TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGES</th>
<th>TOPICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td></td>
<td>TABLE OF CONTENTS</td>
</tr>
<tr>
<td>1</td>
<td>p2</td>
<td>Powers of two ; Exponentials base two</td>
</tr>
<tr>
<td>2</td>
<td>p3</td>
<td>Logarithms base two (and e and 10)</td>
</tr>
<tr>
<td>3</td>
<td>p4</td>
<td>Floors and Ceilings; Sets and Sequences; Conjunctions, Disjunction, Negations</td>
</tr>
<tr>
<td>4</td>
<td>p5</td>
<td>Axioms, Propositions, Theorems Input and Problem Size representation</td>
</tr>
<tr>
<td>5</td>
<td>p7</td>
<td>Integers and their properties ;</td>
</tr>
<tr>
<td></td>
<td>p8</td>
<td>(Mathematical) Induction ; Strong Induction Examples on Induction</td>
</tr>
<tr>
<td>6</td>
<td>p17</td>
<td>Limits ; Derivatives ; Integrals</td>
</tr>
<tr>
<td>7</td>
<td>p18</td>
<td>Sums of Sequences</td>
</tr>
<tr>
<td>8</td>
<td>p23</td>
<td>Factorial ; Stirling’s Approximation Formula</td>
</tr>
<tr>
<td>9</td>
<td>p24</td>
<td>Asymptotics</td>
</tr>
<tr>
<td>10</td>
<td>p25</td>
<td>Asymptotic Notation</td>
</tr>
<tr>
<td>11</td>
<td>p28</td>
<td>Recurrences</td>
</tr>
<tr>
<td>12</td>
<td>p34</td>
<td>Bits and Bytes</td>
</tr>
<tr>
<td>13</td>
<td>p35</td>
<td>Frequency and Time Domain</td>
</tr>
<tr>
<td>14</td>
<td>p36</td>
<td>Number Systems: Denary, Binary, Octal, Hexadecimal</td>
</tr>
<tr>
<td>15</td>
<td>p42</td>
<td>ASCII, Unicode, UTF-8</td>
</tr>
<tr>
<td>16</td>
<td>p44</td>
<td>Computer Architecture: von-Neumann and Harvard models</td>
</tr>
<tr>
<td>17</td>
<td>p46</td>
<td>Memory Hierarchies</td>
</tr>
<tr>
<td>18</td>
<td>p49</td>
<td>Constants, Variables, DataTypes, ADT, etc</td>
</tr>
<tr>
<td>19</td>
<td>p51</td>
<td>Formulae Collection</td>
</tr>
</tbody>
</table>
1 Powers of two : Exponential base two

1.1. Powers of 2. The expression 2^n means the multiplication of n twos. Thus $2^2 = 2 \cdot 2$ is a 4, $2^8 = 2 \cdot 2$ is 256 and $2^{10} = 1024$. Moreover $2^1 = 2$ and $2^0 = 1$. Several times one might write $2 \times n$ or 2^n for 2^n (^ is the hat/caret symbol usually co-located with the numeric-6 keyboard key).

<table>
<thead>
<tr>
<th>Expression</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^0</td>
<td>1</td>
</tr>
<tr>
<td>2^1</td>
<td>2</td>
</tr>
<tr>
<td>2^4</td>
<td>16</td>
</tr>
<tr>
<td>2^8</td>
<td>256</td>
</tr>
<tr>
<td>2^{10}</td>
<td>1024</td>
</tr>
<tr>
<td>2^{20}</td>
<td>1048576</td>
</tr>
<tr>
<td>2^{30}</td>
<td>1073741824</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Name</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>deca</td>
<td>$10^1 = 10$</td>
</tr>
<tr>
<td>h</td>
<td>hecto</td>
<td>$10^2 = 100$</td>
</tr>
<tr>
<td>k</td>
<td>kilo</td>
<td>$10^3 = 1000$</td>
</tr>
<tr>
<td>M</td>
<td>mega</td>
<td>10^6</td>
</tr>
<tr>
<td>G</td>
<td>giga</td>
<td>10^9</td>
</tr>
<tr>
<td>T</td>
<td>tera</td>
<td>10^{12}</td>
</tr>
<tr>
<td>P</td>
<td>peta</td>
<td>10^{15}</td>
</tr>
<tr>
<td>E</td>
<td>exa</td>
<td>10^{18}</td>
</tr>
<tr>
<td>d</td>
<td>deci</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>c</td>
<td>centi</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>m</td>
<td>milli</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>µ</td>
<td>micro</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>n</td>
<td>nano</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>p</td>
<td>pico</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>f</td>
<td>femto</td>
<td>10^{-15}</td>
</tr>
</tbody>
</table>

Figure 1: Exponentials: Powers of two

1.2. Properties of powers. Among these

1.2.1 (Multiplication.) $2^m \cdot 2^n = 2^{m+n}$. (Dot \cdot optional.)

1.2.2 (Division.) $2^m/2^n = 2^{m-n}$. (The symbol / is the slash symbol)

1.2.3 (Exponentiation.) $(2^m)^n = 2^{mn}$.

1.3. Approximations for 2^{10} and 2^{20} and 2^{30}. Since $2^{10} = 1024 \approx 1000 = 10^3$, we have that $2^{20} = 2^{10} \cdot 2^{10} \approx 1000 \cdot 1000 = 1,000,000 = 10^6$.
Likewise, $2^{30} = 2^{10} \cdot 2^{10} \cdot 2^{10} \approx 1000 \cdot 1000 \cdot 1000 = 1,000,000,000 = 10^9$.
Therefore 2^{10} is roughly one thousand, 2^{20} is roughly one million, and 2^{30} is roughly one thousand million.
In the last case i did not use the word billion. Think twice using it after reading 1.4 below.

1.4 Billions and Trillions and SI notation. Note that in British English, one billion is one million millions i.e. a trillion in American English! And a trillion in British English might have 18 zeroes following the one! Use 1G for 10^9 and 1T for 10^{12} using the SI (Systeme International d’ unites) prefixes (or prefices)!
2 Logarithms base two (and e and 10)

2.1. Logarithm base two (y = \lg (n) or the less formal y = \lg n). The logarithm base two of n is formally denoted by y = \lg (n) and is defined as the power y that we need to raise integer 2 to get n.

That is, y = \lg (n) \iff 2^y = 2^{\lg (n)} = n.

From now on we will be using the informal form y = \lg n without parentheses instead of y = \lg (n). Another way to write both is y = \log_2 n or y = \log_2 (n). We can also skip parentheses in another ways. The two writings: \lg^k n = (\lg n)^k are equivalent. We sometimes write \lg\lg n to denote \lg (\lg (n)) and the nesting can go on. Note that \lg^{(k)} n with a parenthesized exponent means something else (see CLRS for the iterated logarithm function).

2.2 The other logarithms: \log_{10} (x) or \log_{10} x and ln (x) or ln x. If one writes log n, then the writing may be ambiguous. Mathematicians or engineers might assume that it is to the base 10, i.e. \log_{10} n or they can confuse it with ln n, that uses as base the base e = 2.7172... of the Neperian logarithms, i.e. \log_e n = ln n.

Note that if we tilt towards calculus we use x as in \lg (x) but if we till towards computing or discrete mathematics we use n as in \lg (n). The former might imply that x is real and the latter that n is integer, or natural number i.e. positive integer or non-negative integer, i.e. positive or zero.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>\lg (n)</td>
<td>y</td>
<td>since (2^y = 2^{\lg n} = n)</td>
</tr>
<tr>
<td>\lg (1)</td>
<td>0</td>
<td>since (2^0 = 1)</td>
</tr>
<tr>
<td>\lg (2)</td>
<td>1</td>
<td>since (2^1 = 2)</td>
</tr>
<tr>
<td>\lg (256)</td>
<td>8</td>
<td>since (2^8 = 256)</td>
</tr>
<tr>
<td>\lg (1024)</td>
<td>10</td>
<td>since (2^{10} = 1024)</td>
</tr>
<tr>
<td>\lg (1048576)</td>
<td>20</td>
<td>since (2^{20} = 1048576)</td>
</tr>
<tr>
<td>\lg (1073741824)</td>
<td>30</td>
<td>and so on</td>
</tr>
</tbody>
</table>

Figure 3: Logarithms: Base two

2.3 Example. \lg 2 is one since \(2^1 = 2\). \lg (256) is 8 since \(2^8 = 256\). \lg (1) is 0 since \(2^0 = 1\).

2.4. Properties of Logarithms. In general, \(2^{\lg (n)} = n\) and thus,

2.4.1 (Product.) \lg (n \cdot m) = \lg n + \lg m.

2.4.2 (Division.) \lg (n / m) = \lg n - \lg m.

2.4.3 (Exponentiation.) \lg (n^m) = m \cdot \lg n.

2.4.4 (Change of base.) \lg^m n = m^{\lg n}. Moreover \lg a = \frac{\log a}{\log 2}.

2.5. Example. Since \(2^{20} = 2^{10} \cdot 2^{10}\) we have that \(\lg (2^{20}) = \lg (2^{10} \cdot 2^{10}) = \lg (2^{10}) + \lg (2^{10}) = 10 + 10 = 20\). Likewise \(\lg (2^{30}) = 30\). Similarly to paragraph 1.3 of the previous page, \(\lg (1,000) \approx 10\), \(\lg (1,000,000) \approx 20\) and \(\lg (1,000,000,000) \approx 30\).

2.6 How much is \(n^{1/\lg n}\)? Let \(z = n^{1/\lg n}\). Then by taking logs of both sides (and using 2.4.3) \(\lg z = (1 / \lg n) \lg n = 1\), we have \(\lg z = 1\) which implies \(z = 2\).

2.7 Logarithm base e: A Lower bound. For all real \(x\), \(e^x \geq 1 + x\), where \(e = 2.7172...\).

2.9 Logarithm base e: An upper bound (and the lower bound above). For all \(x\) such that \(|x| < 1\), \(1 + x \leq e^x \leq 1 + x + x^2\).
3 Floors and Ceilings and Sets and Sequences

3.1 The floor \([x]\). The floor function is defined as follows: \([x]\) is the largest integer less than or equal to \(x\).

3.1.1 Exercise: The floor of \([10.1]\) and \([−10.1]\). The \([10]\) is 10 itself. The \([10.1]\) is 10 as well. The \([−10.1]\) is \(−11\).

3.2 The ceiling \([x]\). The ceiling function is defined as follows: \([x]\) is the smallest integer greater than or equal to \(x\).

3.2.2 The ceiling of \([10.1]\) and \([−10.1]\). The \([10]\) is 10 itself. The \([10.1]\) is 11 as well. The \([−10.1]\) is \(−10\).

3.3 For a set we use curly braces \{ and \} to denote it. In a set the order of its elements does not matter. Thus set \{10, 30, 20\} is equal to \{10, 20, 30\}: both represent the same set containing elements 10, 20, and 30 and thus \{10, 30, 20\} = \{10, 20, 30\}.

3.4 For a sequence we use angular brackets \langle and \rangle to denote it. In a sequence the order of its elements matters. Thus by using angular bracket notation sequence \langle 10, 30, 20 \rangle represents a sequence where the first element is a 10, the second a 30 and the third a 20. This sequence is different from sequence \langle 10, 20, 30 \rangle. The two are different because for example the second element of the former is a 30, and the second element of the latter is a 20. Thus those two sequences differ in their second element position. (They also differ in their third element position anyway.) Thus \langle 10, 30, 20 \rangle \neq \langle 10, 20, 30 \rangle.

3.5 Sets include unique elements; sequences not necessarily. Note the other distinction between a set and a sequence. The \{10, 10, 20\} is incorrect as in a set each element appears only once. The correct way to write this set is \{10, 20\}. For a sequence repetition is allowed thus \langle 10, 10, 20 \rangle is OK.

3.6 Sets or sequences with too many elements to write down: three periods (\)...\) Thus \{1, 2, \ldots, n\} would be a way to write all positive integers from 1 to \(n\) inclusive. The three period symbol \ldots is also known as ellipsis (or in plural form, ellipses).

3.7 "Forall", "there exists" and "belongs to". The symbols \(\forall\), \(\exists\), \(\in\) mean "forall", "there exists" and "belongs to" respectively.

3.8 Conjunction, Disjunction and Negation; XOR. The symbols \(\land\), \(\lor\) and \(\neg\) denote Conjunction, Disjunction and Negation respectively. For true, we might use \(\texttt{true}\) or \(\texttt{t}\) or 1; likewise \(\texttt{false}\), \(\texttt{f}\), or 0 for false. Thus \(1 \land 0 = 0\) and \(1 \lor 0 = 1\). And \(x \land \neg x = 0\) and \(x \lor \neg x = 1\). Sometimes we write \(\bar{x}\) for \(\neg x\). Alternatively we might write \(x \land y\) or \(x \text{ AND } y\) for conjunction or \(\text{AND}(x, y)\). Alternatively we might write \(x \lor y\) or \(x \text{ OR } y\) or \(\text{OR}(x, y)\) for disjunction. Alternatively we might write \(\text{NOT}(x)\) for negation. \(\text{XOR}(x, y)\) is the exclusive or of \(x, y\). If one is true the other must be false for the expression to be true. If both are true, or both are false the expression is false.
4 Axioms, Propositions, Theorems

Definition 1. The \forall quantifier is also called the universal quantifier. It means “for all”.

Definition 2. The \exists quantifier is also called the existential quantifier and it means there exist(s).

Definition 3. Symbol \in is the belongs to set membership symbol.

Definition 4. N is the set of natural (non negative integer) numbers.

Definition 5. $X \Rightarrow Y$ is also known as implication and can be stated otherwise as “X implies Y”.

In computer science we prove statements. Such statements need to be expressed/stated precisely.

4.1. An axiom is a statement (or proposition) accepted to be true without proof.

An axiom forms the basis for logically deducing other statements.

4.2 A proposition is a statement that is either true or false.

We can also define an axiom as,

4.2.a An axiom is a proposition that is assumed or accepted to be true.

4.3 A proof is a verification of a proposition by a sequence of logical deductions derived from a base set of axioms.

4.4. A theorem is a proposition along with a proof of its correctness.

Every proposition is true or false with reference to a space we first define axiomatically and then build on by establishing more theorems.

4.5 Axioms of Arithmetic.

For example, Peano’s axioms, on whose inductive proofs are based, define natural (non negative) numbers. The set of natural (non-negative integers) numbers is denoted by N.

Axiom 1 (Peano). 0 is a natural number.

Axiom 2 (Peano). If n is a natural number, then its successor $s(n)$ is also a natural number.

(We prefer to write $n + 1$ for the successor $s(n)$ of n.)
Theorems in mathematics are true because the space to which these theorems apply are based on simple axioms that are usually true.

We give the first proposition. This proposition states that for all natural (non-negative) numbers $n = 0, 1, \ldots$, the number $n^2 + 7$ is a prime number, i.e. it is a number divisible only by 1 and itself.

Proposition 1. $\forall n \in N, n^2 + 7$ is prime.

Proposition 1 can be easily shown to be false by counterexample.

Proof. For $n = 3$, we have that $n^2 + 7 = 3^2 + 7 = 16$ and one divisor of 16 other than 1 and 16, is 2. Therefore 16 is not a prime number, it is in fact a composite number and therefore this simple counterexample shows that Proposition 1 is false because it is not true for $n = 3$. □

Counterexample. To prove that this proposition is false it suffices to find a single integer of the form $n^2 + 7$ that is not a prime number. Thus determining for $n = 3$ that $3^2 + 7$ is not a prime number completes the proof that the proposition is FALSE.

Proposition 2. $\exists n \in N$ such that $n^2 + 7$ is prime.

In order to prove that Proposition 2 is true, we only need prove it for a single value of n. For $n = 2$, we can easily establish that $2^2 + 7 = 11$ is a prime number. Proposition 2 is not, however, very interesting.
5 Integers and their properties

The set of integers is denoted by \mathbb{Z}. The non-zero integers are \mathbb{Z}^*. The non-negative integers are \mathbb{Z}_+. The positive integers are \mathbb{Z}_+^*.

$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$

The set of natural numbers is denoted by \mathbb{N}.

$\mathbb{N} = \{1, 2, \ldots\}$

Theorem 1 (Some properties of integers). Let $a, b, c \in \mathbb{Z}$. The following properties are true.

- $a, b \in \mathbb{Z} \Rightarrow a \leq b$ or $b \leq a$ (total order)
- $a \leq a$ (reflexive property)
- $a \leq b$ and $b \leq a \iff a = b$ (antisymmetric property)
- $a \leq b$ and $b \leq c \Rightarrow a \leq c$ (transitive property)
- $a \geq b \Rightarrow a + c \geq b + c$
- $a \geq b$ and $c \geq 0 \Rightarrow ac \geq bc$
- $a \geq 0$ and $b \geq 0 \Rightarrow ab \geq 0$ and $a + b \geq 0$ (addition and multiplication closed over \mathbb{N})

Theorem 2 (Properties of integers). Let $a, b, c \in \mathbb{Z}$. The following properties are true. (The last or is disjunctive, not exclusive.)

- $a + b = b + a$ (commutative addition)
- $a + 0 = a$ (identity element for addition is zero)
- $a + (-a) = 0$ (inverse of every element exists for addition)
- $ab = ba$ (commutative multiplication)
- $(ab)c = a(bc)$ (associative multiplication)
- $a \cdot 1 = a$ (identity element for multiplication is one)
- $a(b + c) = ab + ac$ (multiplication is distributive over addition)
- $ab = 0 \iff a = 0$ or $b = 0$ (integral domain).

An implication of the last property is that for $a, b, c \in \mathbb{Z}$, if $ab = ac$ and $a \neq 0$, then $a(b - c) = 0$ and since $a \neq 0$ then $b - c = 0$ i.e. $b = c$.

Theorem 3 (Well Ordered Set Principle). Every non-empty subset of \mathbb{N} has a minimal element.

Unknown, "variable", indeterminate. For $f(x)$ or $\log(x)$ the x inside the parentheses is what is traditionally known as an unknown. Compute-speak we might call it a "variable" but we have not yet defined a variable formally. In Math we also call it an indeterminate.

Integer vs Real indeterminate names. In functions defined hereafter we shall more often use n than x or instead of x. Indeterminate n implies a natural integer or several times a non-negative integer. Indeterminate x implies a real number. We describe a discrete math universe of non-negative integers.

Problem size, Input size and its name(s). Indeterminate n will usually denote problem size or input size. Thus for a sequence of n keys, n represents the number of elements or keys in the sequence, the problem size and also to some degree the input size. For a 2d-array (aka matrix) $n \times n$, n represents the problem size denoting the number of its rows or columns i.e. its geometry or shape of the matrix. In this latter example the input size is the size of the matrix i.e. its number of elements which is n^2.
Theorem 4 (Mathematical Induction). Let \(A \subseteq \mathbb{N} \). Let \(1 \in A \) and whenever \(k \in A \) then \(k + 1 \in A \). This implies \(A = \mathbb{N} \).

Proof. Let \(A^c \) be the complement of \(A \) over \(\mathbb{N} \).

\[
A^c = \mathbb{N} - A = \{ k \in \mathbb{N} | k \notin A \}.
\]

Suppose \(A \neq \mathbb{N} \). Then \(A^c \) is a non-empty set and by the well ordered set principle it has a minimal element and call that element \(a \). Since \(1 \in A \) it is obviously \(a \neq 1 \). This means \(a > 1 \) and thus \(a - 1 \) is positive. Because \(a \) is the minimal element of \(A^c \), \(a - 1 \) belongs to \(A \). From the mathematical induction principle set \(k = a - 1 \). \(k \in A \) implies \(k + 1 = a \in A \). This contradicts the membership of \(a \) in the complement of \(A \)! Thus \(A^c \) cannot have a minimal element i.e. it must be empty. This implies that \(A = \mathbb{N} \).

In inductive proofs we try to prove that the set of integers \(A \) that satisfy a given property or proposition is all of \(\mathbb{N} \) i.e. \(A = \mathbb{N} \).

Theorem 5. If \(a, b \in \mathbb{N} \) then \(ab \geq a \). Equality is applicable if and only if \(b = 1 \).

Proof. Use induction on \(b \). Let \(a \in \mathbb{N} \).

STEP1: Base case. is \(b = 1 \). Clearly \(a \cdot 1 \geq a \) as the former is \(a \) by way of \(a \cdot 1 = a \); moreover \(a \cdot 1 = a \).

Auxiliary step. For the inductive step, since \(a \geq 1 \), we have \(a > 0 \) and thus \(2a = a + a > a + 0 \), i.e. \(2a > a \).

STEP 2: Inductive hypothesis. Suppose that \(ab > a \) for some \(b \in \mathbb{N} \).

STEP 3: Inductive step. We then have to show that \(a(b + 1) > a \) to prove the inductive step. This is

\[
a(b + 1) = ab + a > a + a > a
\]

The first \(> \) is by the inductive hypothesis; the second \(> \) is by the auxiliary step where \(a > 0 \) implies \(2a > a \).

STEP 4: Conclusion. It follows that \(ab > a \) for all \(b \geq 2 \). (And of course \(ab = a \) for \(b = 1 \) thus concluding the theorem.)

Theorem 6 (Strong Induction). Let \(A \subseteq \mathbb{N} \). Let \(1 \in A \) and whenever \(\{1, 2, \ldots, k\} \subseteq A \) then \(k + 1 \in A \). This implies \(A = \mathbb{N} \).

Strong vs Weak form of induction. Given that Theorem 6 establishes strong induction, we sometimes refer to Theorem 4 as Weak Induction. Thus Induction or Mathematical Induction or Weak Induction or also Ordinary Induction are all synonymous and refer to Theorem 4. There is one and only one name for Strong Induction of Theorem 6.
Induction as a proof method. As we mentioned before in the previous page, in inductive proofs we try to prove that the set of integers A that satisfy a given property or proposition is all of \mathbb{N} i.e. $A = \mathbb{N}$.

In the remainder we ignore properties and focus on propositions. Of particular interest are propositions that depend on an integer variable n and thus we would establish that the range A of n is indeed \mathbb{N} i.e. $A = \mathbb{N}$.

Note that we will use the term ”integer variable” as a misnomer for natural number. A natural number of always a positive integer, whereas our ”integer variable” would allow the possibility of including 0 (but not negative numbers). Thus ”integer variable” is an alias for ”non-negative integer”, ”natural numbers”, or ”natural numbers including 0”.

To wrap up all these assumptions let $P(n)$ be a generic proposition that depends on integer variable n.

5.1 (Mathematical) Induction: the principle. Let $P(n)$ be a proposition that depends on a natural (integer) number n. If

(Base case): $P(0)$ is true, and
(Inductive Step): $P(n)$ implies $P(n+1)$ for all natural numbers n, then
(Conclusion): $P(k)$ is true for all natural numbers k, including 0.

5.1.1 Why does induction work?

The base case establishes $P(0)$. The Inductive step establishes the chain of implications,

$$P(0) \Rightarrow P(1), \quad P(1) \Rightarrow P(2), \quad P(2) \Rightarrow P(3), \quad \ldots \quad , P(n) \Rightarrow P(n+1),$$

To fire-up the chain reaction, $P(0)$ must be true. This is established by the base case!

5.2 Strong Induction.

(Base case): $P(0)$ is true, and
(Inductive Step): $P(0), P(1), \ldots, P(n)$ jointly imply $P(n+1)$ for all natural numbers n, then
(Conclusion): $P(k)$ is true for all natural numbers k, including 0.

5.3 Induction: Base case other than $P(0)$.

If $P(0)$ cannot be proven true, find the smallest value a, where a is a natural number such that $P(a)$ is true. The conclusion would then be true for all $P(k)$ such that $k \geq a$. For Strong induction the changes for the Inductive step and Conclusion are shown below.

(Base case): $P(a)$ is true, and
(Inductive Step): $P(a), P(a+1), \ldots, P(n)$ jointly imply $P(n+1)$ for all natural numbers $n \geq a$, then
(Conclusion): $P(k)$ is true for all natural numbers $k \geq a$.

Let \(S_k(n) = 1^k + 2^k + \ldots + n^k \) for any integer \(k > 0 \). We also write \(S_k(n) = \sum_{i=1}^{n} i^k \). The latter term \(\sum_{i=1}^{n} i^k \) indicates a sum that runs from \(i = 1 \) through (inclusive) \(i = n \). The \(i \)-th term of the sum is \(i^k \).

We shall show that \(S_1(n) = 1 + \ldots + n \) is equal to \(n(n+1)/2 \).

5.4.1 An example.

Proposition 3. For all natural number \(n \geq 1 \), we have that \(S_1(n) = 1 + 2 + \ldots + n = n(n+1)/2 \). (We sometimes call \(S_1(n) \) as \(A(n) \) for arithmetic series.)

The first step in induction is to identify in a proposition a predicate that depends on a natural-valued variable and also that same natural-valued variable. An example proposition is given below.

Proof. Let us call \(P(n) \) the predicate \(S_1(n) = n(n+1)/2 \). We are going to show that \(P(n) \) is true for all (integer \(n \geq 1 \)). That is we shall show that \(S_1(n) = n(n+1)/2 \). The proof is by induction.

1. **Base case:** Show that \(P(1) \) is true. Thus we shall show that \(S_1(n)|_{n=1} = n(n+1)/2|_{n=1} \). The left hand side sum of \(P(1) \) is \(S_1(1) \) i.e. the sum of one term (and that term is 1), which is 1. The right hand side of \(P(1) \) is \(1(1+1)/2 \) which is also 1. Therefore \(P(1) \) is true since the left and right hand sides of \(= \) are equal to one and equal to each other obviously.

2. **Inductive Step:** \(\forall n \in \mathbb{N} \) \(P(n) \Rightarrow P(n+1) \). Show that \(P(n) \Rightarrow P(n+1) \) for all \(n \geq 1 \), i.e. we show that \(P(n) \) implies \(P(n+1) \). We move from the left hand of the implication to the right hand side.

 2.a **Induction hypothesis:** \(P(n) \). \(P(n) \) true, implies \(S_1(n) = 1 + 2 + \ldots + n = \sum_{i=1}^{n} i = n(n+1)/2 \).

 2.b **Implies** \(P(n+1) \). To show \(P(n+1) \) we need to show that \(1 + 2 + \ldots + (n+1) = \sum_{i=1}^{n+1} i = (n+1)(n+2)/2 \).

Show 2.b using 2.a. We start from the left-hand side of the latter equality to derive the right-hand side utilizing the induction hypothesis, i.e. the assumption that \(P(n) \) is true which is equivalent to \(S_1(n) = n(n+1)/2 \): we use to derive the third equality from the second one.

\[
1 + 2 + \ldots + (n+1) = \sum_{i=1}^{n+1} i = \left(\sum_{i=1}^{n} i \right) + (n+1) = n(n+1)/2 + (n+1) = n(n+1)/2 + 2(n+1)/2 = (n+1)(n+2)/2
\]

This completes the induction. We proved two things

- We first proved that \(P(1) \) is true.
- and then showed that \(P(n) \Rightarrow P(n+1) \) for all \(n \geq 1 \).

\(\square \)

An alternative would have been to show (substituting \(n - 1 \) for \(n \))

- that \(P(1) \) is true,
- and then show that \(P(n-1) \Rightarrow P(n) \) for all \(n \geq 2 \).
5.4.2 Another example: A closed-form expression for the Geometric sequence.

The sum below is known as the geometric series or sum of the geometric sequence. The \(i \)-th term of the sum is \(x^i \).

Theorem 7. Show that for all integer \(m \geq 0 \), and for any \(x \neq 1 \),

\[
\sum_{i=1}^{m} x^i = 1 + x + \ldots + x^m = \frac{x^{m+1} - 1}{x - 1}.
\]

Proof. We prove the theorem by induction. The natural variable in the theorem is \(m \). The predicate \(P(m) \) in the theorem that depends on \(m \) is

\[
P(m) : 1 + x + \ldots + x^m = \frac{x^{m+1} - 1}{x - 1}, \text{ for any } x \neq 1.
\]

An equivalent way is to write

\[
P(m) : \sum_{i=0}^{m} x^i = \frac{x^{m+1} - 1}{x - 1}, \text{ for any } x \neq 1.
\]

1. **Base case:** \(P(1) \) is true. We can show either \(P(0) \) or \(P(1) \). To show \(P(1) \) we need to show that \(1 + x \) is equal to \(\frac{x^2 - 1}{x - 1} \) which is obviously true as the latter is a stealthy way of writing \((x^2 - 1)/(x - 1)\) which is indeed \(x + 1 \) as long \(x \neq 1 \) which is so anyway.

2. **Inductive Step:** \(P(m) \) implies \(P(m + 1) \). Let us show first what \(P(m) \) is/implies, i.e. the induction hypothesis. It is equivalent to

\[
P(m) : 1 + x + \ldots + x^m = \frac{x^{m+1} - 1}{x - 1}
\]

Then \(P(m + 1) \) is equivalent to

\[
P(m + 1) : 1 + x + \ldots + x^{m+1} = \frac{x^{m+2} - 1}{x - 1}
\]

Similarly to the previous example 2.4.1 we start from the latter’s left-hand side to conclude its right hand-side by using the former result for \(P(m) \). Between the second and third inequality we use the induction hypothesis for \(P(m) \) above.

\[
1 + x + \ldots + x^{m+1} = 1 + x + \ldots + x^m + x^{m+1} = (1 + x + \ldots + x^m) + x^{m+1} = \frac{x^{m+1} - 1}{x - 1} + x^{m+1}
\]

\[
= \frac{(x^{m+1} - 1) + x^{m+1}(x - 1)}{x - 1} = \frac{x^{m+2} - 1}{x - 1},
\]

which proves that \(P(m + 1) \) is true. Base case and inductive step conclude the induction. \(\square \)

Just because we set up the induction description by using \(n \) to represent the natural number, it doesn’t mean that we should always use \(n \) or have \(n \) in a Proposition. In this example \(m \) was the natural number, and the proposition dependend on \(m \) (i.e. we had \(P(m) \)).
5.4.3 Practice Makes Perfect.
Do for practice the following examples.

Example 1. Show that for any $n \geq 0$
\[
\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}
\]

Example 2. Show that for any $n > 1$, $n^2 - 1 > 0$.

Example 3. Show that for any $n \geq 2$, $\sum_{i=1}^{n} i \leq \frac{3n^2}{4}$.

Example 4. Show that for any $x \geq 3$, $\sum_{i=0}^{n-1} x^i \leq \frac{x^n}{2}$.

Example 5. Show that for any $n \geq 1$, $\sum_{i=0}^{n} i^2 \leq \frac{(n^3 + 2n^2)}{3}$.

Example 6. What is wrong with the proof of Theorem 2 below? Explain.
5.4.4 Examples on Strong Induction.

A recursive function is a function that invokes itself. In direct recursion a recursive function \(f \) invokes directly itself, whereas in indirect recursion function \(f \) invokes function \(g \) that invokes \(f \). A quite well-known recursive function from discrete mathematics is the Fibonacci function \(F_n \) or more widely know as the Fibonacci Sequence \(F_n \). The name sequence implies that it includes all the terms \(F_0, F_1, \ldots, F_{n-1}, F_n, \ldots \). The \(n \) indexed term is given by the following recursive formulation.

\[
F_n = F_{n-1} + F_{n-2} \text{ if } n > 1
\]

where \(F_0 = 0 \) and \(F_1 = 1 \)

Proposition 4. For any \(n \geq 0 \), we have that \(F_n \leq 2^n \).

Proof. Proof is by strong induction. Let the predicate \(P(n) \) be \(F_n \leq 2^n \). Given that we have \(F_0 \) we shall use a base case \(n = 0 \). Otherwise, if we use a \(n = 1 \) base case, we could prove a lesser result that for \(n \geq 1 \) \(P(n) \) is true.

1. **Base case:** Show \(P(0) \) is true. To show \(P(0) \) we need to show that \(F_0 \leq 2^0 \). Since \(F_0 \) is 0 and \(2^0 = 1 \) we have obviously \(F_0 = 1 = 2^0 \), and \(P(0) \) follows directly.

The base case \(n = 0 \) was easy to prove to establish \(P(0) \). No need to move on to \(P(1) \).

2. **Inductive Step.** Show that \(P(0) \land \ldots \land P(n-1) \Rightarrow P(n) \). The inductive step is of the (strong induction) type “0, 1, \ldots, n-1, induces \(n \)” and not of the type “1, 2, \ldots, n induces \(n + 1 \)”.

2.a **Induction hypothesis:** \(P(0) \land \ldots \land P(n-1) \) which is equivalent to \(\forall i, 0 \leq i < n : P(i) \).

We need to show that \(\forall i, 0 \leq i < n : P(i) \Rightarrow P(n) \). \(P(i) \) is equivalent to \(F_i \leq 2^i \). Among the \(i \) less than \(n \) two are of use: \(P(n-1) \) and \(P(n-2) \) that relate to \(F_{n-1} \) and \(F_{n-2} \) respectively.

\[
P(n-2) : \quad F_{n-2} \leq 2^{n-2} \quad \text{and} \quad P(n-1) : \quad F_{n-1} \leq 2^{n-1}
\]

We complete the inductive step by starting with the recurrence and then claiming \(P(n-1) \) and \(P(n-2) \) for \(F_{n-1} \) and \(F_{n-2} \) in its right hand side; this involves turning an equal into less than or equal.

\[
F_n = F_{n-1} + F_{n-2} \leq 2^{n-1} + F_{n-2} \leq 2^{n-1} + 2^{n-2}
\]

\[
\leq 2^{n-1} + 2^{n-1} = 2 \cdot 2^{n-1} = 2^n
\]

This completes the strong induction. \(\square \)
5.4.5 Practice makes perfect (for \(F_n \)).

We have thus shown that \(F_n \leq 2^n \) for all \(n \geq 0 \).

We can do a little better with the upper bound on \(F_n \).

Example 1. Show that for any \(n \geq 0 \)

\[
F_n \leq 2^{n-1}.
\]

Example 2. Show that for any \(n \geq 1 \)

\[
F_n \geq 2^{(n-1)/2}.
\]

Recurrence solution using the substitution method: Predicate \(P(n) \) must be known.

The method of solving recurrences through induction and in particular strong induction is known as the substitution or the guess-and-check method. In order to use it we need to know what to show, i.e. the predicate \(P(n) \) must be given to us in advance, e.g. \(F_n \leq 2^n \).

The inductive proof is straightforward and is shown in two steps:

(a) Show the base case by using the boundary values of the recurrence (i.e. use \(F_0 \) for \(P(0) \) and \(F_1 \) for \(P(1) \)). In fact, choose whether \(P(0) \) or \(P(1) \) serves as better base case.

(b) Show the inductive step by using the induction hypothesis for the terms on the right hand side of the recurrence (i.e. use the induction hypothesis \(P(n-1) \) and \(P(n-2) \) for \(F_{n-1} \) and \(F_{n-2} \) that appear on the right hand side of the recurrence for \(F_n \)) and then combine the conclusion for the terms on the right hand side of the recurrence using the recurrence itself (in our case \(F_n = F_{n-1} + F_{n-2} \)).
5.4.6 Practice makes perfect (Horse speaking).

Here is a funny proof by induction. Is it correct? No. Why?

Theorem 8. All horses of the world are of the same color.

Proof. The proof is (supposed to be) by induction on the number of horses n.

P(n): In any set of $n \geq 1$ horses, all the horses of the set are of the same color.

1. **Base Case:** Show $P(1)$ is true. $P(1)$ is always true as in a set consisting of a single horse, all the horses (there is only one) of the set have the same color.

2. **Inductive step:** $\forall n \in N$, i.e. $n \geq 1$, $P(n) \Rightarrow P(n + 1)$.

Let us assume (induction hypothesis) that for any $n \geq 1$, $P(n)$ is true. Since we assume $P(n)$ to be true, every set of n horses have the same color. Then we will prove that $P(n + 1)$ is also true (inductive step), i.e. we will show that in every set of $n + 1$ horses, all of them are of the same color. To show the inductive step, i.e. that $P(n + 1)$ is true let us consider ANY set of $n + 1$ horses $H_1, H_2, \ldots, H_n, H_{n+1}$. The set of horses H_1, H_2, \ldots, H_n, consists of n horses, and by the induction hypothesis any set of n horses are of the same color. Therefore $\text{color}(H_1) = \text{color}(H_2) = \ldots = \text{color}(H_n)$. The set of horses $H_2, H_3, \ldots, H_{n+1}$, consists of n horses, and by the induction hypothesis any set of n horses are of the same color. Therefore $\text{color}(H_2) = \text{color}(H_3) = \ldots = \text{color}(H_{n+1})$. Since from the first set of horses $\text{color}(H_2) = \text{color}(H_n)$, and from the second set $\text{color}(H_2) = \text{color}(H_{n+1})$, we conclude that the color of horse H_{n+1} is that of horse H_2, and since all horses H_1, H_2, \ldots, H_n are of the same color, then all horses $H_1, H_2, \ldots, H_n, H_{n+1}$ have the same color. This proves the inductive step. The induction is complete and we have thus proved that for any n, in any set of n horses all horses (in that set) are of the same color. □

(Hint: The key to this proof is the existence of horse H_2. More details on the next page.)
5.4.7 On horses, cows, and tricky inductive arguments.

On the previous page we proved that all horses have the same color, an otherwise nonsense statement (or false proposition). What’s wrong with the inductive proof?

Many may argue that the error is in the logic of the inductive step.

The logic is fine, the quantification “for all n” is not, since the assumption of always having horse H_2 might not be true. The crux of the inductive step is the existence of three 'different' horses H_1, H_2, H_{n+1}. We first form a set of n horses H_1, H_2, \ldots, H_n and apply the induction hypothesis and then form another set of n horses, $H_2, \ldots, H_n, H_{n+1}$, and apply the induction hypothesis again. Crucial to the proof is that $c(H_1) = c(H_2)$ from the first application of the induction hypothesis, and $c(H_2) = c(H_{n+1})$ from the second thus concluding that $c(H_1) = c(H_2) = \ldots = c(H_n)$.

Let’s see what happens for $n = 1$, i.e. let’s try to show that $P(1) \Rightarrow P(2)$, i.e. show the inductive step for a certain value of n equal to 1. If we try to form H_1, \ldots, H_n this set contains only one 'horse' element for $n = 1$: H_1! If we try to form H_2, \ldots, H_{n+1} this set contains only one 'horse' element H_2. There is no common third 'horse' H_k in the set containing H_1 nor in the set containing H_2. This is because the argument in the previous paragraph works only for $n \geq 2$. In that case one set is formed from H_1, H_2 and the other set from H_2, H_3. However even if we can prove the inductive step nicely in that case there is no way to prove the base case set for $n = 2$ i.e. $P(2)$!

Therefore the inductive step that “we proved” before $P(n) \Rightarrow P(n + 1)$ is not true for all $n \geq 1$ but only for $n \geq 2$. This however can not establish the trueness of $P(n)$ for all $n \geq 1$ because $P(2)$ may or may not be true.

What is $P(2)$?

$P(2)$ is “in any set of two horses, both horses are of the same color”.

In conclusion, the whole “horsy argument” breaks down because

A2. $P(n) \Rightarrow P(n + 1)$ for all $n \geq 1$,
was not shown, for all $n \geq 1$; it was only proved for all $n \geq 2$, i.e.

A2. $P(n) \Rightarrow P(n + 1)$ for all $n \geq 2$,

and thus the base case “$P(1)$ is true” can not be used with the latter version of the inductive step; for the latter we need $P(2)$ to be true WHICH IS NOT!
6 Limits, Derivatives and Integrals

6.1. Limits in computing: Asymptotics. In computing limits are for \(n \to \infty \) i.e. for asymptotically large values of some integer parameter \(n \) (aka problem size or input size).

For the moment, consider \(\log n \) representing any logarithmic function, irrespective of its base.

6.2.
\[
\lim_{n \to \infty} n = \infty, \quad \lim_{n \to \infty} n \log n = \infty, \quad \lim_{n \to \infty} \log n = \infty, \quad \lim_{n \to \infty} 2^n = \infty
\]

6.3.
\[
\lim_{n \to \infty} \left(\frac{a}{b}\right)^n = \begin{cases}
0 & a < b \\
1 & a = b \\
\infty & a > b
\end{cases}
\]

6.4.
\[
\lim_{n \to \infty} \frac{2^n}{n!} = 0
\]

6.5. Example Apply L’Hospital if needed. Forget about conversion and multiplicative constants; they won’t affect a 0 or an \(\infty \) limit. Thus in the third equality do not spend time thinking of whether \(1/n \) must be multiplied with \(\ln 2 \) or divided by \(\ln 2 \) or something else.

\[
\lim_{n \to \infty} \frac{n \log n}{n^2} = \lim_{n \to \infty} \frac{\log n}{n} = \lim_{n \to \infty} \frac{\log n'}{n'} = \lim_{n \to \infty} \frac{1/n}{1} = 0
\]

6.6.
\[
(f(x)g(x))' = f'(x)g(x) + f(x)g'(x), \quad \left(\frac{f(x)}{g(x)} \right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)},
\]

6.7. For fixed constant \(k > 0 \).
\[
\left(x^k\right)' = k \cdot x^{k-1}, \quad (e^x)' = e^x, \quad (a^x)' = a^x \cdot \ln(a), \quad (\ln(x))' = 1/x,
\]

6.8. For fixed constant \(k > 0 \), and for \(n \) in place of \(x \) we shall ignore multiplicative constants in our calculations.
\[
\left(n^k\right)' = n^{k-1}, \quad (2^n)' = 2^n, \quad (a^n)' = a^n, \quad (\ln(n))' = 1/n, \quad (\log(n))' = 1/n,
\]

6.9.
\[
\int x^k dx = x^{k+1}/(k+1) + c, \quad \int (1/x) dx = \ln(|x|) + c, \quad \int (e^x) dx = e^x + c, \quad \int (a^x) dx = a^x / \ln(a) + c,
\]
7 Sums of sequences: finite and infinite

7.1. Some constants: Neperian base, \(\pi \), Euler’s gamma, Golden ratio \(\phi \) and its Fibonacci-related counterpart.

\[
e \approx 2.718281, \quad \pi \approx 3.14159, \quad \gamma \approx 0.57721, \quad \phi = \frac{1 + \sqrt{5}}{2} \approx 1.61803, \quad \hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx -0.61803.
\]

Sums and Sigma notation. The sum \(a_0 + a_1 + \ldots + a_n \) can be represented in compact form as

\[
\sum_{i=0}^{n} a_i = a_0 + \ldots + a_n
\]

Variable \(i \) varies i.e. it attains the smallest value as indicated under the sum’s Sigma symbol (i.e. \(i = 0 \)), and it attains the largest value as indicated over the sum’s Sigma symbol (i.e. \(i = n \)). It also takes all other number inbetween (and inclusive) of the lower bound \(i = 0 \) and the upper bound \(i = n \). Because the variable’s name is available beneath the Sigma it can be omitted over it and thus the alternative form with the \(n \) over the sum’s Sigma symbol is the one used more often in this document (with the exception of three exercises to remind you of the alternative, original form. The terms of the sum are usually member of a sequence e.g \(a_0, a_1, \ldots, a_n \). The general member of the sequence i.e. \(a_i \) is being use in the sum’s Sigma symbol notation.

If the sequence is simple such as \(a_i = i \) instead of \(a_i \) we use directly \(i \); likewise if \(a_i = i^2 \) or \(a_i = i^3 \), etc. This is the case for example in 7.2 below. Note that in 7.3 we have \(a_i = a^i \) i.e. the \(i \)-term of the sum is an indeterminate \(a \) (coincidence in name choosing) raised to the \(i \)-th power.

7.2. Finite sum of integers, integer squares and integer cubes. The first is the arithmetic series.

\[
A_n = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.
\]

Theorem 9. For all \(n \in \mathbb{N} \) and \(a, b \) we have

\[
(a^n - b^n) = (a - b)(a^{n-1} + a^{n-2}b + \ldots + ab^{n-2} + b^i).
\]

It can be proved by induction. Special case for \(n = 2 \) and \(n = 3 \) are \(a^2 - b^2 = (a - b)(a + b) \) and \(a^3 - b^3 = (a - b)(a^2 + ab + b^2) \). In the latter expression set \(b = -b \) to get an expansion for \(a^3 + b^3 \).

Theorem 10 (Geometric Sequence - Geometric Sum). For all \(n \in \mathbb{N} \) and \(a \) we have

\[
(a^n - 1) = (a - 1)(a^{n-1} + a^{n-2} + \ldots + a + 1).
\]

This is the previous theorem for \(b = 1 \) and can be rewritten as

\[
1 + a + a^2 + \ldots + a^{n-1} = \frac{a^n - 1}{a - 1},
\]

provided that \(a \neq 1 \).
7.3. For \(a \neq 1 \) we have the following finite sums. The first one is the **geometric** series, the last one is derived form the Binomial Theorem below for \(a = 1 \) and \(b = d \).

\[
G_n = \sum_{i=0}^{n} a^i = \frac{a^{n+1} - 1}{a - 1}, \quad \sum_{i=0}^{n-1} ia^i = \frac{(n-1)a^{n+1} - na^n + a}{(1-a)^2}, \quad (1+d)^n = \sum_{i=0}^{\infty} \binom{n}{i} d^i.
\]

Theorem 11 (Geometric Series). For the previous theorem to the limit \(n \to \infty \), and \(-1 < a < 1\), we have \(a^n \to 0 \) and thus

\[
\lim_{n \to \infty} 1 + a + a^2 + \ldots + a^{n-1} = \frac{a^n - 1}{a - 1} = -\frac{1}{a-1} = \frac{1}{1-a}.
\]

Theorem 12 (Binomial Theorem). For all \(n \in \mathbb{N} \) and \(a, b \) we have

\[
(a+b)^n = \sum_{i=0}^{n} \binom{n}{k} a^kb^{n-k} = a^n + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^2 + \ldots + \binom{n}{k} a^k b^{n-k} + \ldots + nab^{n-1} + b^n.
\]

7.4. For \(| a | < 1 \) we have the following infinite sums derived from \(G_n \) as \(n \to \infty \).

\[
\sum_{i=0}^{\infty} a^i = 1 + a + a^2 + \ldots + a^i + \ldots = \frac{1}{1-a}, \quad \sum_{i=1}^{\infty} a^i = \frac{a}{1-a}
\]

7.5. For \(| a | < 1 \) we have the following infinite sum by taking the first derivative of 7.4 and multiplying by \(a \) (See 7.A.3).

\[
\sum_{i=0}^{\infty} ia^i = a + 2a^2 + \ldots + ia^i + \ldots = \frac{a}{(1-a)^2}; \quad \text{For } a = 1/2, \text{ we have } \sum_{i=0}^{\infty} i(1/2)^i = 2
\]

7.6. The first sum is the **Harmonic** series.

\[
H_n = \sum_{i=1}^{n} \frac{1}{i} \approx \int (1/x) dx \approx \ln (n) + \gamma, \quad \sum_{i=1}^{n} H_i = (n+1)H_n - n, \quad \sum_{i=1}^{n} iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.
\]

7.7. For \(| a | < 1 \).

\[
e^a = 1 + a + \frac{a^2}{2!} + \ldots + \frac{a^i}{i!} + \ldots = \sum_{i=0}^{\infty} \frac{a^i}{i!}.
\]

7.8. For \(| a | < 1 \).

\[
\ln(1+a) = a - \frac{a^2}{2} + \ldots + (-1)^{i+1} \frac{a^i}{i} + \ldots = \sum_{i=1}^{\infty} (-1)^{i+1} \frac{a^i}{i}, \quad \ln \frac{1}{1-a} = a + \frac{a^2}{2} + \ldots + \frac{a^i}{i} + \ldots = \sum_{i=1}^{\infty} \frac{a^i}{i},
\]

7.9. For \(| a | < 1 \).

\[
\frac{1}{(1-a)^{n+1}} = \sum_{i=0}^{\infty} \binom{i+n}{i} a^i, \quad \frac{1}{\sqrt{1-4a}} = \sum_{i=0}^{\infty} \binom{2i}{i} a^i, \quad \frac{a}{1-a-a^2} = a + a^2 + 2a^3 + 3a^4 + \ldots = \sum_{i=0}^{\infty} F_ia^i
\]

7.10.

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}, \quad \sum_{k=0}^{n} \binom{n}{k} = 2^n, \quad \binom{n}{k} = \binom{n}{n-k}, \quad \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.
\]
7.11. Practice makes Perfect.

Example 1. For all \(n \geq 0 \), find
\[
\sum_{i=0}^{i=n} i^2
\]

Example 2. For all \(n \geq 0 \), find
\[
\sum_{i=0}^{i=n} i^3
\]

Example 3. Calculate the following sum for any \(x \neq 1 \)
\[
x + 2x^2 + 3x^3 + \ldots + nx^n = \sum_{i=1}^{i=n} ix^i.
\]
7.A.1. Proof for 7.2 A_n. Let $A_n = 1 + 2 + \ldots + (n - 1) + n$. Write forwards and backwards A_n and add up the two.

\[
A_n = 1 + 2 + \ldots + (n - 1) + n \\
A_n = n + (n - 1) + \ldots + 2 + 1 \quad \text{Add up this and the previous equation} \\
2A_n = (n + 1) + (n + 1) + \ldots + (n + 1) + (n + 1) \\
2A_n = n(n + 1) \\
A_n = \frac{n(n + 1)}{2}
\]

Proposition 5. For all $n \geq 0$,

\[
\sum_{i=0}^{n} i = \frac{n(n+1)}{2}.
\]

Proof. One can show this proposition by using induction. But what if we don’t know how much the sum is? How can we find the answer $\frac{n(n+1)}{2}$? We use the following trick to find sums of the following form

\[
S_k = \sum_{i=1}^{n} i^k.
\]

First consider $(i+1)^{k+1}$ and expand it. Substitute in the expansion $i = 1, i = 2, \ldots, i = n$, a total of n times and write the resulting n equalities one after the other. Then, sum these n equalities by summing up the left hand sides and the right hand sides. Solve for S_k and S_k can then be found as a function of n.

For the sum in question $k = 1$. Therefore we consider

\[
(i+1)^2 = i^2 + 2i + 1
\]

We substitute for $i = 1, 2, \ldots, n$ writing one equality after the other

\[
\begin{align*}
(1+1)^2 & = 1^2 + 2 \cdot 1 + 1 \\
(2+1)^2 & = 2^2 + 2 \cdot 2 + 1 \\
(3+1)^2 & = 3^2 + 2 \cdot 3 + 1 \\
(4+1)^2 & = 4^2 + 2 \cdot 4 + 1 \\
\ldots & = \ldots \\
(n+1)^2 & = n^2 + 2 \cdot n + 1
\end{align*}
\]

When we sum up the n equalities we realize that say, $(3+1)^2$ of the third line is equal to 4^2 of the fourth line and therefore.

\[
(1+1)^2 + (2+1)^2 + \ldots + (n+1)^2 = (1^2 + 2^2 + 3^2 + \ldots + n^2) + 2 \cdot (1 + 2 + \ldots + n) + (1 + \ldots + 1)
\]

We note that $2 \cdot (1 + 2 + \ldots + n) = 2S_1$ and $(1 + \ldots + 1) = n$ (number of ones is number of equations). Then,

\[
(n+1)^2 = 1 + 2S_1 + n
\]

Solving for S_1 we get that $S_1 = ((n+1)^2 - n - 1)/2$, ie $S_1 = (n^2 + 2n + 1 - n - 1)/2 = (n^2 + n)/2 = n(n+1)/2$, which proves the desired result.
7.A.3. How to calculate a sum that will appear in the analysis of BuildMaxHeap. Show that

\[\sum_{i=0}^{\infty} \frac{i}{2^i} = 2. \]

We already know the first two derivations. The first one is the chopped \(G_n \) and it has \(n \) terms and first appeared in 7.3 in disguise using \(a \) instead of \(x \). Likewise the second one is \(G_n \)'s infinite term form appearing in 7.4. In the latter one the right-hand side is to the limit \(n \to \infty \).

The third one is 7.5 and we mentioned there that it was to be derived from the second one i.e. 7.4 by taking the latter’s first derivative and multiplying the result with \(\ldots x \).

Starting, from the second equation we work as follows under the assumption \(x < 1 \): (a) take the first derivative of both sides, and (b) multiply the result (both sides) by \(x \).

For any \(x < 1 \), we have.

\[
\begin{align*}
\sum_{i=0}^{n-1} x^i &= 1 + x + \ldots + x^j + \ldots + x^{n-1} = \frac{x^n - 1}{x - 1} \quad x \neq 1 \\
\sum_{i=0}^{\infty} x^i &= 1 + x + \ldots + x^j + \ldots = \frac{1}{1-x} \quad 0 < x < 1 \\
\sum_{i=0}^{\infty} i \cdot x^i &= 1 \cdot x^1 + 2 \cdot x^2 + \ldots + i \cdot x^i + \ldots = ? \quad 0 < x < 1
\end{align*}
\]

If we substitute \(x = 1/2 \) we obtain the result i.e. \(\sum_{i=0}^{\infty} \frac{i}{2^i} = 2. \)
8 The factorial and Stirling’s approximation formula

8.1 The factorial $n!$. The factorial $n!$ is defined as follows:

$$n! = 1 \cdot 2 \cdot \ldots \cdot n.$$

By definition $0! = 1$ and $1! = 1$. Thus $2! = 2$, $3! = 6$ and so on.

8.2 An upper bound for the factorial $n! \leq n^n$. A trivial upper bound for the factorial is derived by upper-bounding each one of its terms by n.

$$n! = 1 \cdot 2 \cdot \ldots \cdot n \leq n \cdot n \cdot \ldots \cdot n = n^n.$$

8.3 A lower bound for the factorial $n! \geq (n/2)^{(n/2)}$. A trivial lower bound for the factorial is derived by lower-bounding half of its lower-order terms by 1, and half of its higher-order terms by $n/2$.

$$n! = 1 \cdot 2 \cdot \ldots \cdot (n/2) \cdot (n/2 + 1) \cdot \ldots \cdot n \geq 1 \cdot 1 \cdot \ldots \cdot 1 \cdot (n/2) \cdot \ldots \cdot (n/2) = (n/2)^{(n/2)}.$$

Of course here we “ignored” differences between odd and even values of n. The analysis above is true and correct for even n. Think of for $n = 6$ and $n/2 = 3$ and $n/2 + 1 = 4$ that

$$6! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \geq 1 \cdot 1 \cdot 1 \cdot 4 \cdot 5 \cdot 6 \geq 1 \cdot 1 \cdot 1 \cdot 3 \cdot 3 \cdot 3 = 3^3 = (6/2)^{(6/2)}.$$

Otherwise for an odd n one should write,

$$n! = 1 \cdot 2 \cdot \ldots \cdot \lceil n/2 \rceil \cdot \lfloor n/2 \rfloor \cdot \ldots \cdot n \geq 1 \cdot 1 \cdot \ldots \cdot 1 \cdot \lfloor n/2 \rfloor \cdot \ldots \cdot \lceil n/2 \rceil \geq 1 \cdot 1 \cdot \ldots \cdot 1 \cdot (n/2) \cdot \ldots \cdot (n/2) = (n/2)^{(n/2)}.$$

Think of for $n = 5$ and $\lfloor 5/2 \rfloor = 2$ and $\lceil 5/2 \rceil = 3$ that

$$5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \geq 1 \cdot 1 \cdot 3 \cdot 4 \cdot 5 \geq 1 \cdot 1 \cdot 2.5 \cdot 2.5 \cdot 2.5 = 2.5^3 \geq (5/2)^{(5/2)}.$$

8.4 Stirling’s approximation formula for $n!$. It applies for $n \geq 10$.

$$n! = \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \left(1 + \Theta \left(\frac{1}{n} \right) \right),$$

A simplified version is $n! \approx \left(\frac{n}{e} \right)^n$. A corrolary is that $\lg(n!)$ is approximately $n \lg n$ or $\Theta(n \lg n)$ after the assymtotic Θ symbol is introduced!

$$\lg(n!) \approx n \lg n - n \lg e = \Theta(n \lg n).$$

8.5 The choose symbol as in n choose k or choose k objects out of n.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$
9 Asymptotics

Fact 1. The expression “for large enough \(n \) ” means “there is a positive constant \(n_0 \) such that for all \(n > n_0 \).”

Fact 2. For any positive constant \(k, m \) and integer \(n > 0 \), we have that \(n^m > \lg^k n \) for large enough \(n \).

Roughly speaking, Fact 2 says that a polynomial function is asymptotically larger than a logarithmic function of the same variable \(n \).

Fact 3. For any positive constant \(m \) and integer \(n > 0 \), we have that \(2^n > n^m \) for large enough \(n \).

Roughly speaking, Fact 3 says that an exponential function is asymptotically larger than a polynomial function of the same variable \(n \).

Fact 4. A polynomial function on \(n \) is a function of the form \(n^k \) where \(k \) is a constant \(k > 0 \), or bounded between two constants.

Some well-know polynomial functions are the linear function \(n \), the quadratic function \(n^2 \) and the cubic function \(n^3 \). A log-linear function is a polynomial function as well. This is because \(n \leq n \lg n \leq n^2 \) and \(n \lg n = n^{1+\lg n / \lg n} \). That is the \(k \) of \(n \lg n \) is large than 1 by \(\lg \lg n / \lg n \).

Fact 5. When we compare two functions \(f(n) \) and \(g(n) \) we directly compare them. When we asymptotically compare two functions \(f(n) \) and \(g(n) \) we take the limit of \(\lim_{n \to \infty} f(n)/g(n) \). Out of the limit we care only whether it is 0, \(\infty \) or some constant other than zero. The former implies \(f(n) \) is asymptotically smaller than \(g(n) \), the next one it is the other way around; a constant non-zero limit implies that the two functions have the same growth.

Example 4. Functions 5 and 6 are asymptotically equal. Their limit is 5/6 (or 6/5 the other way around).

Example 5. Functions \(5n \) and \(6n \) are asymptotically equal. Their limit is 5/6 (or 6/5 the other way around). They are both linear functions.

Example 6. Functions \(5n^2 \) and \(6n^2 \) are asymptotically equal. Their limit is 5/6 (or 6/5 the other way around). They are both quadratic functions.

Example 7. Function \(n \) is asymptotically larger than \(1,000,000,000,000 \). Their limit is \(\infty \). (It does not matter what happens if \(n = 1 \) or \(n = 1000 \) or \(n = 1,000,000 \). It only matters what happens for \(n \to \infty \).)
10 Asymptotic Notation

10.1 Little-oh (definition). \(f(n) = o(g(n)) \), iff \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \).

10.2 Little-omega (definition). \(f(n) = \omega(g(n)) \), iff \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \).

10.3 Big-Oh (definition). \(f(n) = O(g(n)) \) iff \(\exists \) positive constants \(c_2, n_0 : 0 \leq f(n) \leq c_2 g(n) \ \forall n \geq n_0 \).

10.3.a Big-Oh: If little-oh then Big-Oh. If \(f(n) = o(g(n)) \), then \(f(n) = O(g(n)) \).

10.4 Big-Omega (definition). \(f(n) = \Omega(g(n)) \) iff \(\exists \) positive constants \(c_1, n_0 : 0 \leq c_1 g(n) \leq f(n) \ \forall n \geq n_0 \).

10.4.a Big-Omega: If little-omega then Big-Omega. If \(f(n) = \omega(g(n)) \), then \(f(n) = \Omega(g(n)) \).

10.5 Theta (definition). \(f(n) = \Theta(g(n)) \) iff \(\exists \) positive constants \(c_1, c_2, n_0 : 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \ \forall n \geq n_0 \).

10.5.1 Theta (2nd definition). \(f(n) = \Theta(g(n)) \), iff \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \), where \(c > 0 \) is a (positive) constant (and other than zero).

10.5.a Theta: Big-Oh and Big-Omega if-and-only-if Theta. \(f(n) = \Theta(g(n)) \), iff \(f(n) = \Omega(g(n)) \) and \(f(n) = O(g(n)) \).

10.6 Never forget: \(O(f(n)) \) is a set (and treat it as such) and so are \(\Omega(f(n)) \) and \(\Theta(f(n)) \), etc!

\(O(f(n)) \) is not a function, it is a SET. It includes all functions that have (asymptotic) growth at most \(f(n) \).

Thus \(O(n^2) \) includes all functions that have quadratic growth but also functions that have growth less than quadratic such as linear, log-linear (aka \(n \lg n \)), but also constant, logarithmic and so on.

Thus we can say \(\exists 1 \in O(n^2) \), or \(\lg n \in O(n^2) \), or \(n^2 \in O(n^2) \), or \(n \lg n \in O(n^2) \)

We prefer to write instead \(1 = O(n^2) \), or \(\lg n = O(n^2) \), or \(n^2 = O(n^2) \), or \(n \lg n = O(n^2) \).

Moreover because \(O(f(n)) \) is or should be treated as a set, a relation of the form \(1 \leq O(n) \) is nonsense as one thus compares a constant function \((1) \) to a set using \(\leq \). This symbol can only be used to compare two same-type objects, not a function and a set: the membership symbol is more appropriate then!
10.7.1 Some obvious results (constant k, l): $n^k = \omega(lg^l n)$. This derives from the fact that in general $n^k > lg^l n$ for any constant k, l and large enough n.

10.7.2 Some obvious results (constant k): $2^n = \omega(n^k)$. This derives from the fact that in general $2^n > n^k$ for any constant k and large enough n.

10.7.3 Some obvious results (constant k): $n! = \omega(n^k)$. This derives from the fact that $n! > n^k$ for any constant k and large enough n.

10.7.4 Some obvious results (constant k): $\lg(n!) = \Theta(n lg n)$. Implied or proven through the results of 4.2 and 4.3 and 10.6/10.5. Also a result of Stirling’s approximation formula for the factorial $n! \approx (n/e)^n \sqrt{2\pi n}$.

10.8 Some obvious results.

Example 8. Which of $a_0 + a_1 n + a_2 n^2 + a_3 n^3$ and n^2 is asymptotically larger, where $a_i > 0$ for all i?

Proof. Consider $a_0 + a_1 n + a_2 n^2 + a_3 n^3$. As all a_i are positive, then $a_0 > 0$ and $a_1 n > 0$ and $a_2 n^2 > 0$ and thus $a_0 + a_1 n + a_2 n^2 + a_3 n^3 > a_3 n^3$.

Hint. When we intend to prove $f(n) = \Omega(g(n))$, it sometimes helps to find a lower bound $h(n)$ for $f(n)$ ie one such that $f(n) \geq h(n)$ and then show that $h(n) = \Omega(g(n))$. In our case a lower bound for $a_0 + a_1 n + a_2 n^2 + a_3 n^3$ is $a_3 n^3$.

We now show that our lower bound $a_3 n^3$ is $\Omega(n^2)$. As $a_3 > 0$, it is obvious that $a_3 n^3 > 1 \cdot n^2$ for any $n > 1/a_3$ (note that $a_3 > 0$ DOES NOT MEAN THAT $a_3 > 1$, as a_3 is real and not necessarily an integer).

Therefore for $c = 1$ and $n_0 = 1/a_3$ we have shown that $a_0 + a_1 n + a_2 n^2 + a_3 n^3 = \Omega(n^2)$. \qed

10.9 Some obvious results.

Example 9. Which of the two functions is asymptotically larger $a_0 + a_1 n + a_2 n^2 + a_3 n^3$ or n^4, where $a_i > 0$ for all i?

Proof. **Hint.** When we intend to prove $f(n) = O(g(n))$, as is the case here, it sometimes helps to find an upper bound $h(n)$ for $f(n)$ ie one such that $f(n) \leq h(n)$ and then show that $h(n) = O(g(n))$. Since in $a_0 + a_1 n + a_2 n^2 + a_3 n^3$ all a_i are positive we take the maximum of all a_i and we call it A. Then we have that $a_i < A$ for all i. Also, $A n^i < A n^3$ for $i \leq 3$. Then

$$a_0 + a_1 n + a_2 n^2 + a_3 n^3 \leq A + A + A n + A n^2 + A n^3 \leq A n^3 + A n + A n^3 + A n^3 + A n^3 = 4 An^3$$

Finally $4 An^3 \leq n^4$ for all $n > 4A$.

We have shown that

$$a_0 + a_1 n + a_2 n^2 + a_3 n^3 \leq 4 An^3 \leq 1 \cdot n^4$$

for all $n \geq n_0 = 4A$, where A is the maximum of a_0, a_1, a_2, a_3. As all a_i are constant, so is $4A$. Therefore the constants in the O definition are $c = 1$ and $n_0 = 4A$, where $A = \max\{a_0, a_1, a_2, a_3\}$. \qed
10.10 Practice makes perfect.

10.10.1 Exercise 1.
Do the Exercises of the textbook for the chapters/sections covered in class. The more you do of them the more you practice.

10.10.2 Exercise 2.
Show that
\[\sum_{i=1}^{n} i^2 = \Theta(n^3). \]

What are the values of \(c_1, c_2 \) and \(n_0 \)? Justify your answer.

10.10.3 Exercise 3.
TRUE or FALSE?

1. \(\lg(n!) = O(n^2) \).
2. \(n + \sqrt{n} = O(n^2) \).
3. \(n^2 + \sqrt{n} = O(n^2) \).
4. \(n^3 + 2\sqrt{n} = O(n^2) \).
5. \(1/n^3 = O(\lg n) \).
6. \(n^2 \sin^2(n) = \Theta(n^2) \). (\(\sin \) is the well-known trigonometric function).

10.10.4 Exercise 4.
Prove the following.

1. \((n - 10)^2 = \Theta(n^2) \).
2. \(n^4 + 10n^3 + 100n^2 + 1890n + 98000 = \Omega(n^4) \).
3. \(n^4 + 10n^3 + 100n^2 + 1890n + 98000 = \Omega(n^2) \).
4. \(n^4 - 10n^3 - 100n^2 - 1890n + 100000 = O(n^4) \).
5. \(n^2 - 20n - 20 = \Omega(n) \).
6. \(n^2 + 20n = O(n^2) \).
11 Recurrences

The master method is one of three methods to solve recurrence relations i.e. recursive formulae/expressions. The solution however it provides is an asymptotic one and it works only for recurrences of a certain form.

11.1 Master Method. $T(n) = aT(n/b) + f(n)$, such that $a \geq 1$, $b > 1$ are constant and $f(n)$ is an asymptotically positive function. Then $T(n)$ is bounded as follows.

$M1$ If $f(n) = O(n^\log_b a - \varepsilon)$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^\log_b a)$.

$M2$ If $f(n) = \Theta(n^\log_b a)$, then $T(n) = \Theta(n^\log_b a \log n)$.

$M3$ If $f(n) = \Omega(n^\log_b a + \varepsilon)$ for some constant $\varepsilon > 0$, and if $af(n/b) \leq cf(n)$ for some constant $0 < c < 1$ and for large n, then $T(n) = \Theta(f(n))$.

11.1 Master Method (alternative formulation of case M2). There is an alternative formulation for Case 2 (aka M2) of the master method.

$M2'$ If $f(n) = \Theta(n^\log_b a (\log n)^k)$, for some non-negative constant k, then $T(n) = \Theta(n^\log_b a (\log n)^{k+1})$.
The second method for solving a recurrence is known as the substitution method. Here we know what the solution would look like either through trial of error or some prior knowledge. We would like to verify indeed that this is a solution. Sometimes the method is known as guess and check or guess and verify.

The checking or verify part involves the use of Induction and in particular Strong Induction. Depending on how we experience we are the guessed bound can be exact, asymptotically tight or just an upper or lower bound.

11.2 Substitution Method: MergeSort recurrence (Upper Bound).

Consider the MergeSort recurrence

\[T(n) = 2T(n/2) + n \]

where \(T(n) \) is non-negative for all \(n \), \(n \) is a power of two, and with a boundary condition \(T(1) = 1 \). Let the "guess" be according to the following proposition.

Proposition 6. For any \(n \geq 1 \), we have that \(T(n) \leq n \lg n + n \).

Proof. Define \(P(n) \) as follows. The solution of \(T(n) = 2T(n/2) + n \), with \(n > 1 \) and \(n \) a power of two, and \(T(1) = 1 \), is given by the following upper bound: \(T(n) \leq n \lg n + n \).

1. **Base case:** \(P(1) \) We will attempt to show that \(P(1) \) is true i.e. that \(T(n)|_{n=1} \leq n \lg n + n|_{n=1} \) which is equivalent to showing that \(1 = T(1) \leq 1 \cdot \lg 1 + 1 = 1 \), which is obviously true. Base case has just been proven.

2. **Inductive Step:** \(P(1) \land \ldots \land P(n-1) \Rightarrow P(n) \), for all \(n \geq 2 \).

 We shall thus show that if \(T(i) \leq i \lg i + i \) for all \(i = 0, 1, \ldots, n-1 \), then \(T(n) \leq n \lg n + n \).

2.a. **Induction Hypothesis for \(P(n/2) \):** \(T(n/2) \leq (n/2) \lg (n/2) + (n/2) \).

 If \(P(i) \) is true for all \(i < n \) it is also true for \(i = n/2 \) since \(n/2 < n \). Thus \(P(n/2) \) implies that

 \[T(n/2) \leq (n/2) \lg (n/2) + n/2 = n/2 \lg n - n/2 + n/2 = n \lg n/2. \]

2.b. **Right-hand side of the recurrence is \(T(n/2) \).** We apply the induction hypothesis as obtained in item 2.a to the right hand term \(T(n/2) \) of the recurrence. The inductive step is then proven directly.

 \[T(n) = 2T(n/2) + n \leq 2(n \lg n/2) + n \leq n \lg n + n \]

3. **Conclusion: Induction has established validity of \(P(n) \) for all \(n \geq 1 \).**

 This completes the inductive step and thus the strong induction as well.

\(\Box \)

We have thus shown that \(T(n) \leq n \lg n + n \) for all \(n \geq 1 \).
11.2.1 Substitution Method, same recurrence: Less clarity.

Example 10. Solve

\[T(n) = 2T(n/2) + n \]

by proving that

\[T(n) = O(n \lg n) \]

\((T(n)\) is nonnegative for all \(n\)).

Proof. We observe that no boundary condition is given; we can thus assume \(T(\text{constant}) = \text{some-constant}\) as long as the chosen constants are positive (and thus non-zero).

0. **Guessing the answer!** We guess \(T(n) \leq c n \lg n\) for all \(n \geq n_0\) where \(c, n_0\) are positive constants (that we will fix in due time). This is equivalent to showing that \(T(n) = O(n \lg n)\) using the definition of Big-Oh.

This becomes our predicate \(P(n)\).

We shall show that \(P(n)\) is true for all \(n \geq n_0\), where \(n_0\) is positive and constant.

1. **Base Case** \(P(n_0)\). Deferred.

2. **Inductive Step:** \(P(n_0) \land P(n_0 + 1) \land \ldots \land P(n-1) \Rightarrow P(n)\).

We assume that the guessed solution is true for all integer values less than \(n\) i.e. that for all \(i \leq n - 1\) we have that

\[T(i) \leq c i \lg i \quad \text{for all} \quad n_0 \leq i < n - 1. \]

We shall then show the inductive step by showing \(P(n)\) i.e.

\[T(n) \leq c n \lg n \]

2.a **Induction Hypothesis** \(P(n/2)\) for \(i = n/2\). As \(n/2 < n\), the induction hypothesis applies to \(i = n/2\) i.e. \(P(n/2)\) is true. Then,

\[T(n/2) \leq c (n/2) \lg (n/2) \quad (1) \]

2.b **Recurrence and** \(P(n/2)\). In order to prove the inductive step we use the only piece of information that we have available for \(T(n)\). This is the recurrence relation. The inequality below is a result of the induction hypothesis.

\[
T(n) = 2T(n/2) + n \\
\leq 2(c(n/2) \lg (n/2)) + n = 2(c(n/2)(\lg n - 1)) + n = cn \lg n - cn + n
\]

2.c **Completing the inductive step.** In order to show that \(T(n) \leq c n \lg n\), we must show that \(cn \lg n - cn + n\) is less than or equal to \(cn \lg n\). This is so provided that \(c \geq 1\). (A condition on \(c\) is thus established.) Therefore for \(c \geq 1\) we have that

\[T(n) = 2T(n/2) + n \leq cn \lg n - cn + n \leq cn \lg n \]

1. **Base Case Revisited and Resolved.** Now that \(c\) has been preliminary decided by having \(c \geq 1\) and we could thus choose a \(c\) such that \(c = 1\), we are to show \(P(n_0)\) is true by fixing the \(n_0\) and then showing \(P(n_0)\) to be true. Let us pick \(T(2) = 1\) and thus \(n_0 = 2\). It is easy to show that \(T(n)|_{n=2} \leq cn \lg n|_{n=2}\). The left hand side is resolved by way of \(T(2) = 1\) to 1. The right hand side is \(c \cdot 2 \cdot \lg 2 = 1 \cdot 2 \cdot 1 = 2\). Obviously \(1 < 2\). Base case proved.

Conclusion: \(T(n) \leq cn \lg n\) for \(c = 1\) and \(n \geq 2\). \(\Box\)
The third method for solving recurrences is known as the iteration or recursive substitution method; sometime it is called the recursion tree method.

11.3 Iteration-Recursion tree method: An exact solution for the Merge Sort recurrence.

Solve exactly the following recurrence, where where \(T(n) \) is non-negative for all \(n \), \(n \) is a power of two, and with boundary condition \(T(1) = 1 \).

\[
T(n) = 2T(n/2) + n
\]

11.3.1 Renaming variables. Let us write \(T(n) \) by using variable \(k \) instead of \(n \).

\[
T(k) = 2T(k/2) + k
\]

We then repeatedly substitute \(n, n/2, n/4, \ldots, 1 \) for \(k \) to determine \(T(n), T(n/2), T(n/4), \ldots, T(1) \). The last of them, \(T(1) \) is obtained by the boundary condition \(T(1) = 1 \). By repeated substitution \(T(n) \) is obtained from \(T(n/2), T(n/2) \) from \(T(n/4) \) and so on \(T(2) \) from the boundary condition \(T(1) = 1 \).

11.3.2 Unfolding recurrence for \(T(n) \) three times: Expressing it in terms of \(T(n/2), T(n/2^2), T(n/2^3) \).

\[
T(n) = 2T(n/2) + n = 2(2T(n/4) + n/2) + n = 2^2T(n/2^2) + 2n = 2^2(2T(n/2^3) + n/2^2) + 2n = 2^3T(n/2^3) + 3n.
\]

11.3.3 Unfolding recurrence for \((n) \) times: \(T(n) \) in terms of \(T(n/2^i) \). We obtain

\[
T(n) = 2^i T(n/2^i) + in
\]

11.3.4 Resolving \(T(n/2^i) \) through boundary condition \(T(1) = 1 \). Setting \(n/2^i = 1 \) we obtain \(i = \lg n \). Then \(T(n/2^i) = T(1) = 1 \). Therefore

\[
T(n) = 2^i T(n/2^i) + in|_{i=\lg n} = 2^{\lg n} T(1) + n \lg n = n \lg n + n.
\]

11.3.5 Does the answer satisfy the base case \(T(1) = 1 \)? We verify that \(T(n) = n \lg n + n \) satisfies \(T(1) = 1 \). We just substitute 1 for \(n \) in the solution obtained in 11.3.4.

11.3.6 Does the answer satisfy the recurrence \(T(n) = 2T(n/2) + n \)? The left hand side of \(T(n) = 2T(n/2) + n \) is \(T(n) = n \lg n + n \). The right hand side of \(T(n) = 2T(n/2) + n \) is \(2T(n/2) + n \). Since \(T(n) = n \lg n + n \) this implies \(T(n/2) = (n/2) \lg (n/2) + n/2 \). We use the latter in \(2T(n/2) + n \) to obtain

\[
2T(n/2) + n = 2((n/2) \lg (n/2) + n/2) + n = (n \lg n - n) + n + n = n \lg n + n = T(n)
\]

Thus starting from the right hand side of the recurrence and using 11.3.4 we reached the left-hand side i.e. verified the recurrence for the solution.
11.4 More examples.

Example 11. Solve the recurrence \(T(n) = 8T(n/2) + n \) using the iteration/recursion tree method. Assume that \(T(1) = 5 \).

Proof.

\[
T(n) = 8T(n/2) + n \\
= 8(8T(n/4) + n/2) + n \\
= 8^2 T(n/4) + 8n/2 + n \\
= 8^2 T(n/4) + (8/2)^1 n + (8/2)^0 n \\
= 8^2 (8T(n/8) + n/4) + (8/2)^1 n + (8/2)^0 n \\
= 8^3 T(n/8) + 8^2 n/2^2 + (8/2)^1 n + (8/2)^0 n \\
= 8^3 T(n/8) + (8/2)^2 n + (8/2)^1 n + (8/2)^0 n \\
= \ldots \\
= 8^i T(n/2^i) + (8/2)^{i-1} n + \ldots + (8/2)^1 n + (8/2)^0 n
\]

Again the boundary case is \(T(1) = 5 \). We set \(n/2^i = 1 \), ie \(i = \lg n \). Then for \(i = \lg n \), \(T(n/2^i) = T(1) = 5 \). We therefore get for \(i = \lg n \).

\[
T(n) = 8T(n/2) + n \\
= 8^i T(n/2^i) + (8/2)^{i-1} n + \ldots + (8/2)^1 n + (8/2)^0 n \\
= 8^i (8(2^i)^{\lg n} - 1)/2 - 1 \cdot n \\
= 2^{3\lg n} T(1) + (4)^{\lg n} - 1/3 \cdot n \\
= n^3 T(1) + (4)^{\lg n} - 1/3 \cdot n \\
= 5n^3 + n^2 - 1/3 \cdot n
\]

To verify our calculations we observe that \(T(1) = 5 + (1 - 1)/3 = 5 \) and

\[
T(n) = 8T(n/2) + n \\
= 8(5(n/2)^3 + (n/2)^2 - 1/3 n) + n \\
= 5n^3 + n^2 - 1/3 n \\
= T(n),
\]
ie the recurrence is verified.
11.5 Practice Makes Perfect.

Exercise 11.5.1.
Solve the following recurrences. You may assume \(T(1) = \Theta(1) \), where necessary. Make your bounds as tight as possible. Use asymptotic notation to express your answers. Justify your answers.

a. \(T(n) = 2T(n/8) + n \)
b. \(T(n) = 9T(n/3) + n \lg^2 n \)
c. \(T(n) = 3T(n/9) + n^2 \)
d. \(T(n) = 2T(n/4) + \sqrt{n} \)
e. \(T(n) = 4T(n/2) + n \)
f. \(T(n) = 2T(n/16) + n^{1/4} \)
g. \(T(n) = T(n/2) + 1 \) , \(T(1) = 1 \).

Exercise 11.5.2.
Solve the following recurrences. Make your bounds as tight as possible. Use asymptotic notation to express your answers. Justify your answers.

a. \(T(n) = T(n/8) + T(7n/8) + n \lg n \) \(T(1) = 100 \)
b. \(T(n) = T(n/5) + T(3n/4) + 10n \) , \(T(1) = 20 \).

Exercise 11.5.3.
Find an asymptotically tight bound for the following recurrence. You may assume \(T(1) = \Theta(1) \). Justify your answer.

\[T(n) = T(n/8) + T(3n/4) + 8n. \]

Exercise 11.5.4.
Solve exactly using the iteration method the following recurrence. You may assume that \(n \) is a power of 3, ie \(n = 3^k \).

\[T(n) = 3T(n/3) + n, \text{ where } T(1) = 1. \]

Example 11.5.5. Show that for any \(n \geq 1 \)

\[T(n) = T(n/2) + T(n/4) + n \]

is such that \(T(n) \leq 20n \) for all \(n \geq 1 \). Let \(T(1) = 1 \).

Hint. Apply the induction hypothesis twice to \(T(n/2) \) and \(T(n/4) \) and then use the recurrence for the inductive step.

Example 11.5.6. Show that there exist constant \(n_0 > 0 \) and \(c > 0 \) such that for any \(n \geq n_0 \)

\[T(n) = T(n/2) + T(n/4) + n \]

is such that \(T(n) \leq cn \) for all \(n \geq n_0 \). Let \(T(1) = 100 \).

Hint. If we change the boundary condition in Example 11.5.5 from \(T(1) = 1 \) to say \(T(1) = 100 \) as we did in Example 11.5.6, things might break down. \(T(1) \leq 20 \cdot 1 \) is not true any more since \(T(1) = 100 \). Therefore we need to try something else other than 20.
12 Bits and Bytes

12.1 Bits and bytes! (The capitalization is English grammar imposed and intended as an unintentional joke!)

12.2 Bit and its notation. A bit is an ACRONYM derived from Binary digit and is the minimal amount of digital information. A bit can exist in one of two states: 1, 0 or High, Low or Up, Down or True, False or T, F. The correct notation for a bit is a fully spelled lower-case bit. If we want to write down in English 9 binary digits we write down 9bit; a transfer rate can be 9.2bit/s. The notation 9b should be considered nonsense. A lower-case b should never denote a bit! Several publications mistakenly do so, however!

12.3 Byte and its notation. A byte is the minimal amount of binary information that can be stored into the memory of a computer and it is denoted by a capital case B. Etymologically, a byte is the smallest amount of data a computer could bite out of its memory! We cannot store in memory a single bit; we must utilize a byte thus wasting 7 binary digits. Nowadays, 1B is equivalent to 8bit. Sometimes a byte is also called an octet. Memory size is usually expressed in bytes or its multiples. We never talk of 8,000bit memory, we prefer to write 1,000B rather than 1,000byte, or 1,000Byte.

12.4 Aggregates of a Byte. A word is defined to be 32-bit, i.e. 4B. A double-word is thus 8B. The metric system (i.e. SI i.e. International System) notation for Byte multiples follows.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Factor</th>
<th>Short/Long Name</th>
<th>Memory size and reading</th>
<th>1 bit = 2 states: 0 or 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ki = 2**10</td>
<td>kibi kilobinary</td>
<td>1KiB = 1kibibyte = 2**10B,</td>
<td>1 byte = 1B</td>
<td></td>
</tr>
<tr>
<td>Mi = 2**20</td>
<td>mebi megabinary</td>
<td>1MiB = 1mebibyte = 2**20B,</td>
<td>1 short= 2B = 16bit</td>
<td></td>
</tr>
<tr>
<td>Gi = 2**30</td>
<td>gibi gigabinary</td>
<td>1GiB = 1gigibyte = 2**30B,</td>
<td>1 word = 4B = 32bit</td>
<td></td>
</tr>
<tr>
<td>Ti = 2**40</td>
<td>tebi terabinary</td>
<td>1TiB = 1tebibyte = 2**40B,</td>
<td>1 double word = 8B = 64bit</td>
<td></td>
</tr>
<tr>
<td>Pi = 2**50</td>
<td>pebi petabinary</td>
<td>1PiB = 1pebibyte = 2**50B,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In SI: 1kB implies 1,000B ; thus 1MB implies 1,000,000B ; A K is degrees Kelvin

12.6 How many bytes in 1KB or 1MB or 1GB? Use 1KiB, 1MiB, 1GiB for 2**10B, 2**20B, 2**30B of main memory (RAM) size or disk-drive capacity. A ‘K is degrees Kelvin so 1KB is not SI compliant. The original sinner was 1kB that was used to denote 1024B or RAM; Intel is using 1KB for 1024B! Avoid 1kB, avoid 1KB and use instead 1KiB! Intel (for RAM) or Microsoft (RAM, disk-drives) use 1GB to mean 2**30B. Hard-disk drive manufacturers such as Seagate use 1GB to mean 1,000,000,000B. Avoid confusion by using 1GiB for 2**30B.

Final Question: When is 500GB equal to 453GB for the correct 453GiB? A hard-disk drive (say, Seagate) with 500GB on its packaging, will offer you a theoretical 500,000,000,000B. However this is unformatted capacity; the real capacity after formatting would be 2-3% less, say 487,460,958,208B. Yet an operating system such as Microsoft Windows 7 will report this latter number as 453GB. Microsoft would divide the 487,460,958,208 number with 1024*1024*1024 which is 453.93GiB i.e Microsoft’s 453GB.

12.7 Memory is a linear vector. A memory is an array of bytes, i.e. a sequence of bytes. In memory M, the first byte is the one stored at M[0], the second one at M[1] and so on. A byte is also a sequence of 8bit.

12.8 Big Endian vs Little Endian. If we plan to store the 16-bit (i.e. 2B) integer 0101010111110000 in memory locations 10 and 11, how do we do it? Left-part first or right-part first (in memory location 10)? This is what we call byte-order and we have big-endian and little-endian. The latter is being used by Intel.
13 Frequency and Time Domain

13.1 Frequency: Hz vs cycles/s. The unit of frequency is cycles per second. The symbol for the unit of frequency is the Hertz, i.e. 1Hz = 1cycle/s. Then 1kHz, 1MHz, 1GHz, and 1THz are 10^3, 10^6, 10^9, 10^{12} cycles/s or Hz. Note that in all cases the H of a Hertz is CAPITAL CASE, never lower-case. (The z is lower case everywhere.)

13.2 Time in seconds or submultiples or multiples. The unit of time is the second and it is denoted by 1s or also 1sec but the latter is not SI compliant. Submultiples are 1ms, 1µs, 1ns, 1ps which are 10^{-3}, 10^{-6}, 10^{-9}, 10^{-12} respectively and are pronounced millisecond, microsecond, nanosecond, and picosecond respectively. Note that millisecond has two ells.

13.3 Frequency (f) and time (t): $f \cdot t = 1$. The relationship between frequency and time is given by the following equality $f \cdot t = 1$. Thus 5Hz, means that there are 5 cycles in a second and thus the period of a cycle is one-fifth of a second. Thus $f=5Hz$ implies $t=1/5s=0.2s$. Computer or microprocessor speed used to be denoted in MHz and nowadays in GHz. Thus an Intel 80486DX microprocessor rated at 25MHz, used to execute 25,000,000 instructions per second; one instruction had a period or execution time of roughly $1/25,000,000 = 40\mu s$. A modern CPU rated at 2GHz allows instructions to be completed in $1/2,000,000,000 = 0.5\text{ns}$. (And note that in 1990s and also in 2010s retrieving one byte of main memory still takes 60-80ns.)

13.4 Nanosecond and Distance (and speed of light). In one nanosecond, light (in vacuum) can travel a distance that is approximately 1 foot. Thus 1 foot is approximately ’’1nanosecond’’.
14 Number systems: Denary, Binary, Octal, and Hexadecimal

14.1 Number Systems: Radix or Base. When we write number 13, implicit in this writing is that the number is a denary (base-10) integer, and thus we utilize digits 0–9 to write this integer down. Since we use ten digits, the base or radix of this number is 10. We may write this explicitly by saying ”base-10 integer 13” or ”radix-10 integer 13”. Sometimes we just say that the number is in ”decimal” or it is a ”decimal integer”. The former ”decimal” might cause confusion as ”decimal” is associated with the decimal digits or decimal point of a real number. For this reason, the unfamiliar ”denary” may and should be used instead. A more convenient way to describe the radix is as a subscript to the number itself: write 13_{10}. (In computing base-8 and base-16 utilize the special prefixes $0o$ or $0x$ or $0X$ as shown below, to indicate the radix/base for such integers or numbers.)

<table>
<thead>
<tr>
<th>Base or Radix (also, Decimal)</th>
<th># digits</th>
<th>digits</th>
<th>notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>2</td>
<td>2</td>
<td>0, 1</td>
</tr>
<tr>
<td>Octal</td>
<td>8</td>
<td>8</td>
<td>0..7 113 or 0o113</td>
</tr>
<tr>
<td>Denary</td>
<td>10</td>
<td>10</td>
<td>0..9 75 or 75</td>
</tr>
<tr>
<td>Hexadecimal</td>
<td>16</td>
<td>16</td>
<td>0..9 a..f 0x4b or 0X4B or 4b or 4B</td>
</tr>
</tbody>
</table>

14.2 Natural Integer Numbers: Unsigned Integers. A natural (integer) number is a positive integer. Sometimes a zero is included we call it an unsigned integer (i.e. zero or positive).

14.3 Integer Numbers: Signed Integers. In general a (signed) integer can be positive, negative or 0.

14.4 Real Numbers: Floating-point Numbers. A real number (that includes integer digits, possibly a decimal point, and decimal digits) is called a floating-point number. Thus 12.1 or 12.10 or 1.21 · 10¹ represent a real number. In exponential notation $a \times 10^b$ might also be written as aEb or aeB. Thus 5.1×10^3 is $5.1e3$ or $5.1E3$.

14.5 n-bit or n-digit numbers. An n-digit number can be base-2, base-10, base-8, or base-16. But for an n-bit number the ”bit” indicates a binary digit and thus implicit in this description is the fact that the number is a binary number. Binary numbers can get quite lengthy. We can group three bits or four bits and assign a special symbol to the group to generate its octal or hexadecimal representation instead ($2^3 = 8$ and $2^4 = 16$).

For the 8-bit integer 11110000 the right-most zero is sometimes called the least-significant bit or digit and the left-most one is sometimes called the most-significant bit or digit. This is if all bits of 11110000 represent its magnitude i.e. its value. When signed integers are represented and the left-most bit is the sign the remaining bits is the magnitude i.e. 1110000 and then the left-most bit of the magnitude might be called the most-significant bit. However this is not universally followed/adhered.

14.6 Example.

14.7 How many (minimal number of) bits to represent unsigned integer n, where $n > 0$? The number of bits for n is $\lceil \lg n \rceil + 1$ or equivalently $\lceil \lg (n + 1) \rceil$. Thus for 1 we need 1 bit, for 2 i.e. 10_2 we need two, for 4 i.e. 100_2 we need three and for 7 i.e 111_2 we also need three.
14.8 Table of some integers in binary, octal, hexadecimal and denary.

<table>
<thead>
<tr>
<th>Binary</th>
<th>Denary</th>
<th>Hexadecimal</th>
<th>Octal</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Octal 17 is formally written as 0o17</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Hexadecimal 11 is formally written as 0x11</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>Hexadecimal FF or ff is written 0xFF or 0xff respectively</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>A</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>1011</td>
<td>B</td>
<td>11</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>C</td>
<td>12</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td>D</td>
<td>13</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>E</td>
<td>14</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>F</td>
<td>15</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>16</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>10001</td>
<td>17</td>
<td>11</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

14.9 Example with \(b = 2 \). Convert \(n = 5 \)-digit integer \(11001_2 \) into decimal. Thus \(11001_2 \) is \(25_{10} \) i.e. \(25 \).

\[
\begin{array}{cccc}
2^4 & 2^3 & 2^2 & 2^1 & 2^0 \\
1 & 1 & 0 & 0 & 1 \\
= & = & = & = & = \\
16+ & 8+ & 0+ & 0+ & 1 = 25
\end{array}
\]

14.10 Example with \(b = 8 \). Convert \(n = 5 \)-digit integer \(11001_8 \) into decimal. Thus \(11001_8 \) is \(4609_{10} \) i.e. \(4609 \).

\[
\begin{array}{cccc}
8^4 & 8^3 & 8^2 & 8^1 & 8^0 \\
1 & 1 & 0 & 0 & 1 \\
= & = & = & = & = \\
4096+ & 512 & 0+ & 0+ & 1 = 4609
\end{array}
\]

14.11 Example with \(b = 2 \). Convert \(1_2, 10_2, 100_2, 1000_2, \ldots, 10\ldots0 \) into decimal. \(x \) zeroes

- \(1_2 \) is \(1_{10} \) i.e. \(2^0 = 1 \).
- \(10_2 \) is \(2^1 = 2 \).
- \(100_2 \) is \(2^2 \) i.e. \(4 \).
- \(1000_2 \) is \(2^3 \) i.e. \(8 \).
- \(\ldots \) \(10\ldots0 \) is \(2^x \).

\(x \) zeroes

14.12 Example with \(b = 2 \). Convert \(1_2, 11_2, 111_2, 1111_2, \ldots, 1\ldots1 \) into decimal. \(x \) ones

- \(1_2 \) is \(1_{10} \) i.e. \(2^1 - 1 \) i.e. \(a \).
- \(11_2 \) is \(2^2 - 1 \) i.e. \(3 \).
- \(111_2 \) is \(2^3 - 1 \) i.e. \(7 \).
- \(\ldots \) \(11\ldots1 \) is \(2^x - 1 \) i.e. \(15 \).
- \(\ldots \) \(1\ldots1 \) is \(2^x - 1 \).

\(x \) ones

14.13 Example with \(b = 2 \). How many non-negative integers can be represented with \(n \) bits? Answer is \(2^n \) from 0 to \(2^n - 1 \).
14.14 Example. Convert \(n = 8 \)-bit binary 11111111 into octal

1. '11111111': Group
2. '01111111': Add leading zeroes
3. 3 7 7: Convert groups into octal
4. 0o377: Output

14.15 Example. Convert \(n = 8 \)-bit binary 11111111 into octal

1. '11111111': Group
2. '11111111': Add leading zeroes
3. F F: Convert groups into octal
4. 0XFF: Output
 or
 0xff: Output

14.16 Example: Denary to Binary (left to right). Convert \(x = 77 \) into binary. The result is 1001101\(_2\).

\[
\begin{array}{cccccccc}
K=6 & K=5 & K=4 & K=3 & K=2 & K=1 & K=0 \\
2**6 & 2**5 & 2**4 & 2**3 & 2**2 & 2**1 & 2**0 \\
\end{array}
\]

\begin{align*}
 X &= 77 \\
 64 &\leq 77? \quad 1 \\
 X &= 77-64=13 \\
 32 &\leq 13? \quad 1 \quad 0 \\
 X &= 13 \\
 16 &\leq 13? \quad 1 \quad 0 \quad 0 \\
 X &= 13 \\
 8 &\leq 13? \quad 1 \quad 0 \quad 0 \quad 1 \\
 X &= 13-8=5 \\
 4 &\leq 5? \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \\
 X &= 5-4=1 \\
 2 &\leq 1? \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \\
 X &= 1 \\
 1 &\leq 1? \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \\
\end{align*}

Result is 1001101

14.17 Example: Denary to Binary (right to left). Convert \(x = 77 \) into binary right to left. The result is 1001101\(_2\).

\[
\begin{array}{cccccccc}
X &= 77 \text{ is odd} \\
X &= (77-1)/2=38 \\
X &= 38 \text{ is even} \\
X &= 38/2=19 \\
X &= 19 \text{ is odd} \\
X &= (19-1)/2=9 \\
X &= 9 \text{ is odd} \\
X &= (9-1)/2=4 \\
X &= 4 \text{ is even} \\
X &= 4/2=2 \\
X &= 2 \text{ is even} \\
X &= 2/2=1 \\
X &= 1 \text{ is odd} \\
X &= (1-1)/2=0 \\
\end{array}
\]

Output 1001101
14.18 Range of an 8-bit unsigned and signed integer.

8-bit unsigned can represent all $2^{**8} = 256$ unsigned integers from 0..255
8-bit signed (two’s complement) can represent the 256 integers -128 .. -1 0 1 .. 127
consisting of 128 negative values, 127 positives values and zero

14.19 Signed integers. In order to be able to represent negative integers we need to somehow represent the sign of the number as positive (say +) or negative (say −). We somehow need to incorporate this sign with the binary digits of the number. The simplest way to accomplish this is to borrow one of the bits of a binary number and use the 0 value of it to represent a positive number and the 1 value of it to represent a negative number. That is too easy. The problem that we might face is zero: Will its sign be positive or negative, i.e. a 0 bit or a 1 bit? How we handle zero, is going to affect the discussion that follows. But let us resolve first one more issue. What bit of a bit sequence will denote the sign? The answer to this question is rather easy: the left-most bit. Note that we use the term left-most rather than the dangerous (in this setting) most-significant digit or most-significant bit. In addition, when we deal with binary (positive and negative) integers we also need to be explicit about the number of digits in the representation. The are three major representations of (negative and non-negative) integers.

14.19.2 A Signed mantissa. An n-bit integer in signed mantissa has one sign bit (the leftmost one) and $n-1$ bits for the value (magnitude). Thus integers in the range $-2^{n-1},...,2^{n-1}$ can be represented with two zeroes, a negative and a positive one available. **14.19.2.a Signed Mantissa Example.** Thus for 8-bit integers, +43 becomes 00101011 and −43 becomes 10101011. The left-most (cautiously most-significant-bit) is the sign and differs in +43 from −43; the remaining 7 bits are the same 0101011 and correspond to natural number 43. Note that one NEEDS TO TELL US THAT 10101011 is in signed-mantissa representation. Otherwise we might think that this a natural (unsigned) integer whose value is 171. Note that 128 + 43 = 171. Thus if x is a positive integer number, then we can represent $-x$ in signed-mantissa 8-bit notation by considering 128 + x, and writing down its bits as if it was a natural number rather than the negative number $-x$. Moreover for 10101011 in signed mantissa, we treat it first as if it is a non-negative integer and retrieve its magnitude 171. Given that we know is in signed mantissa and the left most bit that is a one is the sign the negative represented is the negation of 171 − 128 = 43 i.e it represent −43! Note that in signed mantissa there is a positive zero and a negative zero i.e. 00000000 and 10000000.

14.19.3 One’s complement. It is similar to the signed mantissa representation for range and number of zeros. Thus an n-bit one’s complement integer can represent all integers in the range $-2^{n-1},...,2^{n-1}$ with two zeroes (the positive zero being an all-zero sequence and the negative zero an all-one bit sequence).

14.19.4 Two’s complement. An n-bit integer in two’s complement has a left-most bit used as a sign bit, and the remaining $n-1$ bits for its value. There is only one zero (all bits are zero) and the integers represented are in the range $-2^{n-1},...,2^{n-1}-1$.
14.19.4.1. Two’s complement example. In two’s complement we have the left-most bit used as a sign bit as well. There is only one zero. The two’s complement of a non-negative integer is the integer itself in binary. Thus 37 is represented as an 8-bit two’s complement integer by the bit sequence `00100101`. If we plan to represent -38 though, we first flip the bits i.e. we generate `11011010` and add one to the result obtaining `11011011`, which is two’s complement for -38. Thus `00000000` corresponds to zero. What do we make out of `11111111`? Definitely it is a negative integer. We reverse the steps of converting a denary integer into two’s complement by first subtracting one to get `11111110`. Then we flip the bits to get `00000001`. Thus `11111111` is `-1`. For the same reason there is no negative zero as well: if we start with zero, flip the bits to get `11111111` and try to add one to it we end up getting a 9-bit `100000000` that cause overflow problems!

14.20 Java’s numeric data types. In java a byte is an 8-bit signed two’complement integer whose range is $-2^{7} ... 2^{7} - 1$. In java a short is a 16-bit signed two’complement integer whose range is $-2^{15} ... 2^{15} - 1$. In java an int is a 32-bit signed two’complement integer whose range is $-2^{31} ... 2^{31} - 1$. In java a long is a 64-bit signed two’complement integer whose range is $-2^{63} ... 2^{63} - 1$. The default value of a variable for the first three primitive datatypes is 0 and for the latter a 0L.

14.21. Floating Point in Fixed-Point. One easy way to incorporate real numbers is to assume that in fixed-point n-bit representation, some of the bits represent the integer part (say a of them) and the remaining $n - a$ bits the decimal. If one does not want to commit that many bits, a floating-point representation is used where the decimal point is not fixed to a digits or $n - a$ decimals.

<table>
<thead>
<tr>
<th>Integer</th>
<th>Fixed-Point (abcd.efgh)</th>
<th>Fixed-Point (abcde.fgh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00011100</td>
<td>28</td>
<td>1.75</td>
</tr>
<tr>
<td>abcd.efgh = a x 8 + b x 4 + c x 2 + d x 1 + e x 1/2 + f x 1/4 + g x 1/8 + h x 1/16 = 1.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>abcde.fgh = a x16 + b x 8 + c x 4 + d x 2 + e x 1 + f x 1/2 + g x 1/4 + h x 1/8 = 3.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14.22. Floating Point Values. Let us start with some definitions affecting real numbers. A normalized binary number is one that has a 1 just before (on the left of) the decimal point. Thus 100. looks like 4 but it is not normalized. Its normalized form would be $1.0 	imes 2^2$ resulting by shifting it to the right two positions. Thus a normalized binary number is always of the form $±1.xxxx \times 2^{yyyy}$ where $xxxx$ is the fraction or mantissa and $yyyy$ is the exponent. The fraction plus one i.e. $1.xxxx$ is known as the significand D. The significand by definition is always a small real number between 1 and 2. Real number in floating-points are represented using the IEEE 754-1985 standard. Be reminded that in IEEE 754-1985 neither addition nor multiplication are associative any more. Thus it is possible that $(a + b) + c \neq a + (b + c)$. Thus errors can accumulate when we add or multiply values! **Do not forget that!**

14.23 Single Precision(SP). In single precision the sign S is one-bit (left-most one), the exponent E is 8-bit and the fraction F is 23-bit. Viewing E as an unsigned integer and converting it into its value and converting all the 23-bits into the corresponding fraction ala the fixed-point conversion, the floating-point number represented by the bit-sequence $(S, E, F, D = 1 + F)$ is $n = (1 - 2S) \times (1 + F) \times 2^{E-8} = (1 - 2S) \times (1 + F) \times 2^{E-127}$. The relative precision is SP given that it uses a 23-bit fraction is roughly 2^{-23}, thus $23\log_{10}2 \approx 6$ decimal digits of precision can be expected. There are two zeroes: when all of E, F are the 0-bit sequences the positive and negative zero is determined by the sign bit.
14.23.1 Single Precision Example(s). In order to represent -0.75 in single precision we first normalize it i.e. $-0.75 = -1 \times 1.1 \times 2^{-1}$. The binary number (fixed point) 1.1_2 is 1.5 thus this expression denotes $-0.75 = -1 \times 1.5 \times 2^{-1}$. To determine E, we add the B i.e. $E = B + (-1) = 127 - 1 = 126$. Its 8-bit representation is 0111 1110. The fraction part F is 1 or in 23 bits 10000000 00000000 00000000. Thus the result is $S = 1$ 01000000 00000000 00000000 = 0.1111 1110 0.1111 1110 ~ 1.25

What number is 110000001010...0? Since the sign bit is $S = 1$ we know the number is negative. The following 8 bits are the exponent $E 10000001$ i.e. they represent $E = 129$. Then the exponent is $e = E - B = 129 - 127 = 2$. The fractional part is $F=010...0$ and thus $D = 1.010...0$. Converting D into denary we get $d = 1 + 1/4 = 1.25$. Thus the number represented is $(1 - 2S) \times 1.25 \times 2^2 = -5.0$

Then represent 1/10 i.e. the 0.10 in SP. The one-tenth representation caused problem in the 1991 Patriot missile defense system that failed to intercept a Scud missile in the first Iraq war resulting to 28 fatalities.

14.24 Double Precision (DP). In double precision the sign S is one-bit (left-most one), the exponent E is 11-bit and the fraction F is 52-bit. Viewing E as an unsigned integer and converting it into its value and converting all the 52-bits into the corresponding fraction as the fixed-point conversion, the floating-point number represented by the bit-sequence (S, E, F) is $n = (1 - 2S) \times (1 + F) \times 2^{E-B} = (1 - 2S) \times (1 + F) \times 2^{E-126}$. The relative precision is DP given that it uses a 52-bit fraction is roughly 2^{-52}, thus $2^{52} \approx 2^{16}$ decimal digits of precision can be expected. Thus the first double precision number greater than 1 is $1 + 2^{-52}$.

14.25 Same algebraic expression, two results. The evaluations of an algebraic expression when commutative, distributive and associative cancellation laws have been applied can yield at most two resulting values; if two values are resulted one must be a NaN. Thus $2/(1 + 1/x)$ for $x = \infty$ is a 2, but $2/x/(x+1)$ is a NaN.

14.26 Double-Extended Precision (DP). In DP, sign S is one-bit (left-most one), exponent E is at least 15-bit and fraction F is at least 64-bit; at least 10 bytes are used for a long double.
15 ASCII, Unicode, UTF-8

15.1 ASCII Characters. In the preceding pages we viewed several 8-bit or so sequences in a variety of ways as positive or negative numbers. A 7-bit bit-sequence can also be viewed as an ASCII character code. Thus a single byte (8 bits) can be used to store characters, not numbers (remember that a byte is the minimum storage that can be used to store information). For ASCII characters that extra bit that goes unused is either a 0 or an error-correction parity bit.

15.2 Table of ASCII characters. The table below contains all 128 ASCII character codes from 0 to 127 arranged in 8 rows (0-7 in octal or hexadecimal) and 16 columns (0-F in hexadecimal). The ASCII code for a character can be retrieved by concatenating the row index (code) with the column index code. For example 'A' is in row 4 and column 1 i.e. its hexadecimal code is 0x41. Its row index 4 in 4-bit binary is 0100 and 1 in 4-bit binary is 0001. Thus the code for 'A' is 01000001 which is 65 in decimal or 0x41 in hexadecimal.

Rows 0 and 1 contain Control Characters represented by the corresponding mnemonic code/symbol. Code 32 or 0x20 is the space symbol (empty field).

15.3 Unicode characters. The Unicode character set uses 2 or more bytes to represent one character. The Unicode character for an ASCII character remains the same if one adds extra zeroes. Thus DEL which is 0x7F in ASCII has UNICODE code 0x007F. We also write this as U+007F.

15.4 Java character primitive data types. In java a char data type is a single 16-bit Unicode character. Its minimum value is ‘\u0000’ (or U+0000) and its maximum value ‘\uFFFF’ (or U+FFFF).

15.5 UTF-8. In UNICODE only numeric values are assigned to characters. These numeric values are not required to be ordered in a specific sequence of bytes, of the same number or variable number. There are several encoding schemes to represent Unicode. One of the is UTF-8 where characters are encoded using 1 to 6 bytes. In UTF-8 all ASCII characters are encoded within the 7 least significant digits of a byte and its most-significant bit is set to 0. Thus Unicode characters U+0000 to U+007F that is the ASCII characters are encode simply as byte 0x00 to 0x7F. Thus ASCII and UTF-8 encoding look the same. All characters larger than U+007F use 2 or more bytes each of which has the most significant bit set to 1. This means that no ASCII byte can appear as part of any other character since only ASCII characters have a 0 in the most significant bit position. The first byte of a non-ASCII character is one of 110xxxx, 1110xxxx, 11110xxx, 111110xx, 1111110x and it indicates how many bytes are altogether or the number of 1s following the first 1 and before the first 0 indicates the number of bytes in the rest of the sequence. All remaining bytes other than the first start with 10yyyyy.
ASCII CHARACTER SET

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\</td>
<td>Backslash</td>
</tr>
<tr>
<td>0</td>
<td>Null</td>
</tr>
<tr>
<td>1</td>
<td>SOH (Start of Heading)</td>
</tr>
<tr>
<td>2</td>
<td>STX (Start of Text)</td>
</tr>
<tr>
<td>3</td>
<td>ETX (End of Text)</td>
</tr>
<tr>
<td>4</td>
<td>EOT (End of Transmission)</td>
</tr>
<tr>
<td>5</td>
<td>ENQ (Enquiry)</td>
</tr>
<tr>
<td>6</td>
<td>ACK (Acknowledgment)</td>
</tr>
<tr>
<td>7</td>
<td>BEL (Bell)</td>
</tr>
<tr>
<td>8</td>
<td>BS (Backspace)</td>
</tr>
<tr>
<td>9</td>
<td>FS (File Separator)</td>
</tr>
<tr>
<td>A</td>
<td>CR (Carriage Return)</td>
</tr>
<tr>
<td>B</td>
<td>LF (Linefeed/newline)</td>
</tr>
<tr>
<td>C</td>
<td>VT (Vertical Tab)</td>
</tr>
<tr>
<td>D</td>
<td>FF (Form Feed/Newpage)</td>
</tr>
<tr>
<td>E</td>
<td>CR (Carriage Return)</td>
</tr>
<tr>
<td>F</td>
<td>SETC (Set Terminal Entry Control)</td>
</tr>
</tbody>
</table>

UTF-8 ENCODING

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xxxxxxx</td>
<td>7</td>
<td>00000000-0000007F</td>
</tr>
<tr>
<td>110xxxxx</td>
<td>11</td>
<td>00000800-0000FFFF</td>
</tr>
<tr>
<td>1110xxxxx</td>
<td>16</td>
<td>00010000-0000FFFF</td>
</tr>
<tr>
<td>11110xx</td>
<td>21</td>
<td>00100000-001FFFFF</td>
</tr>
<tr>
<td>111110x</td>
<td>26</td>
<td>00200000-03FFFFF</td>
</tr>
<tr>
<td>1111110</td>
<td>31</td>
<td>04000000-FFFFF</td>
</tr>
<tr>
<td>1111111</td>
<td>32</td>
<td>08000000-FFFFFFF</td>
</tr>
</tbody>
</table>

HUL = null BS = Backspace DLE = Datalink escape CAN = cancel
SOH = start of heading TAB = horizontal tab DC1 = Device control 1 EM = end of medium
STX = start of text LF = linefeed/newline DC2 = substitute
ETX = end of text VT = vertical TAB DC3 = ESC = escape
EOT = end of transmission FF = form feed/newpage DC4 = FS = file separator
ENQ = enquiry CR = carriage return NAK = negative ACK GS = group separator
ACK = acknowledge SO = shift out SYN = synchronous idle RS = record separator
BEL = bell SI = shift in ETB = end of trans. block US = unit separator
DEL = deletion character
16 Computer Architectures: von-Neumann and Harvard

16.1 Architecture and Model of computation: Von-Neumann model. Under this architectural model, a central processing unit, also known as the CPU, is responsible for computations. A CPU has access to a program that is being executed and the data that it modifies. The program that is being executed and its relevant data both reside in the same memory usually called main memory. Thus main memory stores both program and data, at every cycle the CPU retrieves from memory either program (in the form of an instruction) or data, performs a computation, and then writes back into memory data that were computed at the CPU by one of its units in a current or prior cycle.

16.2 Architecture and Model of computation: Harvard model. An alternative architecture, the so called Harvard model of computation or architecture as influenced by (or implemented into) the Harvard Mark IV computer for USAF (1952) was also prevalent in the early days of computing. In the Harvard architecture, programs and data are stored separately into two different memories and the CPU maintains distinct access paths to obtain pieces of a program or its associated data. In that model, a concurrent access of a piece of a program and its associated data is possible. This way in one cycle an instruction and its relevant data can both and simultaneously reach the CPU as they utilize different data paths.

16.3 Hybrid Architectures. The concepts of pipelining, instruction and data-level caches can be considered Harvard-architecture intrusions into von-Neumann models. Most modern microprocessor architectures are using them.

16.4 CPU vs Microprocessor. CPU is an acronym for Central Processing Unit. Decades ago all the units that formed the CPU requires multiple cabinets, rooms or building. When all this functionality was accommodated by a single microchip, it became known as the microprocessor. The number of transistors in modern processor architectures can range from about a billion to 5 billion or more (Intel Xeon E5, Intel Xeon Phi, Oracle/Sun Sparc M7). A chip is the package containing one or more dies (actual silicon IC) that are mounted and connected on a processor carrier and possibly covered with epoxy inside a plastic or ceramic housing with gold plated connectors. A die contains or might contain multiple cores, a next level of cache memory adjacent to the cores (eg. L3), graphics, memory, and I/O controllers.

16.5 Multi-core, Many-core, GPU and more. In the past 10-15 years uni-processor (aka single core aka unicore) performance has barely improved. The limitations of CPU clock speeds (around 2-3GHz), power consumption, and heating issues have significantly impacted the improvement in performance by just increasing the CPU clock speed. An alternative that has been pursued is the increase of the number of “processors” on a processor die (computer chip). Each such “processor” is called a core. Thus in order to increase performance, instead or relying to increasing the clock speed of a single processor, we utilize multiple cores that work at the same clock speed (boost speed), or in several instance at a lower (clock) speeds (regular speed).

Thus we now have multiple-core (or multi-core) or many-core processors. Dual-core or Quad-core refer to systems with specifically 2 or 4 cores. The number of cores is usually (2016) less than 30 (eg Intel’s Xeon processors). Sometime many-core processors (eg Intel’s Phi) are attached to the CPU and work in ’parallel’ with the CPU or independetly of it. In such a case a many-core is called a coprocessor.
A GPU (Graphics Processing Unit) is used primarily for graphics processing. CUDA (Compute Unified Device Architecture) is an application programming interface (API) and programming model created by NVIDIA (TM). It allows CUDA-enabled GPU units to be used for General Purpose processing, sequential or massively parallel. Such GPUs are also known as GPGPU (General Purpose GPU) when provided with API (Application Programming Interface) for general purpose work. A GPU processor (GK110) contains a small number (up to 16 or so) of Streaming Multiprocessors (SM, SMX, or SMM). Each streaming multiprocessor has up to 192 32-bit cores supporting single-precision floating-point operations and up to 64 64-bit cores supporting double-precision operations. Other cores support other operations (e.g. transcendental functions). Thus the effective “core count” is in the thousands.
17 Computer Architectures: Memory Hierarchies

17. CPU and Main Memory Speed. A CPU rated at 2GHz can execute 2G or 4G operations per second or roughly two-four operations per nanosecond, or roughly one operation every 0.25-0.5ns. A CPU can fetch one word from main memory ("RAM") every 80-100ns. Thus there is a differential in performance between memory and CPU. To alleviate such problems, multiple memory hierarchies are inserted between the CPU (fast) and Main Memory (slow): the closer the memory to the CPU is the faster it is (low access times) but also the costlier it becomes and the scarcer/less of it also is. A cache is a very fast memory. Its physical proximity to the CPU (or core) determines its level. Thus we have L1 (closest to the CPU, in fact "inside" the CPU), L2, L3, and L4 caches. Whereas L2 and L3 are "static RAM/ SRAM", L4 can be "dynamic RAM/ DRAM" (same composition as the main "RAM" memory) attached to a graphics unit (GPU) on the CPU die (Intel Iris).

17.1 Level-1 cache. A level-1 cache is traditionally on-die (same chip) within the CPU and exclusive to a core. Otherwise performance may deteriorate if it is shared by multiple cores. It operates at the speed of the CPU (i.e. at ns or less, currently). Level-1 caches are traditionally Harvard-hybrid architectures. There is an instruction (i.e. program) cache, and a separate data-cache. Its size is very limited to few tens of kilobytes per core (eg. 32KiB) and a processor can have separate level-1 caches for data and instructions. In Intel architectures there is a separate L1 Data cache (L1D) and a L1 Instruction cache (L1I) each one of them 32KiB for a total of 64KiB. They are implemented using SDRAM (3GHz typical speed) and latency to L1D is 4 cycles in the best of cases (typical 0.5-2ns range for accessing an L1 cache) and 32-64B/cycle can be transferred (for a cumulative bandwidth over all cores as high as 2000GB/s). Note that if L1D data is to be copied to other cores this might take 40-64 cycles.

17.2 Level-2 cache. Since roughly the early 90s several microprocessors have become available utilizing secondary level-2 caches. In the early years those level-2 caches were available on the motherboard or on a chip next to the CPU core (the microprocessor core along with the level-2 cache memory were sometimes referred to as the microprocessor slot or socket). Several more recent microprocessors have level-2 caches on-die as well. In early designs with no L3 cache, L2 was large in size (several Megabytes) and shared by several cores. L2 caches are usually coherent; changes in one are reflected in the other ones.
An L2 cache is usually larger than L1 and in recent Intel architectures 256KiB and exclusive to a core. They are referred to as "static RAM". The size is small because a larger L3 cache is shared among the cores of a processor. An L2 cache can be inclusive (older Intel architectures such as Intel’s Nehalem) or exclusive (AMD Barcelona) or neither inclusive nor exclusive (Intel Haswell). Inclusive means that the same data will be in L1, L2, and L3. Exclusive means that if data is in L2, it can’t be in L1 and L3. Then if it is needed in L1, a cache “line” of L1 will be swapped with the cache line of L2 containing it, so that exclusivity can be maintained: this is a disadvantage of exclusive caches. Inclusive caches contain fewer data because of replication. In order to remove a cache line in inclusive caches we need only check the highest level cache (say L3). For exclusive caches all (possibly three) levels need to be checked in turn. Eviction from one requires eviction from the other caches in inclusive caches. In some architectures (Intel Phi), in the absence of an L3 cache, the L2 caches are connected in a ring configuration thus serving the purpose of an L3. The latency of an L2 cache is approximately 12-16 cycles (3-7ns), and up to 64B/cycle can be transferred (for a cumulative bandwidth over all cores as high as 1000-1500GB/s). Note that if L2 data is to be copied to other cores this might take 40-64 cycles.

17.3 Level-3 cache. Level-3 caches are not unheard of nowadays in multiple-core systems/architectures. They contain data and program and typical sizes are in the 16-32MiB range. They are available on the motherboard or microprocessor socket. They are shared by all cores. In Intel’s Haswell architecture, there is 2.5MiB of L3 cache per core (and it is write-back for all three levels and also inclusive). In Intel’s Nehalem architecture L3 contained all the data of L1 and L2 (i.e. $(64 + 256) \times 4$KiB in L3 are redundantly available in L1 and L2). Thus a cache miss on L3 implies a cache miss on L1 and L2 over all cores! It is also called LLC (Last Level Cache) in the absence of an L4 of course. It is also exclusive or somewhat exclusive cache (AMD Barcelona/Shanghai, Intel Haswell). An L3 is a victim cache. Data evicted from the L1 cache can be spilled over to the L2 cache (victim’s cache). Likewise data evicted from L2 can be spilled over to the L3 cache. Thus either L2 or L3 can satisfy an L1 hit (or an access to the main memory is required otherwise). In AMD Barcelona and Shanghai architectures L3 is a victim’s cache; if data is evicted from L1 and L2 then and only then will it go to L3. Then L3 behaves as an inclusive cache: if L3 has a copy of the data it means 2 or more cores need it. Otherwise only one core needs the data and L3 might send it to the L1 of the single core that might ask for it and thus L3 has more room for L2 evictions. The latency of an L3 cache varies from 25 to 64 cycles and as much as 128-256cycles depending on whether a datum is shared or not by cores or modified and 16-32B/cycle. The bandwidth of L3 can be as high 250-500GB/s (indicative values).

17.4 Level-4 cache. It is application specific, graphics-oriented cache. It is available in some architecture (Intel Haswell) as auxiliary graphics memory on a discrete die. It runs to 128MiB in size, with peak throughput of 108GiB/sec (half of it for read, half for write). It is a victim cache for L3 and not inclusive of the core caches (L1, L2). It has three times the bandwidth of main memory and roughly one tenth its memory consumption. A memory request to L3 is realized in parallel with a request to L4.
17.5 Main memory. It still remains relatively slow of 60-110ns speed. Latency is 32-128cycles (60-110ns) and bandwidth 20-128GB/s (DDR3 is 32GiB/sec). It is available on the motherboard and in relatively close proximity to the CPU. Typical machines have 4-512GiB of memory nowadays. It is sometimes referred to as "RAM". As noted earlier, random access memory refers to the fact that there is no difference in speed when accessing the first or the billionth byte of this memory. The cost is uniformly the same.

17.6 Multi-cores and Memory. To support a multi-core or many-core architecture, traditional L1 and L2 memory hierarchies (aka cache memory) are not enough. They are usually local to a processor or a single core. A higher memory hierarchy is needed to allow cores to share memory "locally". An L3 cache has been available to support multi-core and more recently (around 2015) L4 caches have started appearing in roles similar to L3 but for specific (graphics-related) purposes. When the number of cores increases beyond 20, we talk about many-core architectures (such as Intel’s Phi). Such architectures sacrifice the L3 for more control logic (processors). To allow inter-core communication the L2 caches are linked together to form a sort of shared cache.
18 Constants, Variables, Data-Types

18.1 Constant. If the value of an object can never get modified, then it’s called a constant. 5 is a constant, its value never changes (i.e. a 5 will never have a value of 6).

18.2 Variable. In computer programs we also use objects (names, aliases) whose values can change. Those objects are known as a variable. Every variable has a data-type. What is the data-type of a variable? In most programming languages a statement such as the one below, assigns the value of constant 10 (right hand-side of equality) to become the value of variable x on the left-hand side of the equality.

\[x = 10 \]

18.3. Data-type. In a programming language, every variable has a data-type, which is the set of values the variable takes. Moreover, the data-type defines the operations that are allowable on it.

18.4 Built-in or primitive data-types. Composite data-types. In mathematics, an integer or a natural number is implicitly defined to be of arbitrary precision. Computers and computer languages have built-in (also called primitive) data-types for integers of finite precision. These primitive integer data-types can represent integers with 8-, 16-, 32- or (in some cases) 64-bits or more. An integer data-type of much higher precision is only available not as a primitive data-type but as a composite data-type through aggregation and composition and built on top of primitive data-types. Thus a composite data-type is built on top of primitive data types. One way to build a composite data-type is through an aggregation called an array: an array is a sequence of objects of (usually) the same data-type. Thus we can view memory as a vector of bytes. But if those bytes are organized in the form of a data-type a sequence of elements of the same data-type becomes known as an array (rather than a plain vector). Sometimes the data type of a variable is assigned by default, depending on the value assigned to the variable. The data-type of the right-hand side determines the data-type of x in $x = 10$: in this case it is of “number data type”. In some other cases we explicitly define the data type of a variable. A programming language such as C++ consists of primitive data-types such as int, char, double and also composite data types that can be built on top of them such as array, struct and class. The whole set of data types and the mechanisms that allow for the aggregation of them define the data model of C++.

18.5 What is a Data Model (DM)? It is an abstraction that describes how data are represented and used.

18.6 Weakly-typed and strongly-typed languages. In a weaky-typed language the data type of a variable can change during the course of a program’s execution. In a strongly-type language as soon as the variable is introduced its data-type is explicitly defined, and it cannot change from that point on. For example

- Weakly Typed Language such as MATLAB
 \[x = \text{int8}(10); \quad \% \text{x is integer (data type)} \]
 \[x = 10.12; \quad \% \text{x is real number (data type)} \]
 \[x = \text{’abcd’}; \quad \% \text{x is a string of 4 characters (data type)} \]

- Strongly Typed Language such as C, C++, or Java
 \[\text{int \ } x; \quad \% \text{x is a 32-bit (4B) integer whose data type can not change in the program} \]
 \[x = 10; x = 2; \quad \% \text{ok} \]
 \[x = 10.10; \quad \% \text{Error or unexpected behavior: right hand-side is not an integer.} \]
18.7 Definition vs Declaration. In computing we use the term definition of a variable to signify where space is allocated for it and its data-type explicitly defined for the first time, and declaration of a variable to signify our intend to use it. A declaration assumes that there is also a definition somewhere else, does not allocate space and serves as a reminder. For a variable there can be only ONE definition but MULTIPLE declarations. This discussion makes sense for compiled languages and thus `int x` serves above as a definition of variable x. For interpreted languages, separate definitions are usually not available and declarations coincide with the use of a variable. Thus we have three declarations that also serve as definitions of x in the weakly-typed example each one changing the data type of x. In the latter example variable x is defined once and used twice (correctly) after that definition.

18.8 What is an abstract data type (ADT)? An abstract data type (ADT) is a mathematical model and a collection of operations defined on this model.

18.8.1 The ADT Dictionary. For example a Dictionary is an abstract data type consisting of a collection of words on which a set of operations are defined such as Insert, Delete, Search.

18.9 What is a data-structure? A data structure is a representation of the mathematical model underlying an ADT, or, it is a systematic way of organizing and accessing data.

18.9.1 Does it matter what data structures we use? For the Dictionary ADT we might use arrays, sorted arrays, linked lists, binary search trees, balanced binary search trees, or hash tables to represent the mathematical model of the ADT as expressed by its operations. What data structure we use, it matters if economy of space and easiness of programming are important. As running/execution time is paramount in some applications, we would like to access/retrieve/store data as fast as possible. For one or the other among those data structures, one operation is more efficient than the other.

18.10 Mathematical Function: Input and Output Interface. When we write a function such as \(f(x) = x \times x \) in Mathematics we mean that x is the unknown or parameter or indeterminate of the function. The function is defined in terms of x. The computation performed is \(x^2 \) i.e. \(x \times x \). The value ‘returned’ or ‘computed’ is exactly that \(x \times x \). When we call a function with a specific input argument we write \(f(5) \). In this case 5 is the input argument or just argument. Then the 5 substitutes for x i.e. it becomes the value of parameter x and the function is evaluated with that value of x. The result is a 25 and thus the value of \(f(5) \) becomes ‘25’. If we write \(a = f(5) \), the value of \(f(5) \) is also assigned to the value of variable a. Sometimes we call s the output argument, which is provided by the caller of the function to retrieve the value of the function computed.

18.11 Algorithms. We call algorithms the methods that we use to operate on a data structure. An algorithm is a well-defined sequence of computational steps that performs a task by converting an (or a set of) input value(s) into an (or a set of) output value(s).

18.12 Computational Problem. A (computational) problem defines an input-output relationship. It has an input, and an output and describes how the output can be derived from the input.

18.13 Computational Problems and (their) Algorithms. An algorithm describes a specific procedure for achieving this relationship, i.e. for each problem we may have more than one algorithms.
The mathematics (not discrete mathematics) that you need can be summarized in the following one-page summary.

\[\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}. \]

For \(a \neq 1 \), and \(|b| < 1 \) we have that

\[\sum_{i=0}^{\infty} a^i = \frac{a^{n+1} - 1}{a - 1}, \quad \sum_{i=0}^{\infty} ia^i = (n-1)a^{n+1} - na^n + a, \]

\[\sum_{i=1}^{\infty} b^i = \frac{1}{1-b}, \quad \sum_{i=1}^{\infty} ib^i = \frac{b}{1-b}, \quad \sum_{i=0}^{\infty} ib^i = \frac{b}{(1-b)^2}. \]

\[H_n = \sum_{i=1}^{n} \frac{1}{i}, \quad \sum_{i=1}^{n} iH_i = \frac{n(n+1)}{2} - H_n - \frac{n(n-1)^2}{4}. \]

\[n! = \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \left(1 + \Theta \left(\frac{1}{n} \right) \right), \quad n! \approx \left(\frac{n}{e} \right)^n, \quad a^\log n = n^{\log a}. \]

\[e \approx 2.718281, \quad \pi \approx 3.14159, \quad \gamma \approx 0.57721, \quad \phi = \frac{1+\sqrt{5}}{2} \approx 1.61803, \quad \hat{\phi} = \frac{1-\sqrt{5}}{2} \approx -0.61803. \]

\[\binom{n}{k} = \frac{n!}{k!(n-k)!}, \quad \sum_{k=0}^{n} \binom{n}{k} = 2^n, \quad \binom{n}{k} = \binom{n}{n-k}, \quad \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}. \]

L1. \(\lg(ab) = \lg a + \lg b, \quad \lg(a/b) = \lg a - \lg b, \quad \lg(a^b) = b \lg a, \quad 2^{\log(a)} = a, \)

L2. \(a^x a^y = a^{x+y}, \quad a^x / a^y = a^{x-y}, \quad (a^x)^y = a^{xy}. \)

D1. \((f(x)g(x))' = f'(x)g(x) + f(x)g'(x), \quad \left(\frac{f(x)}{g(x)} \right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}, \quad (e^x)' = \ln(c) e^x. \)

S1. \(\frac{1}{1-x} = 1 + x + x^2 + \ldots + x^i + \ldots = \sum_{i=0}^{\infty} x^i, \)

S2. \(\frac{x}{(1-x)^2} = x + 2x^2 + \ldots + ix^i + \ldots = \sum_{i=0}^{\infty} ix^i, \)

S3. \(e^x = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^i}{i!} + \ldots = \sum_{i=0}^{\infty} \frac{x^i}{i!}. \)