
A. V. Gerbessiotis CS 667 Fall 2006
PS 2 October 2, 2006 250 points

Problem Set 2: Due by October 16, 2006

Problem 1. (40 points)
Complex Division z1/z2. Let z1 = a + ib and z2 = c + id be two complex numbers. You may assume that z2 6= 0,

i.e. c2 + d2 6= 0, since otherwise the division z1/z2 = z1/0 can not be performed. Complex addition/subtraction and
multiplication are defined also at the end of the notes for Subject 3 (page 15). The symbol i is handled as an indeterminate
in a polynomial operation except that i2 = −1. Therefore instead of having i3 in a calculation we simplify it to i3 = ii2 = −i.
The division of two complex numbers is defined as follows.

a+ ib

c+ id
=

(a+ ib)(c− id)
(c+ id)(c− id)

=
ac+ ibc− iad+ bd

c2 + d2

=
ac+ bd

c2 + d2
+

(bc− ad)i
c2 + d2

Apparently that quotient z1/z2 is a complex number z3 such that z3 = ac+bd
c2+d2 + (bc−ad)i

c2+d2 . Thus to compute z3 from z1 and
z2 we apparently need 6 multiplications (Ms) and 2 divisions (Ds) for a total of 8 M/Ds. Can you decrease this bound
further? Explain.

Problem 2. (40 points)
In class we presented an alternative to the Strassen’s method that finds the product of two n × n matrices A and B

using the following sequence of multiplication operations recursively

m1 = (A12 −A22) ∗ (B21 +B22)
m2 = (A11 +A22) ∗ (B11 +B22)
m3 = (A11 −A21) ∗ (B11 +B12)
m4 = (A11 +A12) ∗B22

m5 = A11 ∗ (B12 −B22)
m6 = A22 ∗ (B21 −B11)
m7 = (A21 +A22) ∗B11

(where Aij and Bij are the n/2× n/2 submatrices of A and B), and combining the products mi’s as follows to derive the
C11, C12, C21, C22 of the result C = A×B.

C11 = m1 +m2 −m4 +m6

C21 = m6 +m7

C12 = m4 +m5

C22 = m2 −m3 +m5 −m7.

Show that indeed the Cij are such that

C11 = A11B11 +A12B21

C12 = A11B12 +A12B22

C21 = A21B11 +A22B21

C22 = A21B12 +A22B22.



Problem 3. (40 points)
a. What is the largest k such that if you can multiply 3×3 matrices using k multiplications (not assuming commutativity

of multiplication), then you can multiply n× n matrices in time o(nlg 7)? What would the running time of this algorithm
be?

b. V. Pan has discovered a way of multiplying 68 × 68 matrices using 132464 multiplications, 70 × 70 matrices using
143640 multiplications, 72 × 72 matrices using 155424 multiplications. Which method yields the best asymtotic running
time when used in a divide and conquer matrix multiplication algorithm? How does it compare to Strassen’s algorithm?

Problem 4. (40 points)
Evaluating a polynomial A(x) of degree-bound n at a given point x0 can also be done by dividing A(x) by the polynomial

(x−x0) to obtain the quotient polynomial q(x) of degree-bound n−1 and a remainder r, such that A(x) = q(x)(x−x0)+r.
Clearly A(x0) = q(x0)(x0 − x0) + r = r. Show how to compute the remainder r and the coefficients of q(x) in time Θ(n)
from x0 and the coefficients of A.

Problem 5. (40 points)
Show that interpolation can be done in O(n2) time.
Hint: Read Exercise 30.1-5 of CLRS on page 830, and think of Problem 4.

Problem 6. (50 points)
Derive a point value representation for Arev(x) =

∑n−1
j=0 an−1−jx

j from a point-value representation for A(x) =∑n−1
j=0 ajx

j , assuming that none of the points in the point-value representation of A(x) is 0.

Programming

Problem P1. (100 points)
Implement the Karatshuba-Ofman algorithm. The input/output will be decimal (base-10) integers. Whether you plan

to maintain the long integers in binary or not it’s up to you.

// The following is pseudocode
// Whether you provide an interface in which n3 is an integer, a pointer to an
// integer or a reference it’s up to you.
ReadKaratsuba(file digit1, longint d1, int n1);
MultiplyKaratuba(longint d1, int n1,longint d2, int n2, longint d3, int n3);
WriteKaratsuba(longint d1, int n1, file digit1);

A file contains on its first line an (in fact two) integers indicating the number of (decimal) digits that will follow. The
remaining lines contain the digits. Line breaks, spaces, tab might exist but are ignored. For example

10 10
12345 56
789

stores integer the 10-digit integer 1234556789. Note that the length in digits is given twice in the first line. The first integer
is indeed the length; the second is to note the decimal-point in the case that the number is not an integer. Thus viewing
the input as real number we get 1234556789. by including a decimal point to the right of the 10-th digits (the second 10
of the first line).

I should be able to test your code from the command line with an operation of the form

% ./karatshuba file1 file2 file3

where file1, file2 contain the two integers that will be multiplied and file3 will store the product in the same format
as that described earlier.

The first function reads a long integer from a file. The second function uses the internal representation and the algorithm
presented in class for binary numbers (adapt it as fit) to speed up multiplication faster than Θ(n2). The last function prints
an internally-stored integer into a file in the standard format described in this assignment. Make sure that in the latter
case you never print more that 50 decimal digits per line.



Problem P2. (100 points)
Implement integer inversion of arbitrarily long integers. Input are binary integers stored in a file (see previous problem).

For this problem the input is always binary integers not decimal. You might reuse code for multiplication (P1) for this
problem. Storing non integers might require the slight modification to the file format of P1; now the second integer hold
the decimal point position and might not be equal to the first.

ReadBinary(file digit1, longint d1, int n1);
InvertBinary(longint d1, int n1,longint d2, int n2, int decimalpointposition2, int accuracy);
WriteBinary(longint d1, int n1, int decimalpointposition1, file digit1);
VerifyBinary(longint d1, int n1,longint d2, int n2, int decimalpointposition2, file digit3);

Function ReadBinary reads a binary integer stored in file digit1. It behaves similarly to the corresponding function
of the previous assignment (except that the former dealt with decimal integers). InvertBinary applies Newton’s method
described in class to find the inverse of the input up to accuracy digits of precision. decimalpointposition2 might or
might not be needed for the output stored in d2 of n2 bits. You should transform such output into a file through function
WriteBinary; make sure though where you place the decimal point. Function VerifyBinary multiplies the input and the
output and stores the result into file digit3.

Besides the four functions, I should be able to run your program from the command line as follows.

% ./inverse file1 file2 file3

where file1 is being read by a call of ReadBinary and inverted by a call to InvertBinary with the output of inversion
written in file2 and the verificiation in file3.


