the notes or the textbook. Such an algorithm must work not just in text files but also binary files (pdf, images, video, etc). For small files do not get bothered if savings due to compression are small or negligible. In general for files about 10 MiB , an implementation should take no more than a few seconds, may be 15 seconds forgivingly.

Note that henc for Huffman encoding, or hdec for Huffman decoding should adhere to the Handout 2 requirements (i.e. they are more likely to be henc_4567 or hdec_4567.

```
// Encode : henc encodes filename into filename.huf and filename gets erased
// thus x.pdf generates x.pdf.huf and then x.pdf gets erased
// Decode : hdec decodes filename.huf into filename and filename.huf gets erased
// if filename already exists, it gets overwritten
// thus x.pdf.huf generates x.pdf and then x.pdf.huf gets erased
// Note : Per Handout 2 you should use hencWXYZ or hdec_WXYZ for henc and hdec
% java henc filename.pdf
% java hdec filename.pdf.huf
% ./henc filename.pdf
% ./hdec filename.pdf.huf
    // EXAMPLE testing steps
% cp p1435s18.pdf filename // copy into filename
% java henc filename // Huffman encode filename into filename.huf
% rm -rf filename // If not already removed, we remove filename
% java hdec filename.huf // Huffman decode filename.huf that is still there
% diff p1435s18.pdf filename // If different something went wrong! diff might not work
% md5sum p1435s18.pdf filename // Should have same signatures; this is better
// EXAMPLE C or C++
% cp p1435s18.pdf filename
% ./henc filename
% rm -rf filename
% ./hdec filename.huf
% diff p1435s18.pdf filename
% md5sum p1435s18.pdf filename
```

Deliverables. Include all implemented functions (source code only) in an archive per Handout 2 guidelines. Command-line execution: do not prompt to read a file-name.

3 OPTION 2: Hashing (120 points)

This component may be implemented in Java, C, or C++. We are asking you to implement a Lexicon structure maintained by Google in 1997-1998 to store words (aka arbitrarily long strings of characters) in main memory. This lexicon L uses a Hash Table T structure along with an Array A of NULL separated strings . In our case words are going to be English character words only (upper-case or lower case).

Table T will be organized as a hash-table using collision-resolution by open-addressing as specified in class. You are going to use quadratic probing for $h(k, i)$ and keep the choice of the quadratic function simple: i^{2} so that $h(k, i)=\left(h^{\prime}(k)+i^{2}\right) \bmod m$. The keys that you will hash are going to be English words. Thus function $h^{\prime}(k)$ is also going to be kept simple: the sum of the ASCII/Unicode values of the characters mod m, where m is the slotsize of the hash table. Thus 'alex' (the string is between the quotation marks) is mapped to $97+108+101+120$ $\bmod m$ whatever m is. In the example below, for $m=11, h($ alex, 0$)=8$.

Table T however won't store key values k in it. This is because the keys are strings of arbitrary length. Instead, T will store pointers/references to another array A. Furthermore pointers/references are programminglanguage dependent: we will just use integer indexes to a second array named A. The second table, array A will be a character array and will store the words maintained in T separated by NUL values $\backslash 0$. This is not 2 characters i.e. a backslash followed by a zero: it is 1B (ASCII), 2B (UNICODE) whose all bits are set to 0 , the NUL value. If you don't know what B is, it is a byte; never use b for a bit, write instead bit or bits.

An insertion operation affects T and A. A word w is hashed, an available slot in T is computed and let that slot be t. In $T[t]$ we store an index to table A. This index is the first location that stores the first character of w. The ending location is the $\backslash 0$ following w in A. New words that do not exist (never inserted, or inserted but subsequently deleted) are appended in A. Thus originally you need to be wise enough in choosing the appropriate size of A. If at some point you run-out of space, you need to increase the size of A accordingly, even if T remains the same. Doubling it, is an option. Likewise the size of T might also have to be increased. This causes more problems that you also need to attend to.

A deletion will modify T as needed but will not erase w from A. Let it be there. So A might get dirty (i.e. it contains garbage) after several deletions. If several operations later you end up inserting w after deleting it previously, you do it the insertion way and you reinsert w, even if a dirty copy of it might still be around. You DO NOT DO a linear search to find out if it exists arleady in A; it is inefficient. There is not much to say for a search.

However you need to support fewo more operations: Print, Create, Empty/Full/Batch with the last of those checking for an empty or full table/array and a mechanism to perform multiple operations in batch form. Print prints nicely T and its contents i.e. index values to A. In addition it prints nicely (linear-wise in one line) the contents of A. (For a $\backslash 0$ you will do the SEMI obvious: print a backslash but not its zero). The intent of Print is to assist the grader. Print however does not print the words of A for deleted words. It prints stars for every character of a deleted word instead. (An alternative is that during deletion each such character has already been turned into a star.) Function Create creates T with m slots, and A with $15 m$ chars and initializes A to spaces.

The following is a minimal interface maintained. We call the class that supports and realizes A and T a lexicon: L is one instance of a lexicon. (We try to be programming-language agnostic.)

```
HashCreate (lexicon L, int m); // Create T, A. T will have m slots; A should be 15m
HashEmpty (lexicon L); // Check if L is empty
HashFull (lexicon L); // Check if L can maintain more words
HashPrint (lexicon L); // Print of L
HashInsert (lexicon L, word w); //Insert w into L (and T and A)
HashDelete (lexicon L, word w); //Delete w from L (but not necessarily from A)
HashSearch (lexicon L, word w); //Search for string in L (and this means T)
HashBatch (lexicon L, file filename)
```

The testing will be performed through HashBatch. It uses as an argument a filename where several operations will be listed and executed in batch.

Operation 10 is Insert, Operation 11 is Deletion, and Operation 12 is Search. Operation 13 is Print, Operation 14 is Create. (Create accepts as its second parameter and that of HashCreate, an integer value next to its code 14; this becomes m.) The HashBatch accepts an arbitrary filename such as command.txt or file.txt that contains a sequence of commands. Instances are shown in the example below.

```
% java mplexicon command.txt
% ./mplexicon file.txt
```

Thus
1411
10 alex
10 tom
10 jerry
13
will print the following. The T entries for $0,5,9$ are the indexes (first position) for alex, tom, jerry respectively. Note that the ASCII values for 'alex' mod 11 give an 8 , but for 'tom' and 'jerry' give 6 , i.e. a collision occurs. A minimal output for Print is available below.

```
T A: alex\tom\jerry\
7: 9
8: 0
A subsequent
```

0:
1:
2:
3:
4:
5:
6: 5
9:
10 :

```
12 alex
12 tom
12 jerry
12 mary
1 1 ~ t o m
1 3
```

will generate on screen

```
alex found at slot 8
tom found at slot 6
jerry found at slot 7
mary not found
tom deleted from slot 6
```

and the following will be printed

```
T
A: alex\***\jerry\
```

0 :
1:
2:
3:

Deliverables. Include all implemented source code (no .class files, no executables) in an archive per Handout 2 guidelines.

4 OPTION 3: Google's PageRank (120 points)

Implement the Google PageRank algorithm as explained below. The input for this problem would be a graph represented through an adjacency list representation. The command-line interface that would be used is as follows The first two of the three parameters hold integer values; the last parameter is a filename. (This is the variant that will be implemented i.e. the first two lines of invocation.) You need to implement class or function pagerank (in fact pagerank_4567 or whatever Handout 2 dictates). (The other variant, i.e. the lines using oerrorate are implicit in the variant to be implemented.)

\% ./pagerank iterations initialvalue filename \% java pagerank iterations initialvalue filename

The PageRank algorithm is iterative. At iteration t all pagerank values are computed using results from iteration $t-1$. The initialvalue helps us to start this process. Moreover, in the PageRank computation, a parameter d would be set to 0.85 . The PageRank of vertex A depends on the PageRanks of vertices T_{1}, \ldots, T_{m} incident to A, i.e. pointing to A. The contribution of T_{i} to the PageRank of A would be the PageRank of T_{i} i.e. $\operatorname{PR}\left(T_{i}\right)$ divided by $C\left(T_{i}\right)$), where $C\left(T_{i}\right)$ is the out-degree of vertex T_{i}.

$$
P R(A)=(1-d) / n+d\left(P R\left(T_{1}\right) / C\left(T_{1}\right)+\ldots+P R\left(T_{m}\right) / C\left(T_{m}\right)\right)
$$

When we compute ranks (or PageRanks) iteratively we use the previous iteration values to update the current iteration values! Thus $\operatorname{PR}(\mathrm{A})$ is the value to be obtained in the current iteration t, but all $\mathrm{PR}\left(T_{i}\right)$ values are from the previous iteration $t-1$. This is called a synchronized update. (In an asynchronous update, we use whatever we have!) Be careful! Be synchronized!

In order to run the 'algorithm' we either run it for a fixed number of iterations and iterations determines that, or for a fixed errorate (that is going to be 10^{-4}) when iterations is 0 . We know (theory-wise) that PageRank should "converge" within 60-70 iterations; if not we can increase from the command-line iterations. Alternatively instead of controlling the iterations, we control the error-rate. Thus errorrate can be a single negative digit such as $-2,-3, \ldots,-6$. In such an approach at the end of iteration t when all PageRanks for t have been computed we compare for every vertex these values to the ones for iteration $t-1$. If the difference is less than $10^{\text {errorrate }}$ for EVERY VERTEX, we can stop: we have achieved convergence to the desired error-rate. We make this option easier for you: (a) if iterations is an integer greater than zero you run pagerank for that number of iterations, (b) if iterations is equal to zero, you run for as many iterations needed to achieve the FIXED errorrate of 10^{-4}.

The second parameter initialvalue shows the initial values for the ranks. If it is 0 all ranks are initialized to 0 , if it is 1 they are initialized to 1 . If it is -1 they are initialized to $1 / N$, where N is the number of web-pages (vertices of the graph). If it is -2 they are initialized to $1 / \sqrt{N}$, where N is the number of web-pages (vertices of the graph). (In order to determine N you need to construct the graph described in file filename first.)

The third parameter filename describes the input (directed) graph and it has the following form. The first line contains two numbers: the number of vertices (in the example below, this is equal to four and is denoted by the first four) and the number of edges that follow on separate lines (the second four in the example). In each line an edge (i, j) is represented by i j. Thus our graph has (directed) edges $(0,2),(0,3),(1,0),(2,1)$.

Pageranks are printed to six decimal digits.
If $N>10$ then the values for iterations, initialvalue are to be 0 and -1 respectively. In such a case the pageranks at the stopping iteration are ONLY shown, one per line.

The graph below will be referred to as samplegraph.txt

The following invocations relate to samplegraph.txt, with a fixed number of iterations and the fixed error rate that determines how many iterations will run. Your code should compute for this graph the same rank values (intermediate and final). A sample of the output for the case of $N>10$ is shown (output truncated to first 4 lines of it).

```
% ./pagerank 15 -1 samplegraph.txt
Base: : 0 :P[ 0]=0.250000 P[ 1]=0.250000 P[ 2]=0.250000 P[ 3]=0.250000
Iter : 1 :P[ 0]=0.250000 P[ 1]=0.250000 P[ 2]=0.143750 P[ 3]=0.143750
Iter : 2 :P[ 0]=0.250000 P[ 1]=0.159687 P[ 2]=0.143750 P[ 3]=0.143750
Iter : 3 :P[ 0]=0.173234 P[ 1]=0.159687 P[ 2]=0.143750 P[ 3]=0.143750
Iter : 4 :P[ 0]=0.173234 P[ 1]=0.159687 P[ 2]=0.111125 P[ 3]=0.111125
Iter : 5 : P[ 0]=0.173234 P[ 1]=0.131956 P[ 2]=0.111125 P[ 3]=0.111125
Iter : 6 :P[ 0]=0.149663 P[ 1]=0.131956 P[ 2]=0.111125 P[ 3]=0.111125
Iter : 7 :P[ 0]=0.149663 P[ 1]=0.131956 P[ 2]=0.101107 P[ 3]=0.101107
Iter : 8 :P[ 0]=0.149663 P[ 1]=0.123441 P[ 2]=0.101107 P[ 3]=0.101107
Iter : 9 :P[ 0]=0.142425 P[ 1]=0.123441 P[ 2]=0.101107 P[ 3]=0.101107
Iter : 10 :P[ 0]=0.142425 P[ 1]=0.123441 P[ 2]=0.098030 P[ 3]=0.098030
Iter : 11 :P[ 0]=0.142425 P[ 1]=0.120826 P[ 2]=0.098030 P[ 3]=0.098030
Iter : 12 :P[ 0]=0.140202 P[ 1]=0.120826 P[ 2]=0.098030 P[ 3]=0.098030
Iter : 13 :P[ 0]=0.140202 P[ 1]=0.120826 P[ 2]=0.097086 P[ 3]=0.097086
Iter : 14 :P[ 0]=0.140202 P[ 1]=0.120023 P[ 2]=0.097086 P[ 3]=0.097086
Iter : 15 :P[ 0]=0.139520 P[ 1]=0.120023 P[ 2]=0.097086 P[ 3]=0.097086
% ./pagerank 0 -1 samplegraph.txt
Base: 0 :P[ 0]=0.250000 P[ 1]=0.250000 P[ 2]=0.250000 P[ 3]=0.250000
Iter: : 1 :P[ 0]=0.250000 P[ 1]=0.250000 P[ 2]=0.143750 P[ 3]=0.143750
Iter : 2 :P[ 0]=0.250000 P[ 1]=0.159687 P[ 2]=0.143750 P[ 3]=0.143750
Iter : 3 :P[ 0]=0.173234 P[ 1]=0.159687 P[ 2]=0.143750 P[ 3]=0.143750
Iter : 4 :P[ 0]=0.173234 P[ 1]=0.159687 P[ 2]=0.111125 P[ 3]=0.111125
Iter : 5 :P[ 0]=0.173234 P[ 1]=0.131956 P[ 2]=0.111125 P[ 3]=0.111125
Iter : 6 :P[ 0]=0.149663 P[ 1]=0.131956 P[ 2]=0.111125 P[ 3]=0.111125
Iter : 7 :P[ 0]=0.149663 P[ 1]=0.131956 P[ 2]=0.101107 P[ 3]=0.101107
Iter : 8 :P[ 0]=0.149663 P[ 1]=0.123441 P[ 2]=0.101107 P[ 3]=0.101107
Iter : 9 :P[ 0]=0.142425 P[ 1]=0.123441 P[ 2]=0.101107 P[ 3]=0.101107
Iter : 10 :P[ 0]=0.142425 P[ 1]=0.123441 P[ 2]=0.098030 P[ 3]=0.098030
Iter : 11 :P[ 0]=0.142425 P[ 1]=0.120826 P[ 2]=0.098030 P[ 3]=0.098030
Iter : 12 :P[ 0]=0.140202 P[ 1]=0.120826 P[ 2]=0.098030 P[ 3]=0.098030
Iter : 13 :P[ 0]=0.140202 P[ 1]=0.120826 P[ 2]=0.097086 P[ 3]=0.097086
Iter : 14 :P[ 0]=0.140202 P[ 1]=0.120023 P[ 2]=0.097086 P[ 3]=0.097086
Iter : 15 :P[ 0]=0.139520 P[ 1]=0.120023 P[ 2]=0.097086 P[ 3]=0.097086
Iter : 16 :P[ 0]=0.139520 P[ 1]=0.120023 P[ 2]=0.096796 P[ 3]=0.096796
Iter : 17 :P[ 0]=0.139520 P[ 1]=0.119776 P[ 2]=0.096796 P[ 3]=0.096796
Iter : 18 :P[ 0]=0.139310 P[ 1]=0.119776 P[ 2]=0.096796 P[ 3]=0.096796
Iter : 19 :P[ 0]=0.139310 P[ 1]=0.119776 P[ 2]=0.096707 P[ 3]=0.096707
% ./pagerank 0 -1 verylargegraph.txt
Iter : 3
P[ 0] = 0.021429
P[ 1] = 0.030536
P[ 2] = 0.027500
    other vertices omitted
```


 Deliverables. Include all implemented functions (source code only) in an archive per Handout 2 guidelines. Document bugs; no bug report no partial credit.

