A. V. GERBESSIOTIS CS 667 Fall 2006
PS 1 SEPTEMBER 18, 2006 250 POINTS

Problem 1. (40 points)

Let n be an integer. Determine whether n is a perfect square or not by giving an algorithm whose worst case running
time is O(lgn). Integer n is a perfect square if there exists an integer = such that n = x2.

Generalize this algorithm to determine whether n is a perfect power in time O(lg2 n). Integer n is a perfect power if
there exist integers x,y such that n = x¥.

Hint. n = 2¥ means that lgn = ylgx. How big are y,lgz? Think of an elementary method introduced in CS 114.

Problem 2. (40 points)
Suppose that we insert n keys into a hash table of size m using open addressing and uniform hashing. Let p(n,m) be
the probability that no collisions occur. Show that p(n,m) < exp(—n(n —1)/(2m)). Argue that when n exceed \/m, the
probability of avoiding collisions goes rapidly to zero.
Hint: Use induction... Also use exp(x) > 1+ « for any real z. Note that exp(x) = e®.

Problem 3. (40 points)

The Fibonacci sequence is given by the following recurrence F,,+1 = F}, + F,—1 forn > 1 and Fy = F} = 1.

(a) Show how to compute F), in O(n) time.

(b) Given an n x n matrix A show how you can find A" in O(n®lgn) time.

(¢) Can you improve the obvious time bound in (a)? In particular prove that F,, can be computed in O(lgn) time.
Hint: You may need to use the result of part (b), i.e. formulate the F,, as a matrix problem. The discussion on page 902
and 903 (Problem section at the end of the Chapter on Number-Theoretic Algorithms may offer you some insight).

The Fibonacci sequence is given by the following recurrence F,, = F,,_1 + F,,_s formn > 1 and Fy =0, F}, = 1. It is easy
to compute F, in O(n) time with an iterative algorithm. Show how one can compute F,, in O(lgn) time. Pages 901/902
may offer some assistance but note that the problem there is in some other context.

Problem 4. (40 points)
Consider two sets A and B each having n integers in the range from 0 to 10n. We wish to compute the Cartesian sum
of A and B defined by
C={z+y:2€A and y € B}

Note that the integers in C are in the range from 0 to 20n. We want to find the elements of C and the number of times
each element of C is realized as a sum of elements in A and B. Show that if the product of two degree bound n polynomials
can be computed in O(nlgn) time, then this problem can also be solved in O(nlgn) time. Hint. Represent A and B as
polynomials of degree at most 10n.

Problem 5. (40 points)

You are given six polynomials fi,... fs of degrees 1,2,3,1,4,5 respectively. We are interested in finding the product
f = fifafsfafsfs- Assume that the cost of multiplying two polynomials of degree a and b is a - b. Find a schedule for
multiplying the six polynomials that is of the lowest possible total cost.

Problem 6. (50 points)

You are given six polynomials fi,... fs of degrees 1,2,3,1,4,5 respectively. We are interested in finding the product
f = fifafsfafs[fs. Assume that the cost of multiplying two polynomials of degree a and b is a + b (note the difference from
the previous problem) i.e. it is proportional to the space required to store the product which is a polynomial of degree
a+b.

Find a schedule for multiplying the six polynomials that is of the lowest possible total cost for this non-traiditional
definition of a cost function.

Example. If you have three polynomials g1, g2, g3 of degrees 1, 2, 3 respectively and you first compute gog3 and then the
multiply the result by g1, the cost of the first multiplication is 5 (= 2 + 3) and the cost of the second multiplication is 6
since you multiply the result, a degree 5 polynomial to a degree one polynomial. Total cost is 5 + 6 = 11. Is this the best
you can do for these three polynomials?



Problem P1. (100 points)
Implement hashing by chaining and hashing by open-addressing. Implement (approximate interface) the following
functions.

int HashFunction(key k)

or

int HashFunction(key k, probe i) // Hash function takes key k as input returns 0..m-1
/* For open addressing (Oa) implement

* h(k,i) as (h(k) % m + i*x*2 + i ) % m

*/

HashChainCreate(table T, int m); // Create a hash table/Initialize
HashChainEmpty (table T, int m); //Check if Table is empty
HashChainFull <(table T, int m); // or full
HashChainInsert(table T, key k, int m);
HashChainDelete(table T, key k, int m);

T

HashChainSearch(table T, key k, int m);

and
HashOaCreate(table T, int m); // Create a hash table/Initialize
HashOaEmpty (table T, int m); //Check if Table is empty
HashOaFull (table T, int m); // or full; this is different from overflow.
HashOaInsert(table T, key k, int m);
HashQOaDelete(table T, key k, int m);
HashQOaSearch(table T, key k, int m);

HashTable(type t, table T, operation o, key k);
ProcessHash(file file-name)

The end result is the implementation of HashTable, a function that can implement both types hash tables (eg. if ¢ is
equal to 0 then it means chaining, and 1 open-addressing with quadratic probing as defined above). An operation o can
be defined in a single line with two arguments. The first being the operation (10 for Insertion, 11 for Deletion, and 12 for
search) and the second the key value involved (assume integers keys.

I will test your code, through the command line, by typing in Your program should support such an interface.

1 <<<<mean open-addressing
10 1
10 10
10 20
10 8
10 7
12 10
11 20
11 8
10 30
12 25

12 10 returns the index of the hash table containing key 10, but 12 25 returns -1 (key not found) .



Problem P2. (100 points)
Implement Shamir’s secrete sharing scheme.
ShamirCreate(secret k, parties p, reconstruct r, file-out file-name)

// Returns a file-name that contains one per-line the individual secrets

// assigned to each of the p parties. file-name thus has p lines one for each party

secret ShamirReconstruct(parties p, reconstruct r, file-in file-name)

// Uses file-name with at least r lines but no more than p to reconstruct
// the secret s that is returned.

// Details are left to you for implementation.
The interface will be through the command-line. A

% ./ShamirCreate k p r out-file
will call the corresponding function and generate some output in file out-file. (Note that ShamirCreate is not only a

function name but also a program name.)
A ShamirReconstruct p r my-file will use my-file (containing lines of out-file) to return in the standard output the

secret.
The catch of this Problem: Numbers can grow very big! The secret is a positive 32-bit integer int or unsigned int.



