
A. V. Gerbessiotis CS 667-101 Fall 2009
PS 4 Oct 28, 2009 250 points

CS 667 : Homework 4(Due: Nov 18, 2009)

Problem 1. (50 points)

Give an efficient algorithm for Parallel Sum if we have p processors, where p < n ? (You may assume that
n is a multiple of p, and n is sufficiently large than p say n/ lg2 n > p).

Problem 2. (50 points)

(a) Computer Fn, the nth Fibonacci number, given an integer n as input. Show how to solve this problem
in time O(lg n) on an EREW PRAM with n processors. Assume that one word of memory is long enough to
hold Fn. All arithmetic operations (add, subtract, multiply) take constant time. Recall that Fn is defined by
the following recurrence: F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2.

(b) Give an EREW PRAM algorithm that merges two sorted arrays of size n/2 with P = n/2 in O(lg n)
time. You may assume that n is a power of two, and you may of course reuse prior results.

Problem 3. (50 points)

Can you find the MAX of n keys with n7/6 processors in Θ(1) time? Explain.

Problem 4. (50 points)

A search engine retrieves the following three doclists for terms A, B, C. All three are sorted based on docID.
Let the sizes of A, B and C be lg n,

√
n and n respectively. A, B and C are given in the form of arrays. The

output for the problems listed below should be in the same form; it does not need to be sorted however.
(i) We want to find all docs that contain all of A, B and C.
(ii) We want to find all docs that contain exactly two of A, B, and C.
(iii) We want to find all unique docs that contain A or B or C (i.e. no duplicated docIDs in the output).
Give efficient algorithms for solving each one of these problems. Analyze their worst-case running time. Make

them as space efficient as possible. Justify your answers.

Problem 5. (50 points)

In this problem we show the effects of parallelizing a “slow” sequential sorting algorithm. The net effect is
to obtain a superlinear speedup of more than p. The input to the problem is n keys X = 〈x0, . . . , xn−1〉, where
n is a multiple of p.

Algorithm Alg1. Let Alg1 be a sequential O(n2) running time sorting algorithm of the selection-
sort/bubble-sort type. Assume for the remainder that its running time is T1(n) = n2. This is the baseline
algorithm used for speedup purposes.

Algorithm Alg2. Alg2 is the following modification of Alg1. It is still a sequential algorithm that will
be used to derive a parallel version of Alg1 in the form of Alg3 below.

Alg2 (<x0..xn-1>)

1. Split <x0..xn-1> into p equally sized groups, each one consisting of n/p keys.

2. Call Alg1 on each one of the p subsequences.

3. Merge the p sorted subsequences of step 2.

Show how to do step 3 in O(n lg p). Then analyze the remaining steps of the algorithm and derive an expression
of its worst-case running time in term of n and p. For what values of p is the running time o(n2)? Explain. (A
little-oh was used, not a Big-oh!)

Algorithm Alg3. Alg3 is the following EREW PRAM parallelization of Alg2.
Alg3 (<x0..xn-1>)

1. Processor i is assigned the i-th subgroup of consecutive keys <x_in/p .. x_in/p+n/p-1>

each one consisting of n/p keys.

2. Processor i sorts the i-th group using Alg1 in parallel with all other procs.

3. The p sorted subsequences are then merge by processor 0.

What is the parallel running time of Alg3? What is its processor count P? Explain. For what values of p is
the speedup strong superlinear (i.e. ω(p))? (ω is not Ω). For which of the following cases is the speedup strong
superlinear? (a) P = lg n, (b) P =

√
n/
√

lg n, (c) P =
√
n, (d) P = n/

√
lg n, (e) P = n. Explain. How could

you characterize (e)? Explain.

Problem 6. (80 points)

Comparison Network Analyzer. Input file looks like

3 3
1 2
2 3
1 2

The first line contains the number of input and output lines (first of two numbers) and then the number of
comparators of the network (second of two numbers). This second number is also the number of lines to follow
after the first line. Afterwards the comparison network is described, one comparator per line. Input/Output
lines are integers starting with 1. Order matters and repetitions might occur. You need to implement code that
checks whether the comparison network is a sorting network or not. If you decide it is not, you must report the
inputs that cause it to fail to be a sorting network in an output file. The format of that output file is one of the
two (successful and unsuccessful case) shown below.

Network shown below is a sorting network.
3 3
1 2
2 3
1 2

or

Network given by (see below) is NOT a sorting network.
1:1, 2:1, 3:0 ---> 1:1, 2:0, 3:1 which is not sorted.

3 3
1 2
2 3
1 3

The format a : b shows that the a-th input/output wire carries b. You need to implement a program that
responds successfully (after compilation) to

./sortnet input-file result-file
or
java sortnet input-file result-file

Files input-file and result-file can be arbitrary file-names.
The minimum implementation is that of a function

sorting-network(string input-file, string output-file);
// The two input parameters are strings; you must check whether the files exists
// open them, read them or write into them as needed.

Problem 7. (100 points)

Implement the algorithm for the perfect power problem (see Solutions of HW 3/HW 1) in C or C++ or
Java.However n can be arbitrarily long (eg. 1024 or 8192 bits). You are allowed to use libraries for arbitrary
precision arithmetic as long as (a) they are for free, (b) they are provided in source with the submission, (c) they
are installable on AFS (or a Linux Fedora box) at submission time without root privileges. Alternatively, you
can implement your own functions for auxiliary operations (eg. arbitrarily long multiplication, exponentiation,
etc) or use code from previous homeworks.

I expect as an answer a .tar file sent by email. The .tar will be untarred on a linux workstation and compiled
through gcc/g++ or Java. I expect a make install command to compile everything and create an executable file
named powertest. powertest will accept as input a file containing n in decimal notation.

Thus if file myfile contains a base-10 integer such as

17487686712733928413644063750880864826316326531082890839798047131393
06920507121153268532108269241880671097659463948848837902966613039193
61801624726151915125942668649508993665419986623407409256320591797254
65901781768127877188903984695217669171609482765052925389918678373962
03339268758977282743385306120289869213112851446870454351518286400633
04862801177174173384780775389699560332291136389670468588940721006781
36076427022136733286307364152390825026213339153406940132529505642288
772655703441226679871017450488469651456

then the following command should return

% powertest myfile
x= 123456 y=101
It’s a power!

within a reasonable amount of time (eg. under 60 seconds for integers as long as 8192 bits, i.e with up to
2000-3000 digits). myfile is a string corresponding to an arbitrarily-named file (in this instance myfile).

Note that even if the library you are using has a built-in function to test whether an integer is the integer
power of an integer, you are not allowed to use it. You need to build YOUR OWN IMPLEMENTATION from
scratch. If you don’t you should not expect any credit.

