
A. V. Gerbessiotis CS 667-101 Fall 2007
PS 1 Sep 12, 2007 250 points

CS 667 : Homework 1(Due: Sep 26, 2005)

Problem 1. (50 points)

Professor I.M. Nuts proposes the following algorithm Permute to generate (uniformly at) random permutations on n
elements of array A. Does his method work? Explain. Note. If the algorithm works fine, you need to show that all possible
n! permutations can be generated, and also, that each one of these permutations is equally likely to occur.

Permute(A,n) // A is an array A[1..n]

1. for(i=1;i<=n;i++)

2. swap(A[i], A[random(1,n)]); //random(1,n) returns a uniformly at random integer between 1 and n

Problem 2. (50 points)

We are interested in determining whether n is a perfect power i.e. whether there exist integer x, y such that n = xy and
if such x, y exist also determining them. Answer the following questions.

(a) If n is indeed a perfect power, how large can y be? Express your answer as a function of n only.
(b) Suppose you have a black box Broot (N,Y) that given N and Y it finds the integer Y -th root of N if such exists or

returns -1 if such root does not exist. For example Broot(8,3) would return 2 since 23 = 8, whereas Broot(8,2) would
return -1. Suppose that the time it takes for Broot to return an answer is O(1). How could you use Broot to determine
whether n is a perfect power or not? How many times do you need to call Broot in an efficient determination of whether
n is a perfect power or not?

(c) Broot in O(1) time is rather unrealistic. How fast could you implement it? Does a solution that is O(log2 n) (or
o(log2 n)) exist? Explain.

Problem 3. (50 points)

Consider two sets A and B each having n integers in the range from 0 to 25n. We wish to compute the Cartesian sum
of A and B defined by

C = {x+ y : x ∈ A and y ∈ B}
Note that the integers in C are in the range from 0 to 50n. We want to find the elements of C and the number of times
each element of C is realized as a sum of elements in A and B. Suppose that we have a black-box function BProduct that
takes as input two polynomials of degree m and returns its product in time O(m lgm). Show that you could use BProduct
to find C in time O(n lg n). Hint. Represent A and B as polynomials of degree at most 25n.

Problem 4. (50 points)

(a) You are given six polynomials f1, . . . f6 of degrees 1, 2, 3, 2, 4, 5 respectively. We are interested in finding the product
f = f1f2f3f4f5f6. Assume that the cost of multiplying two polynomials of degree a and b is a · b. Find a schedule for
multiplying the six polynomials that is of the lowest possible total cost.

(b) You are given six polynomials f1, . . . f6 of degrees 1, 2, 3, 2, 4, 5 respectively. We are interested in finding the product
f = f1f2f3f4f5f6. Assume that the cost of multiplying two polynomials of degree a and b is a+ b (note the difference from
the previous problem) i.e. it is proportional to the space required to store the product which is a polynomial of degree
a+ b.

Find a schedule for multiplying the six polynomials that is of the lowest possible total cost for this non-traditional
definition of a cost function.

Example. If you have three polynomials g1, g2, g3 of degrees 1, 2, 3 respectively and you first compute g2g3 and then the
multiply the result by g1, the cost of the first multiplication is 5 (= 2 + 3) and the cost of the second multiplication is 6
since you multiply the result, a degree 5 polynomial to a degree one polynomial. Total cost is 5 + 6 = 11. Is this the best
you can do for these three polynomials?

Problem 5. (50 points)

This is Problem 11-3 of CLRS (page 250-251). Suppose that we are given a key k to search for in a hash table with
positions 0, . . . ,m− 1, and suppose that we have a hash function h mapping the key space into the set {0, . . . ,m− 1}. The
search scheme is as follows.

1. Compute the value i = h(k) and set j = 0.
2. Probe in position i for the desired k. If you find it, or if this position is empty, terminate the search.
3. Set j = (j + 1) mod m and i = (i+ j) mod m and return to step 2.
Assume that m is a power of 2.
a. Show that this scheme is an instance of the general quadratic probing scheme by exhibiting the appropriate constant

c1, c2 for h(k, i) = h(k) + c1i+ c2i
2 mod m.

b. Prove that this algorithm examines every table position in the worst case.

Problem P1. (80 points)
Implement hashing by chaining and hashing by open-addressing. Implement (approximate interface) the following

functions.

int HashFunction(key k)
or
int HashFunction(key k, probe i) // Hash function takes key k as input returns 0..m-1
/* For open addressing (Oa) implement
* h(k,i) as (h(k) % m + i**2 + i) % m
*/

HashChainCreate(table T, int m); // Create a hash table/Initialize
HashChainEmpty (table T, int m); //Check if Table is empty
HashChainFull (table T, int m); // or full
HashChainInsert(table T, key k, int m);
HashChainDelete(table T, key k, int m);
HashChainSearch(table T, key k, int m);

and
HashOaCreate(table T, int m); // Create a hash table/Initialize
HashOaEmpty (table T, int m); //Check if Table is empty
HashOaFull (table T, int m); // or full; this is different from overflow.
HashOaInsert(table T, key k, int m);
HashOaDelete(table T, key k, int m);
HashOaSearch(table T, key k, int m);

HashTable(type t, table T, operation o, key k);
ProcessHash(file file-name)

The end result is the implementation of HashTable, a function that can implement both types hash tables (eg. if t is
equal to 0 then it means chaining, and 1 open-addressing with quadratic probing as defined above). An operation o can
be defined in a single line with two arguments. The first being the operation (10 for Insertion, 11 for Deletion, and 12 for
search) and the second the key value involved (assume integers keys.

I will test your code, through the command line, by typing in Your program should support such an interface.

1 <<<<mean open-addressing
10 1
10 10
10 20
10 8
10 7
12 10
11 20
11 8
10 30
12 25

12 10 returns the index of the hash table containing key 10, but 12 25 returns -1 (key not found) .

Problem P2. (120 points)
Huffman coding. Says all. Arguments (N ≤ 10) in the command-line won’t exceed 10 in the file option case, there is

only one in the directory argument case. File inputs can be arbitrary files.

% ./huffman-encode file1 file2 ... fileN
% ./huffman-encode dir1
% ./huffman-decode file1 file2 ... fileN
% ./huffman-decode dir1
// Encode : converts file1 ---> file1.huf
// Decode : From command-line file1 reads (if it exists) file1.huf and converts it into file1
// file1 ... fileN may have suffixes: eg myfile.pdf ---> myfile.pdf.huf --> myfile.pdf
// Operation is destructive! myfile.pdf would be erased after creating myfile.pdf.huf

Example
% ./huffman-encode myfile.tex
// encode myfile.tex into myfile.tex.huf using Huffman coding. myfile.tex still exists.
// If a previous myfile.tex.huf exists, it will be overwritten. No warning required.

% ./huffman-decode myfile.tex
// It locates a myfile.tex.huf and decodes it by overwriting a myfile.tex if it still
// exists.
// If a previous myfile.tex exists, it will be overwritten. No warning required.

