Solve ALL 6 PROBLEMS in the space provided.

Read the Problems CAREFULLY!

There are 4 (FOUR) pages this page included

List of useful formulae

\[
\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}, \quad n! \approx \left(\frac{n}{e}\right)^n, \quad a^\log_b n = n^\log_b a,
\]

For \(x \neq 1 \), we have that

\[
\sum_{i=0}^{n} x^i = \frac{x^{n+1} - 1}{x - 1}, \quad \sum_{i=0}^{n-1} ix^i = \frac{(n-1)x^{n+1} - nx^n + x}{(1-x)^2},
\]

B1. \(f(n) = \Theta(g(n)) \) iff \(\exists \) positive constants \(c_1, c_2, n_0 : 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \ \forall \ n \geq n_0 \).

B2. \(f(n) = \Omega(g(n)) \) iff \(\exists \) positive constants \(c_1, n_0 : 0 \leq c_1 g(n) \leq f(n) \ \forall \ n \geq n_0 \).

B3. \(f(n) = O(g(n)) \) iff \(\exists \) positive constants \(c_2, n_0 : 0 \leq f(n) \leq c_2 g(n) \ \forall \ n \geq n_0 \).

Master Method. \(T(n) = aT(n/b) + f(n) \), such that \(a > 0, b > 1, f(n) > 0 \).

M1 If \(f(n) = O(n^{\log_b a - \epsilon}) \) for some constant \(\epsilon > 0 \), then \(T(n) = \Theta(n^{\log_b a}) \).

M2 If \(f(n) = \Theta(n^{\log_b a} \log^{k+1} n) \), then \(T(n) = \Theta(n^{\log_b a} \log^{k+1} n) \), where \(k \geq 0 \) is a non-negative constant.

M3 If \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) for some constant \(\epsilon > 0 \), and if \(af(n/b) \leq cf(n) \) for some constant \(c < 1 \) and for large \(n \), then \(T(n) = \Theta(f(n)) \).
Problem 1. (40 points)

Give a TRUE or FALSE for each one of the statements below. Any answer other than a full TRUE or FALSE will be considered wrong. All algorithms are the book/notes implementations.

(1) Insertion-Sort sorts in-place.
(2) MergeSort sorts in-place.
(3) On the input sequence $\langle 1, 2, \ldots, n \rangle$, Insertion-Sort is asymptotically faster than MergeSort.
(4) On the input sequence $\langle n, n - 1, \ldots, 1 \rangle$, InsertionSort is asymptotically faster than MergeSort.
(5) On the input sequence $\langle n, n - 1, \ldots, 1 \rangle$, InsertionSort has running time that is $\Omega(n)$.
(6) On the input sequence $\langle 1, 2, \ldots, n \rangle$, InsertionSort has running time that is $O(n^2)$.
(7) The asymptotic solution of $T(n) = T(n/2) + \lg n$ is $T(n) = \Theta(n)$.
(8) The asymptotic solution of $T(n) = 3T(n/2) + T(2n/4) + n^2$ is $T(n) = \Theta(n^2)$

Problem 2. (30 points)

Rank the following functions by order of growth; that is, find an arrangement $g_1, g_2, g_3, \ldots, g_6$ of the functions satisfying $g_1 = \Omega(g_2), g_2 = \Omega(g_3), g_3 = \Omega(g_4), g_4 = \Omega(g_5), g_5 = \Omega(g_6)$. Partition your list in equivalence classes such that $f(n)$ and $h(n)$ are in the same class if and only if $f(n) = \Theta(h(n))$. For example for functions $\lg n, n, n^2$, and $2\lg n$ you could write: $n^2, \{n, 2\lg n\}, \lg n$.

$2^n, 3\lg n, 2^3\lg n, n^2 \lg n, \lg (n!), n!$.

Problem 3. (17 points)

Show that $n^3 - 2n^2 + 1 = \Theta(n^3)$ by providing the c_1, c_2, n_0 of the definition.
Problem 4. (30 POINTS)

What does the following program do if called on an array of \(n \) keys (very last line of the code below)? Explain. Analyze its worst-case running time and provide a tight asymptotic bound for it.

```c
FindMe(keys A[0..n-1], int p, int r)
0.  int q;
1.  if (p==r)
2.     return(TRUE);
4.     return(FALSE);
5.  q= (p+r)/2;
6.  return (FindMe(A,p,q) && FindMe(A,q+1,r))
1.  FindMe(A[0..n-1],0,n-1);
```

Problem 5. (30 POINTS)

Solve exactly the following recurrence. You may assume that \(n \) is a power of two.

\[
T(n) = 2T(n/2) + 6n, \quad T(4) = 12.
\]
Problem 6. (20 points)

We have an array $A[0..n-1]$ of n keys that have at most k distinct values, where $k \leq \sqrt{n}$. (The fact that k is bounded is known in advance.) We intend to sort this array in time faster than the generic $\Omega(n \lg n)$ depending on the value of k, by taking into consideration that there are not many distinct values among the n keys. We will do so in two rounds of computation. In the first round, we will compute a sorted array $X[0..k-1]$ that contains the k distinct keys of A. Then, in the second round we can sort A using X as a guidance. You are asked to implement the first step of this algorithm.

Design an algorithm that given A, k and n as input determines the $k \leq \sqrt{n}$ distinct keys of the input, and stores them in array X in sorted order without using more than $\Theta(1)$ additional extra space. Your algorithm should run in worst-case running time of $O(n \lg k)$. Note once again that $k \leq \sqrt{n}$. Briefly explain the algorithm, comment on its correctness, and analyze its worst-case running time.

Observation. $O(n \lg k)$ is $O(n)$ if k is constant; if $k = O(\lg n)$ then $O(n \lg k) = O(n \lg \lg n)$, which is $o(n \lg n)$.

This is the end of the exam.