
A. V. Gerbessiotis CS 667-101 Fall 2007
PS 5 Nov 7, 2007 250 points

CS 667 : Homework 5(Due: Nov 28, 2005)

Problem 1. (50 points)

We want to compute the product m = m1m2 . . .mk. Show that m can be computed in O((lgm)2) bit
operations.

Problem 2. (50 points)

(a) Compute n! (n factorial) in O((n lg n)2) bit operations.
(b) Given integers a and b how long (in bit, NOT word operations) does it take to efficiently compute integer

n = ab, i.e. raise a to the power of b? Express the number of bit operations required in asymptotic notation
as a function of n in an efficient solution to this problem. Note. An answer of the form: “At most 2 lgn − 1
multiplications” is not suitable as an answer to this problem.

Problem 3. (50 points)

Show that the GCD computation requires O(lg a lg b) bit operations thus improving the rough O(lg3 a) bound
given in class, i.e. complete the proof of Corollary 5 of the notes (Subject 12, page 10).

Problem 4. (50 points)

You are given an a-bit positive integer A and an b-bit positive integer B. You may assume A ≥ B. How fast
can you compute A+B, A−B, A ·B, and find Q,R such that A = BQ+R, 0 ≤ R < B? Express your answer
in terms of a and b and justify it by pointing to the appropriate reference or give the algorithm. You can cite
results of the notes/textbook covered in class.

Problem 5. (50 points)

Fibonacci Revisited. Show that Fn can be computed in O(n2) bit operations even if n-bit multiplication can
only be done in Θ(n2) bit operations.

Problem P1. (100 points)
Implement the algorithm for the perfect power problem (see Solutions of Problem 1 of HW 1) in C or C++

or Java.However A can be arbitrarily long (eg. 1024 or 8192 bits). You are allowed to use libraries for arbitrary
precision arithmetic as long as (a) they are for free (i.e. I can use them and install them on a linux or AFS
machine to test your code without having to obtain root privileges) and (b) they are easily installable (i.e. even
I can install them easily). Alternatively, you can implement your own functions for auxiliary operations (eg.
arbitrarily long multiplication, exponentiation, etc).

I expect as an answer a .tar file sent by email. The .tar will be untarred on a linux workstation and compiled
through gcc/g++ or Java. I expect a make install command to compile everything and create an executable file
named powertest. powertest will accept as input a file containing n in decimal notation.

Thus if file myfile contains a base-10 integer such as

17487686712733928413644063750880864826316326531082890839798047131393
06920507121153268532108269241880671097659463948848837902966613039193
61801624726151915125942668649508993665419986623407409256320591797254
65901781768127877188903984695217669171609482765052925389918678373962
03339268758977282743385306120289869213112851446870454351518286400633
04862801177174173384780775389699560332291136389670468588940721006781
36076427022136733286307364152390825026213339153406940132529505642288
772655703441226679871017450488469651456

then the following command should return

% powertest myfile
x= 123456 y=101
It’s a power!

within a reasonable amount of time (eg. under 60 seconds for integers as long as 8192 bits, i.e with up to
2000-3000 digits). myfile is a string corresponding to an arbitrarily-named file (in this instance myfile).

Note that even if the library you are using has a built-in function to test whether an integer is the integer
power of an integer, you are not allowed to use it. You need to build YOUR OWN IMPLEMENTATION from
scratch. If you don’t you should not expect any credit.

Problem P2. (80 points)
Write a simple (recursive or non-recursive) FFT program that works for n a power of two with the following

definition comp of a complex number

typedef struct {
double i,r;
} comp;

For example the high level function call may look like

my_fft(comp *input, comp *output, int n);

if output has been preallocated or

my_fft(comp *input, comp **output, int n);

I should be able to test your implementation through an input file.

./myfft input-file result-file
or
java myfft input-file result-file

The syntax of the input file input-file is straighforward.

8
1.0 0.0
2.0 0.0
3.0 0.0
4.0 0.0
5.0 0.0
6.0 0.0
7.0 0.0
8.0 0.0

The first line contains an integer the size of the vector to follow. You may size that vector size is always a power
of two. Each line contains one element of the vector where the real-part of a complex number appears before the
imaginary part. Therefore the 5-th element of the vector contains real number 5.0 + i0 = 5.0. All input should
be store in double precision. The output file that will be generated in result-file should also have the same
format.

