Solve ALL 6 PROBLEMS in the space provided.

Read the Problems CAREFULLY!

There are 4 (FOUR) pages this page included

List of useful formulae

\[\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}, \quad n! \approx \left(\frac{n}{e}\right)^n, \quad d^\log_b n = n^\log_b d, \]

For \(x \neq 1 \), we have that

\[\sum_{i=0}^{n} x^i = \frac{x^{n+1} - 1}{x - 1}, \quad \sum_{i=0}^{n-1} ix^i = \frac{(n-1)x^{n+1} - nx^n + x}{(1-x)^2}, \]

B1. \(f(n) = \Theta(g(n)) \) iff \(\exists \) positive constants \(c_1, c_2, n_0 : 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \ \forall \ n \geq n_0. \)

B2. \(f(n) = \Omega(g(n)) \) iff \(\exists \) positive constants \(c_1, n_0 : 0 \leq c_1 g(n) \leq f(n) \ \forall \ n \geq n_0. \)

B3. \(f(n) = \Omega(g(n)) \) iff \(\exists \) positive constants \(c_2, n_0 : 0 \leq f(n) \leq c_2 g(n) \ \forall \ n \geq n_0. \)

Master Method. \(T(n) = aT(n/b) + f(n) \), such that \(a > 0, b > 1, f(n) > 0. \)

M1 If \(f(n) = O(n^{\log_b a - \epsilon}) \) for some constant \(\epsilon > 0 \), then \(T(n) = \Theta(n^{\log_b a}). \)

M2 If \(f(n) = \Theta(n^{\log_b a} \log^k n) \), then \(T(n) = \Theta(n^{\log_b a} \log^{k+1} n) \), where \(k \geq 0 \) is a non-negative constant.

M3 If \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) for some constant \(\epsilon > 0 \), and if \(af(n/b) \leq cf(n) \) for some constant \(c < 1 \) and for large \(n \), then \(T(n) = \Theta(f(n)). \)
Problem 1. (40 points)
Properties of sorting algorithms (i.e. questions 1 and 2) are described on page 19, Subject 1. Problem 8 was PS1.Problem7.part.a with the 3 of 3n^2 missing. Problem 7 was PS1.Problem 9.part.a

(1) Insertion-Sort sorts in-place. TRUE
(2) MergeSort sorts in-place. FALSE
(3) On the input sequence \langle 1, 2, \ldots, n \rangle, Insertion-Sort is asymptotically faster than MergeSort. TRUE, the former is \Theta(n) and the latter is \Omega(n \log n).
(4) On the input sequence \langle n, n-1, \ldots, 1 \rangle, InsertionSort is asymptotically faster than MergeSort. FALSE the former is \Theta(n^2) and the latter is O(n \log n).
(5) On the input sequence \langle n, n-1, \ldots, 1 \rangle, InsertionSort has running time that is \Omega(n). TRUE since the running time is \Theta(n^2) which is \Omega(n).
(6) On the input sequence \langle 1, 2, \ldots, n \rangle, InsertionSort has running time that is O(n^2). TRUE since the \Theta(n) running time is also O(n^2).
(7) The asymptotic solution of \(T(n) = T(n/2) + \log n \) is \(T(n) = \Theta(n) \). FALSE. Case 2 of the master method shows that it is \(T(n) = \Theta(\log^2 n) \).
(8) The asymptotic solution of \(T(n) = 3T(n/2) + T(2n/4) + n^2 \) is \(T(n) = \Theta(n^2) \) FALSE Case 2 of the master method show that it is \(T(n) = \Theta(n^2 \log n) \). Note that \(3T(n/2) + T(2n/4) = 4T(n/2) \).

Problem 2. (30 points)
This is a shortened version of PS1.Problem 6.part.b with several functions replaced.

\[n!, \ 2^n, \ 2^{3\log n}, \ n^2 \log n, \ 3^{\log n}, \ \log(n!) \]

We have that \(n! = \omega(2^n) \). Also \(2^n = \omega(n^k) \) for any constant \(k > 0 \). Since \(2^{3\log n} = (2^{\log n})^3 = n^3 \), and \(n^3 = \omega(n^2 \log n) \), and \(n^2 \log n = 2^{2 \log n} \log n = 4^{\log n} \log n = \omega(3^{\log n}) \) the result follows also taking into consideration that \(3^{\log n} = \omega(n \log n) \), and \(\log(n!) = \Theta(n \log n) \).

Problem 3. (17 points)
This is PS1.Problem 6.part.a and also similar to a problem done in class.
(a) \(O \) first. \(n^3 - 2n^2 + 1 \leq n^3 + 1 \leq 2n^3 \). Therefore for \(c_2 = 2 \) and \(n_0 = 1 \) we have \(n^3 - 2n^2 + 1 = O(n^3) \).
(b) \(\Omega \) then. \(n^3/2 \leq n^3 - 2n^2 \leq n^3 - 2n^2 + 1 \) as long as \(n \geq 4 \). Therefore for \(c_1 = 1/2 \) and \(n_0 = 4 \) we have that \(n^3 - 2n^2 + 1 = \Omega(n^3) \).
Combining parts (a) and (b) we have that \(c_1 = 1/2 \) and \(c_2 = 2 \) and \(n_0 = 4 \) are the constants to claim that \(n^3 - 2n^2 + 1 = \Theta(n^3) \).

Problem 4. (30 points)
The algorithm determines by divide-and-conquer whether all the keys of array A are the same or not.
Split A into two halves. If \(A[0] \) and \(A[n-1] \) are not equal output FALSE since we know that all the keys are not equal to the same value since \(A[0] \) and \(A[n-1] \) differ.
Otherwise recur on the left and the right half. Boundary case is the case where a subarray has only one key; return TRUE by default.
The running time recurrence for the running time \(T(n) \) is thus \(T(n) = 2T(n/2) + 1 \). Case 1 of the master method gives \(T(n) = \Theta(n) \).
Problem 5. (30 points)

\[T(n) = 2T(n/2) + 6n, \quad T(4) = 12. \]

\[
T(n) = 2T(n/2) + 6n \\
= 2^2T(n/2^2) + 2\cdot 6n \\
= 2^iT(n/2^i) + i\cdot 6n \\
= 2^{\lg n-2}T(n/2^{\lg n-2}) + (\lg n - 2)\cdot 6n \\
= (n/4)T(4) + 6n\lg n - 12n \\
= (n/4)12 + 6n\lg n - 12n \\
= 3n + 6n\lg n - 12n \\
= 6n\lg n - 9n
\]

We used in the fourth equality the facts that \(T(4) = 12 \) and \(2^{\lg n-2} = n/4 \).

Problem 6. (20 points)

Scan \(A \) left to right one element at a time. At the same time maintain a sorted \(X \) of at most \(k \) elements as required. For every element \(A[i] \) of \(A \) do a binary search into \(X \) formed so far. Since \(X \) can have at most \(k \) elements this takes \(O(\lg k) \) time. If \(A[i] \) is already in \(X \) then nothing is being done; such a key has been dealt with before. If however this is the first \(A[i] \) encountered, then and only then do we insert \(A[i] \) in the sorted \(X \); this involves making room for \(A[i] \) in \(X \) by moving all keys greater than \(A[i] \) to the right one position. In the worst case all of \(X \) might have to move to the right to make space for the new key, an operation that can take \(j \) steps for the \(j \)-th insertion into \(X \). We then proceed to the next key \(A[i+1] \).

Total time spent is as follows:

(a) Binary search requires \(O(\lg k) \) per input key and since \(A \) has \(n \) keys and \(X \) has at most \(k \) keys this is \(O(n\lg k) \).

(b) Insertion requires \(O(j) \) for the \(j \)-th inserted key. Only unique keys are inserted the first time they are encountered. Therefore, we have \(k \) insertions for a total of \(\sum_{j=1}^{k} O(j) = O(k^2) \).

(c) The running time altogether for (a), (b) is thus \(O(n\lg k + k^2) = O(n\lg k) \) since \(k \leq \sqrt{n} \) and thus \(k^2 = O(n) \).

The pseudocode corresponding to this description looks like.

```plaintext
Keys(A,n,k)
0. allocate space for X[k];
1. j=0; // number of keys in X so far
2. for(i=0;i<n;i++) {
4. if X[t] != A[i] {
5. Insert(X,j,A[i],t); // Insert A[i] at X[t] i.e. X[t]...X[j-1] move to X[t+1] ...X[j]
6. j++;
7. } // Note: the case where j=0 and A[i] is the first inserted key is handled within // Insert. No moving to the right is required since A[i] is the first key into X.
8. }
9. return(X);
```