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Preface

This monograph provides a basic review on probability topics for computing students. Students in other disciplines
such as engineering, applied mathematics and statistics, and data science will also find the topics interesting.

The discussion on probability starts with experiments and random processes, sample spaces, event spaces and
probability spaces to a level relevant and applicable to computer science.

It then reviews random variables, distributions, and their properties. With emphasis on discrete probability some
standard distributions and their properties are examined in the form of examples.

After an introduction to the concept of a moment generating function, probability inequalities are discussed.
A comprehensive survey on Chernoff’s bounds and its derivations and Hoeffding’s bounds is also included. Proofs

are included to make this monograph self contained.
Finally a collection of problems with some sample solutions are included. Again, the emphasis is on computer

science relevant topics, but problems on random graphs and Ramsey numbers are also included into the mix.
This material is neither final nor thoroughly proofread. It constitutes work in progress and might contain errors. It

should be used in conjunction with other references if consulted for factual checking. Report discrepancies with other
sources, or factual errors, or typos to the author.

©1994-2025. Alexandros Gerbessiotis. All rights reserved.
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Review on probability
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Chapter 1

Experiments and random processes

In the remainder, ∪ and ∩ are the well known set theoretic symbols for the union and intersection of two or more sets.
A′ or Ac denotes the complement of A that is, A′ = Ac = S−A, where S is a reference set known as the universal set.
For two sets, X and Y the difference X −Y is X −Y = X ∩Y ′. 2X is the powerset of X the set of all possible subsets of
X inclusive of of X and the empty set /0. A set X of finite cardinality n has a powerset of cardinality 2n.

A function f (x) of real values x to real values y, is a mapping such that to every x there corresponds a value y and
we describe this by writing y = f (x).

The infimum of a set is the largest lower bound of a set and is the largest value that is smaller than or equal to all
elements of the set.

The supremum of a set is the smallest upper bound of a set and is the smallest value that is larger than or equal to
all elements of the set.

1.1 Experiments and random processes
An experiment can have a set of outcomes. Flipping or tossing a coin can result with one of two possible outcomes:
H for heads or T for tails depending on whether the coin comes heads or tails respectively.

Definition 1 (Experiment or trial). An experiment (or trial) is any procedure that can be repeated and generate a
well-defined set of outcomes.

If the experiment or trial is random (or stochastic), then we can call it a random experiment or random trial or just
a random process. The terms experiment, trial, and random process are to be used interchangeably.

Definition 2 (Sample Space). The set of all possible outcomes of an experiment is known as sample space. We denote
a sample space with the symbol S.

Thus for the coin experiment, S = {H,T}. Note that in bibliography Ω is used to indicate a sample space.

Definition 3 (Sample point). An element of S is known as a sample point.

3



4 CHAPTER 1. EXPERIMENTS AND RANDOM PROCESSES

That is, an outcome of an experiment is an element of the sample space S, a sample point.

Definition 4 (Event). An event A is a set of outcomes and is a subset of S.

Sometimes we refer to the outcomes of S as elementary events. Let us throw a coin three times. The sample space
now is

S = {HHH,HHT,HT H,T HH,HT T,T HT,T T H,T T T}
The sample space is of cardinality 2n, where n is the number of repetitions of the coin experiment. An event E1 =
{HHT,HT H,T HH} indicates an event in which only one Tails was encountered in the experiment. One can also
describe this event as the event where the number of Heads is an even positive integer, or an even where the number
of Heads is two! There are three possible outcomes of S associated with this event. Another event E2 = {HHH} is a
no Tails event.

Definition 5 (Mutually exclusive events). Two events A,B are mutually exclusive if and only if A∩B = /0. Three
events or more are mutually exclusive if every two of them are mutually exclusive.

Continuing our most recent example, obviously E1,E2 are mutually exclusive events since E1 ∩E2 = /0. We can
now provide some formal definitions, including that of a probability space.

In the remainder, a countable sequence is meant to be a finite sequence or a countably infinite sequence.

1.2 Event spaces and measurable spaces

Definition 6 (Event space). An event space T is a set of events that is, a collection of subsets of a sample space S.

An event space T is usually a σ -algebra, also known as a σ -field.

Definition 7 (σ -algebra or σ -field). T is a σ -algebra or σ -field if it contains a collection of subsets of a sample space
S that satisfy the following.

1. S ∈ T ,

2. A ∈ T implies that A′ = S−A ∈ T (closedness under complement), and

3. for a countable sequence A1,A2, . . . ,Ai, where Ai ∈ T implies ∪iAi ∈ T (closedness under union).

Using DeMorgan’s Law ((A∩B)′ = A′∪B′,or(A∪B)′ = A′∩B′), one can show also that for a countable sequence
Ai, Ai ∈ T implies ∩iAi ∈ T (closedness under intersection).

Definition 8 ((S,T): measurable space). A pair (S,T ) is known as a measurable space: it consists of a sample space
S of outcomes, and a set of events T that is a σ -algebra.
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The pair (S,T ) is called measurable space because it is possible to put a measure on it.
A σ -algebra looks similar to a topology. We provide a definition of a topology for informational purposes. In the

remainder, we are going to stay away from too much unnecessary mathematical theory.

Definition 9 (Topology). Y is a topology (or topological space), if it contains a collection of subsets of a space S that
satisfy the following.

1. S ∈ Y , /0 ∈ Y ,

2. for an arbitrary sequence Ai, Ai ∈ Y implies ∪iAi ∈ Y (closedness under union),

3. for a finite sequence Ai, Ai ∈ Y implies ∩iAi ∈ Y (closedness under intersection).

Thus in a σ -algebra we have a countable sequence of unions (and by implication intersections) plus complementa-
tion, whereas in a topology we have an arbitrary sequence of unions and a finite sequence of intersections. The magic
words are countable and arbitrary and finite.

A σ -algebra requires the complement of a set to be in T ; a topology does not require it, though this is the case
for the two sets S and /0. A topology is associated with closeness (neighborhood) whereas a σ -algebra with length
(measure or weight). With a topology we intend to determine whether a function is continuous or not. In probability
spaces ( σ -algebra ) we want to assign values to sets (event probabilities). For every topology one can associate it with
a σ -algebra to it through the notion of a Borel-space or algebra.

Example 1. A (S,T ) is a topological space where S = {a,b,c} and T = { /0,S,{a,b},{b,c},{b}}. But it is not a
σ -algebra since the complement of {a,b} is not in T for example.

Example 2. A finite intersection of open intervals ∩m∈{1,3,5}(a− 1
m ,b+

1
m ) preserves the open interval notion. On the

other hand, a countable intersection of intervals ∩m∈N(a− 1
m ,b+

1
m ) is a closed interval [a,b]. Consider also the case

a = b = 0 or a = 0,b = 1.

A σ -algebra is ready to be measured. This is why (S,T ) is also known as a measurable space. Every element A of
T can be assigned a number, a probability.

For the discrete case A has a number of elementary events (outcomes) of S and thus P(A) or P({A}) = ∑s∈A p(s),
where p(s) is the probability of an elementary event. For the continuous case A is an open or closed set and then the
Lebesque measure of A becomes relevant. The Lebesque measure of the closed set (interval) [a,b] is b−a but so are
of the open sets [a,b) or (a,b] or (a,b). An open set is a set that is not closed.

For a Borel σ -algebra we start with a topological space and then we include the minimal number of open intervals
that can describe the Borel σ -algebra’ T under countable unions, intersections and complements. Then an element of
T for the corresponding Borel σ -algebra (or Borel algebra) is also known as a Borel set.

Example 3. For a sample space S of a measurable space (S,T ), and s ∈ S, we call {s} an elementary event. Moreover
/0 and S are also events of T . The impossible event or null event is the /0. If A,B are events so are A∩B and A∪B or A′

for example.
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A measure m is a non-negative function on R that can be applied to elements of the event space T of (S,T ).

Definition 10 (Measure m). A measure m is a function on T defined as m : T 7→ R that satisfies the following.

1. m(A)≥ m( /0) = 0 for ∀A ∈ T ,

2. if Ai ∈ T is a countable sequence of pairwise disjoint sets, m(∪iAi) = ∑i m(Ai).

1.3 Probability spaces
A probability measure denoted by P is a measure were R is replaced by the closed interval [0,1] and has one additional
property: P(S) = 1.

Definition 11 (Probability measure P). A probability measure P is a function on T defined as P : T 7→ [0,1] that
satisfies the following.

1. P(A)≥ P( /0) = 0 for ∀A ∈ T ,

2. if Ai ∈ T is a countable sequence of pairwise disjoint sets, P(∪iAi) = ∑i P(Ai), and

3. P(S) = 1.

In case (2) above we say that P is countably additive. We use P(A) = ∑s∈A P(s), where P(s)≥ 0.
A probability space is the triplet (S,T,P) as defined earlier in this and previous sections. Those definitions are

summarized below.

Several times when we use the term probability we mean probability space and we thus imply the existence of the
triplet (S,T,P). So several times the existence of (S,T,P) is implicily given.

Definition 12 (Probability space). A probability space is a triplet (S,T,P), where

• S is a sample space that is, a set of outcomes,

• T ⊆ 2S is a σ -algebra on S, that is, a collection of subsets containing S and closed under complement, closed
under union (of a countable number of sets), and by DeMorgan implication closed under intersection (of a
countable number of sets), and

• P is a probability measure on T with P(S) = 1.

The set S is known as the sample space and the elements of S are known as outcomes or elemetary events. For an
event A ∈ 2S, we define P(A) the probability of event A. The probability of an event A is the sum of the probabilities
of the elementary events of A.

If S is finite, (S,T,P) is a finite probability space. If S is finite and T = 2S the probability measure is determined by
its values on elementary events. Thus the probability space assigns through p : S → [0,1] a probability p(s) to every
element of s of S such that p(s)≥ 0, with ∑s∈S p(s) = 1. Then for an event A ∈ 2S, the probability of the event A is the
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sum of the probabilities of the elements of S in A i.e. the sum of the probabilities of the elementary events, or in other
words P(A) = ∑s∈A p(s).

Theorem 1.1. Let (S,T,P) be a probability space. The following apply to events, A,B, . . . of T .

1. Monotonicity: If A ⊆ B, then P(A)≤ P(B).

2. Subadditivity: If A ⊆ ∪iAi, then P(A)≤ ∑i P(Ai).

3. Continuity below: If A1 ⊂ A2 ⊂ . . . and ∪iAi = A then limi→∞ P(Ai) = P(A).

4. Continuity above: If A1 ⊃ A2 ⊃ . . . and ∩iAi = A with P(Ai)< ∞, then limi→∞ P(Ai) = P(A).

Definition 13 (Discrete probability space). A discrete probability space has S that is a countable set. Then P(A) =
∑s∈A p(s), where p(s)≥ 0, and ∑s∈S p(s) = 1.

Sometimes we refer to it as finite probability space. Let S be a finite sample space S = {s1, . . . ,sn}. A probability
model or finite probability space is obtained by assigning to each point si ∈ S a real number pi (or p(i)), the probability
of si, that satisfies the following properties.

• Each pi is nonegative pi ≥ 0, and

• the sum of pi is one i.e. ∑1≤i≤n pi = p1 + p2 + . . .+ pn = 1.

Definition 14 (Equiprobable space). For a finite probability space S of n sample points, if each sample point has the
same probability as any other one, the sample space is called equiprobable space.

1.4 Probability of events

Lemma 1. For any collection of events A1, . . . ,An,

P(A1 ∪ . . .∪An)≤ P(A1)+P(A2)+ . . .+P(An) =
n

∑
i=1

P(Ai).

Proof. Consider, events Bi such that
Bi = Ai − (A1 ∪ . . .∪Ai−1)

Then ∪iBi = ∪Ai and P(Bi)≤ P(Ai) and the events Bi are disjoint. By additivity of the probability measure we have

P(A1 ∪ . . .∪An) = P(B1 ∪ . . .∪Bn) = ∑
i

P(Bi)≤ ∑
i

P(Ai)
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Lemma 2 (Independent Events). Two events A and B are independent if

P(A∩B) = P(A)P(B)

Theorem 1.2 (Properties of events). Consider two events A,B of probability space (S,T,P).

P( /0) = 0,

P(A−B) = P(A)−P(A∩B),

and for A ⊆ B we have
P(A)≤ P(B).

Moreover,
P(A∪B) = P(A)+P(B)−P(A∩B).

The latter equality is also known as the inclusion-exclusion property or principle. It can be generalized to three or
more events (with a proof by induction). It is also straightforwars to derive the following.

Corollary 1. Given two events A,B we have

P(A∪B)≤ P(A)+P(B)

Theorem 1.3 (Inclusion-Exclusion of three events). Given three events A1,A2,A3 we have the following

P(A1 ∪A2 ∪A3) = P(A1)+P(A2)+P(A3)

−P(A1 ∩A2)−P(A2 ∩A3)−P(A1 ∩A3)

+P(A1 ∩A2 ∩A3).

Example 4. An experiment is performed by throwing (tossing) a coin. The experiment is repeated twice. The com-
bination of the results of the two individual experiments is the experiment in question. The sample space S is then
S = {HH,HT,T H,T T} and indicates the outcomes of the first and second toss of the coin: H indicates heads, T
indicates tail as an outcome. AB indicates that A is the outcome of the first experiment, B is the outcome of the second
experiment, where A,B is H or T. Event X is X = {HH,T T} i.e. even number of H or T. Event Y is Y = {HH,HT,T H}
i.e. at least one H.
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Example 5. An experiment is performed by tossing a coin. The experiment is repeated until an H is encountered. The
sample space is infinite. Why? Because S = {T,T H,T T H,T T T H,T T T T H, . . .}.

The singular form of dice is die.

Example 6. An experiment is performed by throwing a (pair of) dice and records the number indicated at the top of
the dice (opposite to the base that sits on a surface). Each die has six faces with six possible numbers, one on each
face of a die. Then sample space S has 36 outcomes

S = {(a,b) : 1 ≤ a,b ≤ 6}

Example 7. Deck of cards. A deck of card consists of 52 cards. There are 4 suits known as clubs(C), diamonds(D),
hearts(H), and spades(S). Each suit contains 13 cards numbered 2 through 10, three face cards, jack (J), queen (Q),
and king (K), and ace (A). The hearts and diamonds are red and spades and clubs are black.

Example 8. A coin is tossed twice. The number of heads is recorded. The sample space is S = {0,1,2}. The
following probability model is assigned p(0) = 1/4, p(1) = 1/2, p(2) = 1/4. Event A = {1,2} with p(A) = 3/4, and
event B = {2} with p(B) = 1/4,

Example 9. From a deck of cards we select one card c. We define two events A and B as follows.

A = {c is diamond }, B = {c is a face card }.

Compute P(A), P(B), P(A∩B).

Proof. P(A) = 13/52 = 1/4. P(B) = (3∗4)/52 = 3/13. P(A∩B) = 3/52.

Example 10 (Uniform distribution). P(A) = c(A)/c(S) for all A ⊆ S. Note c(A) is the cardinality of set A also
denoted |A|.

1.5 Conditional probabilities
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Theorem 1.4 (Conditional Probability). Let A,B be two events of a finite probability space (S,T,P) and P(B)> 0.
The probability that an event A occurs conditional on event B had already occurred is known as the conditional
probability of A given B and denoted P(A|B). It is given by

P(A|B) = P(A∩B)/P(B).

Moreover
P(A∩B) = P(A|B)P(B).

Theorem 1.5 (Generalization of conditional probability).

P(A1 ∩A2 ∩ . . .∩An) = P(A1) ·P(A2|A1) ·P(A3|A1 ∩A2) ·P(A4|A1 ∩A2 ∩A3) · . . . ·P(An|A1 ∩A2 ∩A3 ∩ . . .∩An−1)

Theorem 1.6. If sample space is partitioned into events A1, . . .An then for some event A we have,

P(A) =
n

∑
i=1

P(A/Ai)P(Ai).

We refer to the following as Bayes’ rule.

Theorem 1.7. If sample space is partitioned into events A1, . . .An then for some event A we have,

P(Ai/A) =
P(A∩Ai)

P(A)
=

P(A/Ai)P(Ai)

∑i P(A/Ai)P(Ai)

Moreover

Theorem 1.8. P(A1/A2) =
P(A2/A1)P(A1)

P(A2)
.

Proof. Note that P(A2/A1)P(A1) = P(A1 ∩A2).

Definition 15 (Properties of independent events). Let A,B be two events of finite probability space (S,T,P). A is
independent of B if

A is independent of B ⇔ P(A) = P(A|B).
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Corollary 2. From P(A|B) = P(A∩B)/P(B) since P(A|B) = P(A) we have P(A) = P(A∩B)/P(B) which implies that
P(A∩B) = P(A)P(B). Moreover P(B|A) = P(B).

Example 11. A (pair of) dice is tossed. The probability of any elementary event (outcome) of S is 1/36. Let B be the
event the sum of the dice is 6. What is P(B)? Let A be the event a dice is 5. What is P(A|B)? This reads probability
the event A occurs given that B has already occurred. This is because P(A∩B) = 2/36. This is because P(B) = 5/36.
And P(A|B) = P(A∩B)/P(B) = (2/36)/(5/36) = 2/5.

Proof. We show B below.
B = {(1,5),(2,4),(3,3),(4,2),(5,1)}

The probability that a dice is 5 if the sum is 6 is 2/5. Then A|B

A|B = {(1,5),(5,1)}

Obviously P(A|B) = 2/5. This is because P(A∩B) = 2/36, and P(B) = 5/36. And P(A|B) = P(A∩B)/P(B) =
(2/36)/(5/36) = 2/5.

Theorem 1.9. For any event A, we have
E(IA) = P(A).

Proof.
E(IA) = ∑

s∈S
IA(s)p(s) = ∑

s∈A
IA(s)p(s)+ ∑

s ̸∈A
IA(s)p(s) = ∑

s∈A
IA(s)p(s)+ ∑

s ̸∈A
0 · p(s) = P(A)

Definition 16 (Independent Repeated Experiments). Let (S,T,P) be a finite probability space. A space of n inde-
pendent trials is space Sn consisting of ordered n-tuples of elements of S with the probability of an n-tuple defined to
be the product of the probabilities of its components.

P((s1, . . . ,sn)) = P(s1) . . .P(sn).

The sample space S of an experiment or trial or process has outcomes that might be number or might not be
numbers. Think about the experiment of tossing a coin. Sometimes instead of using symbolic values or names to an
outcome such as H or T we prefer to use numeric values such as 1 and 0 respectively. This mapping is known as
random variable.

Definition 17. Let S be a sample space and Ai ⊆ S events. For each non empty subjet I ⊆ {1, . . . ,n} we define

AI = ∩i∈IAi.

By default A0 = S.
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Theorem 1.10 (Inclusion-Exclusion). We have

|A1 ∪ . . .∪An|= ∑
I⊆{1,...,n}

(−1)|I|+1|AI |.= ∑
I⊆{1,...,n}

(−1)|I|+1|∩i∈I Ai|.

Proof. By induction on n. For n = 1, trivially |A1|= |A1|. From n to n+1 we use the n = 2 case.

|∪n+1
i=1 Ai| = |(∪n

i=1Ai)∪An+1|
= |∪n

i=1 Ai|+ |An+1|− |(∪n
i=1Ai)∩An+1|

= |∪n
i=1 Ai|+ |An+1|− |∪n

i=1 (Ai ∩An+1)|
= ∑

I⊆{1,...,n}
(−1)|I|+1|∩i∈I Ai|+ |An+1|− ∑

I⊆{1,...,n}
(−1)|I|+1|(∩i∈IAi ∩An+1)|

= ∑
I⊆{1,...,n}

(−1)|I|+1|∩i∈I Ai|+ |An+1|− ∑
I⊆{1,...,n}

(−1)|I|+1|(∩i∈I∪{n+1}Ai)|

= ∑
I⊆{1,...,n+1},n+1̸∈I

(−1)|I|+1|∩i∈I Ai|+ ∑
I⊆{1,...,n+1},n+1∈I

(−1)|I|+1|(∩i∈IAi)|

= ∑
I⊆{1,...,n+1}

(−1)|I|+1|∩i∈I Ai|

By DeMorgan’s Law the ∩ and ∪ can be swapped without affecting the result otherwise.
When needed we would like to calculate

|A|− ∑
I⊆{1,...,n+1}

(−1)|I|+1|∩i∈I Ai|,

or
|A|− ∑

I⊆{1,...,n+1}
(−1)|I|+1|∪i∈I Ai|.



Chapter 2

Random variables

2.1 Random variables
As we mentioned earlier, a probability space is a triplet (S,T,P). In the simplest of the cases, S is a finite set, and
T = 2S = P(S), that is, T is the powerset of S, the set of all posible subsets of S and thus T has cardinality |T |= 2|S|.
The probability measure P, P : T 7→ [0,1], essentially becomes, P : S 7→ [0,1], i.e. it is defined on the elementary
events, and by extension to any event subset of T . Then

P(A) = ∑
s∈A

P({s}),

and
∑
s∈S

P({s}) = 1.

We can then define arbitrary functions on events.

Definition 18 (Random variable: simple definition). A random variable (later, r.v.) X defined on a probability space
(S,T,P) is a real-valued measurable function on S. Random variable X is then a mapping

X : S 7→ R.

We can add few more details on this definition.

Definition 19 (Random variable: more detailed definition). A random variable (later, r.v.) X defined on a probability
space (S,T,P) is a real-valued measurable function that assigns a real value X(s) to an elementary event s of S so that
for every x, where −∞ < x < ∞, set {s : X(s)≤ x} is an event contained in T .

For a random variable we can informally write P(X = 5) to actually mean P({s ∈ S : X(s) = 5} . Moreover, when
we informally write P(5 ≤ X ≤ 11) we actually mean P({s ∈ S : 5 ≤ X(s)≤ 11}).

Definition 20 (Convention). For a random variable X , when we write X ∈ A for A ⊆ R, we mean {s ∈ S : X(s) ∈ A}.
Then,

P(X ∈ A) = P({s ∈ S : X(s) ∈ A}).

13
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A random variable and can be discrete or continuous.

2.1.1 Discrete random variables

The discussion below applies to a discrete random variable.

Definition 21 (Discrete r.v.). A random variable is discrete if its domain consists of a finite or countably infinite set of
outcomes.

We usually denote an event involving random variable X by writing X = x. This indicates event E = {s ∈ S :
X(s) = x}. Moreover, it should be the case that E ⊆ T .

Definition 22 (Probability mass function). A probability mass function (p.m.f.) of a discrete r.v. X is the function fX
that associates a probability to each s ∈ S.

In other words the p.m.f. of r.v. X is a function that returns P(X = x) for each s in the domain of X with X(s) = x.
Then fX (x) = f (x) = P(X = x) = P(E) = ∑s∈E P(s). It is fX (x)≥ 0 and ∑s∈S fX (s) = 1.

For a discrete random variable X that also takes discrete values x1, . . . ,xn, we have that

P(X = xi) = P({s ∈ S : X(s) = xi}) = f (xi),

Theorem 2.1 (Range). The range R(S,X) of random variable X is the set of numeric values assigned to outcomes of
a sample space S by random variable X. For function X its range is R(S,X).

Example 12. For tossing a pair of dice sample space S has 36 ordered pairs (a,b) as elements where a shows the
number (top face) of one die and b shows the number of the other die during a toss.

S = {(a,b) : 1 ≤ a,b ≤ 6}

Random variable X is defined as follows

X : S → R where X(s) = X((a,b)) = a+b, s ∈ S.

Thus for an element s = (a,b) of S, random variable X assigns a value to this element that is equal to the sum of the
numbers of the faces of the two dice. The range of X is R(S,X) = {1,2,3,4,5,6,7,8,9,10,11,12}. Random variable
Y is defined as follows

Y : S → R where Y ((a,b)) = min(a,b).

Thus for an element s = (a,b) of S, random variable Y assigns a value to this element that is equal to the minimum of
the two values of the two faces of the two dice. The range of Y is R(S,Y ) = {1,2,3,4,5,6}.
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Example 13. We have two dice. The sample space of throwing two dice is of cardinality 36, as there are so many
pairs (d1,d2) where d1 is one of the outcomes of one die, and likewise for d2. Use the definitions to calculate P(X = 4)
, where X is a random variable defined to be the sum d1 +d2.

Proof. It is clear that P(X) = 1/12. We properly define for A ⊆R, the set X−1(A) = {s ∈ S : X(s) ∈ A}, that is the set
of outcomes of S that result in getting mapped by X to a value in A. This implies,

P(X ∈ A) = P(X−1(A)).

The set X−1(A) must be measurable and thus it should belong to T i.e. X−1(A) ∈ T . Say A = {4}. Then

X−1(A) = {(1,3),(2,2),(3,1)}

Therefore
P(X ∈ A) = P({(1,3),(2,2),(3,1)}) = 3/36 = 1/12.

2.1.2 Continuous random variables
The discussion below applies to a continuous random variable.

Definition 23 (Continuous r.v.). A random variable is continuous if its domain is uncountably infinite.

Definition 24 (Distribution of a random variable). The cumulative distribution function of a continuous r.v. X is
described as the distribution of a random variable and is denoted by FX (x) (sometimes, just F(x)).

FX (x) = F(x) = P(X ≤ x) = P(X−1((−∞,x])).

We note that 0 ≤ FX (x)≤ 1.

Given X the cumulative distribution function F can be defined as FX (x) = P(X ≤ x), for −∞ < x < ∞. One can
also define FX (x) = P(A), where A = (−∞,x], where x ∈ R. Function FX (x) or simply F(x) when it implicitly infers
to X , is a monotonically increasing continuous from left function with

lim
x→−∞

F(x) = 0, lim
x→∞

F(x) = 1.

Furthermore, if there is f (t) such that

F(x) =
∫ x

−∞

f (t)dt,

then f (t) is the probability density function of X . Function f (t) to exist it means that F(x) is differentiable. In the
remainder, as needed, it will be assumed that F(x) is differentiable. An interpretation of the density function is

f (x)dx ≈ P(x < X ≤ x+dx).
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Theorem 2.2. Let (S,T,P) be a probability space. The (cumulative) distribution function FX (x) of r.v. X has the
following properties.

1. F is nondecreasing.

2. limx→∞ F(x) = 1, limx→−∞ F(x) = 0,

3. F is right continuous limy→x+ F(y) = F(x),

4. P(X < x) = limy→x− F(y),

5. P(X = x) = F(x)−P(X < x).

The distribution of X is called continuous if there is a function fX (x) (called the probability density function) such
that

FX (B) =
∫

B
fX (x)dx,

for every interval B (or in mathematical analysis terms, for every Borel set B) and in that case FX is continuous.

Definition 25 (Probability density function). When the distribution function FX (x) = P(X ≤ x) has the form

P(X ≤ x) =
∫ x

−∞

fX (t)dt,

we refer to fX (x) as the probability density function of X and sometimes we denote it f (x) implicitly referring to r.v.
X . Moreover,

fX (x) =
dFX (x)

dx
.

If F(x) is differentiable, then f (x) exists. It is possible however that F(x) is not differentiable.
We can also define a cumulative distribution function for a discrete r.v. X . Then F(x) = ∑t=X(s)≤x,s∈S f (t).

2.1.3 Composition of random variables

Definition 26 (Sum and product of a random variables). Let X ,Y be two random variables on the same probability
space (S,T,P). Then X +Y , X ·Y and a ·X , a ∈ R are also random variables and functions on S defined as follows.

∀s ∈ S : (X +Y )(s) = X(s)+Y (s), ∀s ∈ S : (X ·Y )(s) = X(s) ·Y (s), ∀s ∈ S,a ∈ R : (a ·X)(s) = aX(s).

Likewise for any polynomial function f (x,y, . . . ,z) we define f (X ,Y, . . . ,Z) to be a function on S defined analogously.

∀s ∈ S : f (X ,Y, . . . ,Z)(s) = f (X(s),Y (s), . . . ,Z(s)).

2.2 Expectation of a random variable
The term expectation or expected value is associated with a random variable. The terms mean and average can be used
interchangeably with (mathematical) expectation, but the term mean usually refers to a distribution. The expectation
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of a random variable X would be denoted by E(X) though it is more often to encounter E[X ]. (Do not be surprised if
by accident you see both instances in the remainder.) The term for mean is usually µ or X̄ .

For the discrete case we have.

Definition 27 (Expectation of a discrete r.v. X). Let X be a discrete random variable on probability space (S,T,P)
that also takes values x1, . . . with P(X = xi) = fX (i). Then the expectation (or expected value) of r.v. X is defined as
follows.

E(X) = µ = ∑
x∈X

x fX (x) = ∑
i

xi fX (xi).

If the series (sum) converges, then X has finite expectation. If ∑i |xi| f (xi) diverges, then X has no finite expectation.

Bear in mind that dropping subscripts or introducing subscripts, PX (X = xi) = P(X = xi) = f (xi) = fX (i). If it
does not cause ambiguity, we will be using f for fX or P for PX .

Definition 28 (Expectation of a continuous r.v. X). Let X be a continuous and differentiable random variable on
probability space (S,T,P), with probability density function fX (x). Then the expectation or (expected value) of r.v. X
is defined as follows.

E(X) =
∫

∞

−∞

x fX (x)d(x).

If E(X) =−∞ or E(X) = ∞ we say the expectation E(X) does not exist.

Theorem 2.3. Let X ,Y be r.v. and a,b ∈ R. Then

E(aX +bY ) = aE(X)+bE(Y ).

Proof. Let X , Y be two discrete random variables taking also discrete values x1, . . . ,xi, . . . and y1, . . . ,y j, . . .. In the
discrete case, we have the following.

E(aX +bY ) = ∑
i

∑
j
(axi +by j)P(X = xi ∩Y = y j)

= ∑
i

∑
j

axiP(X = xi ∩Y = y j)+∑
i

∑
j

by jP(X = xi ∩Y = y j)

= a∑
i

xi ∑
j

P(X = xi ∩Y = y j)+b∑
j

y j ∑
i

P(Y = y j ∩X = xi)

= a∑
i

xiP(X = xi)+b∑
j

y jP(Y = y j)

= E(X)+E(Y ).

Similarly, the corresponding continuous case bound can be proven.
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Corollary 3. For X and Y r.v. as before,

E(X +Y ) = E(X)+E(Y ),

obtainable by setting a = b = 1.

The result below applied for any probability space.

Theorem 2.4. For any random variables X1, . . . ,Xn of a probability space, we have that

E(
n

∑
i=1

Xi) =
n

∑
i=1

E(Xi).

Proof. By induction on n. We alread proved it for n = 2, the base case. Inductive step follows trivially.

2.3 Independent random variables
We can describe independence for the case of a discrete and continuous variable as follows.

Definition 29 (Independent r.v.). Let X , Y be two discrete random variables taking also discrete values x1, . . . ,xi, . . .
and y1, . . . ,y j, . . .. The two random variables X and Y are independent if for all xi and y j,

P(X = xi ∩Y = y j) = P(X = xi) ·P(Y = y j).

In the general case,
P(X ∈ A∩Y ∈ B) = P(X ∈ A) ·P(Y ∈ B).

By induction, this can generalize to n random variables. Note that for two events A,B we defined the conditional
probability of A on B as P(A|B)=P(A∩B)/P(B) and defined A is independent of B when P(A)=P(A/B). Substituting
the left-hand side of the latter for the left-hand side of the former we conclude P(A/B) = P(A) = P(A∩B)/P(B) from
which we further derive P(A∩B) = P(A)P(B).

Definition 30 (Independent r.v.: continuous case). Let X and Y be two random variables with FX (x) and FY (y) distri-
bution functions respectively. Let fX ,Y (x,y) be their joint distribution function. Then X and Y are independent r.v. if,
for all x,y,

fX ,Y (x,y) = fX (x) · fY (y).

Theorem 2.5. If X and Y are two discrete random variables for a probability space (S,T,P) then if X and Y are
independent we have the following.

E(XY ) = E(X) ·E(Y ),
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The result extends for continuous r.v. X and Y .

Proof. Let X = ∪{xi}, and Y = ∪{y j}. Using prior notation PX (X = xi) = fX (xi) and PY (Y = y j) = fY (x j). If X and
Y are independent, we have P(X = xi ∩Y = y j) = P(X = xi) ·P(Y = y j).

E(XY ) = ∑
i, j

xiy jP(X = xi ∩Y = y j)

= ∑
i, j

xiy jP(X = xi) ·P(∩Y = y j)

= ∑
i

xiP(X = xi) ·+∑
j

y jP(Y = y j)

= E(X) ·E(Y ).

Example 14. From a prior example of dice tossing. Random variable Y is defined as follows

Y : S → R where Y ((a,b)) = min(a,b).

Find E(Y ). Thus for an element s = (a,b) of S, random variable Y assigns a value to this element that is equal to the
minimum of the two values of the two faces of the two dice. The range of Y is R(S,Y ) = {1,2,3,4,5,6}. We can
compute

P(Y = 1) = 11/36,P(Y = 2) = 9/36,P(Y = 3) = 7/36,P(Y = 4) = 5/36,P(Y = 5) = 3/36,P(Y = 6) = 1/36

For example, P(Y = 1) is derived from the fact that the tosses
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1) have 1 as the minimum value. Furthermore the
following outcomes (4,4),(4,5),(4,6),(5,4),(6,4) have all minimum value equal to 4, and so on. Thus

µ = E(Y ) = 1 ·11/36+2 ·9/36+3 ·7/36+4 ·5/36+5 ·3/36+6 ·1/36 =
11+18+21+20+15+6

36
= 2.5277.

2.4 Indicator random variable

Definition 31 (Indicator Random Variable). For an event A we define the indicator random variable IA as follows.

• IA(s) = 1 if s ∈ A, and

• IA(s) = 0 if s ̸∈ A.

The indicator random variable sometimes uses 1 for I. It is also known as the characteristic function of A.
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Theorem 2.6. Let X = IA1 + . . .+ IAn . Then

E(X) = E(IA1 + . . .+ IAn) = ∑
i

P(Ai).

Example 15. The expected number of fixed points on a random permutation p on {1, . . . ,n} is one. We define a
random variable A with

A(p) = |{i : p(i) = i}|

Then we generate Ai(p) = 1 if p(i) = i and 0 otherwise. Then A(p) = ∑i Ai(p).

E(Ai) = P[p(i) = i] = 1/n.

and
E(A) = ∑

i
E(Ai) = n ·1/n = 1.

Example 16. A coin is tossed twice. The sample space S = {HH,T H,HT,T T}. We count the number of heads and
this becomes random variable X . Thus R(S,X) = {0,1,2}. The probabilities assigned by function f (xi) = P(X = xi)
are as follows.

P(X = 0) = 1/4,P(X = 1) = 1/2,P(X = 2) = 1/4.

Then the expection of r.v. X becomes

µ = E(X) = 0 ·P(x = 0)+1 ·P(X = 1)+2 ·P(X = 2) = 0 ·1/4+1 ·1/2+2 ·1/4 = 1

(We thus expect half of the tosses to be H.)

2.5 More on expectation

Definition 32 (Conditional expectation: discrete case). For two discrete random variables X and Y , the conditional
expectation of X given Y is

E(X |Y = y) = ∑
x∈X

xP(X = x|Y = y) = ∑
x∈X

x
P(X = x,Y = y)

P(Y = y)
,

where P(X = x,Y = y) is the joint probability (mass) function of X and Y . An alternative formulation is as follows.

E(X |Y = y j) = ∑
xi∈X

xP(X = xi|Y = y j) = ∑
xi∈X

xi ·
P(X = xi,Y = y j)

P(Y = y j)
,
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Definition 33 (Conditional expectation: continuous case). For two continuous random variables X and Y , with joint
density fX ,Y (x,y) the conditional expectation of X given Y is given below. Note that fX ,Y (x,y) = fX |Y (x|y) · fY (y).

E(X |Y = y) =
∫

∞

−∞

x fX |Y (x|y)dx =
1

fY (y)

∫
∞

−∞

x fX ,Y (x,y)dx.

2.6 Variance of random variables
The variance of a random variable is the expected value of the squared deviation from the mean of the random variable.
The variance of X is denoted var(X) or Var(X) or σ2(X) or just σ2 if the reference to X is obvious. Then

√
σ2(X) =

σ(X) or σ is the standard deviation of X .

Definition 34 (Variance of r.v. X). Let X be a random variable on a probability space S i.e. (S,T,P). Then the
variance σ2(X) = var(X) of r.v. X is defined as follows.

σ
2(X) = var(X) = E((X −µ)2) = E((X −E(X))2).

The standard deviation of X is defined as
√

var(X) = σ(X).

The variance exists if the second momdent E(X2) exists. The latter implies that the first moment E(X) also exists.

Corollary 4. The variance var(X) of a random variable X we have

var(X) = E(X2)− (E(X))2.

Proof.

var(X) = E((X −E(X))2) = E(X2 −2XE(X)+(E(X))2) = E(X2)−2(E(X))2 +(E(X))2) = E(X2)− (E(X))2.

Another way to prove this for a discrete r.v. X is as follows.

E((X −E(X))2) = ∑
xi∈X

(x2
i +E(X)∗E(X)−2xiE(X)) f (xi)

= ∑
xi∈X

(x2
i f (xi))+ ∑

xi∈X
(E(X) ·E(X)) f (xi)+ ∑

xi∈X
(−2xiE(X)) f (xi)

= E(X2)+E(X) ·E(X) · ∑
xi∈X

f (xi)−2E(X) · ∑
xi∈X

xi f (xi)

= E(X2)+E(X) ·E(X)−2E(X) ·E(X)

= E(X2)−E(X) ·E(X).

For the continuous x a similar proof can be obtained.
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Corollary 5. Let X be a r.v. and for any a,b ∈ R, we have the following.

var(aX +b) = a2var(X).

Definition 35. Let X and Y be r.v. then, the covariance of X and Y is defined as follows.

cov(X ,Y ) = E((X −E(X)) · (Y −E(Y ))) = E(XY )−E(X)E(Y ).

Corollary 6. For r.v. X , Y , we have the following.

var(X +Y ) = var(X)+ var(Y )+2cov(X ,Y ).

Proof.

var(X +Y ) = E((X +Y )2)− (E(X +Y ))2

= E(X2)+E(Y 2)+2E(XY )−E(X)2 −E(Y )2−2E(X)E(Y )

= var(X)+ var(Y )+2(E(XY )−E(X)E(Y )

= var(X)+ var(Y )+2cov(X ,Y ).

If X and Y are indepdendent E(XY ) = E(X)E(Y ) and thus cov(X ,Y ) = 0. We then obtain the following.

Corollary 7. Let X , Y be r.v. that are independent. We have the following.

var(X +Y ) = var(X)+ var(Y ).

The results can be generalized for n > 2 variables. Proofs are by induction on n.

Example 17. Let X be a r.v. such that P(a ≤ X ≤ b) = 1 in other words a ≤ X ≤ b. Show that

var(X)≤ (b−a)2

4
.

Proof. For any X , we have var(X)≤ E((X − t)2), for any t. (Easy to prove if one expands var(X) = E((X −E(X))2).
Equality is for t =E(X). Consider t =(a+b/2. This is the midpoint of the interval [a,b]. Therefore |X−t| ≤ (b−a)/2.
Therefore

var(X)≤ E((X − t)2)≤ (b−a)2/4.
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Standard distributions

3.1 Standard distributions

3.1.1 Bernoulli distribution

Definition 36 (Bernoulli Trials). A Bernoulli trial is an experiment that has two outcomes. One outcome is called
a success and the other a failure. Let p be the probability of success and q = 1− p be the probability of failure. We
denote such a Bernoulli trial with b(p).

Several times 1 indicates success and 0 indicates a failure in the context of a Bernoulli trial. If however 1/2 indicates
success and −1/2 a failure we call the experiment a Rademacher trial.

Corollary 8. Let X be a random variable that follows a Bernoulli distribution with parameter p that is, X ∼ b(p).
Sometimes we use q = 1− p. The probability of success and failure are P(X = 1) = p and P(X = 0) = 1− p = q
respectively. The expected value E(X) of X and its variance var(X) = σ2 are as follows.

E(X) = p, var(X) = pq = p(1− p).

Proof. For E(X) we have the following.

E(X) = p ·1+(1− p) ·0 = p

Furthermore for E(X) we have the following.

E(X2) = p ·12 +(1− p) ·0 = p

Then for var(X) we have the following.

var(X) = E(X2)− (E(X))2 = p− p2 = p(1− p) = pq.

23



24 CHAPTER 3. STANDARD DISTRIBUTIONS

3.1.2 Geometric distribution

Definition 37. A geometric distribution can be described as the number of Bernoullis trials to get the first success, or
equivalently the number of failures before the first success. If random variable X describes the number of Bernoulli
trials and variable Y the number of failure to the first success, then X = Y +1. We then say X ∼ g(p), where p is the
probability of success in a Bernoulli trial.

Corollary 9. Let X be a random variable that follows a geometric distribution with parameter p that is, X ∼ g(p).
Sometimes we use q = 1− p. The probability of the first success after k−1 failures is P(X = k) = (1− p)k−1 · p. The
expected value E(X) of X and its variance var(X) = σ2 are as follows.

E(X) = 1/p, var(X) = (1− p)/p2.

Proof. Let X ∼ g(p). One can show E(X) = 1/p and var(X) = (1− p)/p2. A straightforward method to derive the
expectation is to argue that with probability p we are done in one trial, otherwise with probability 1− p we will will
need one trial (the just wasted trial) plus E(X) for the remaining trials. Then E(X) = p+(1− p)(1+E(X)) gives
E(X) = 1/p. Otherwise, Start with P(X = k) = (1− p)k−1 p. Then

E(X) =
∞

∑
k=1

kP(X = k)

=
∞

∑
k=1

k(1− p)k−1 p

= p/(1− p) ·
∞

∑
k=1

k(1− p)k

= p/(1− p) ·
∞

∑
k=0

k(1− p)k

=
p

1− p
· 1− p

p2 =
1
p
.

The expected number of failures is one less 1/p− 1 = (1− p)/p. Thus E(Y ) = (1− p)/p as well. For var(X) =
E(X2)− (E(X))2 we only need compute the first term E(X2). We have from sequences ∑

∞
i=0 xi = 1/(1− x) for x < 1.

Then ∑
∞
i=1 ixi−1 = 1/(1− x)2 for x < 1, that was used before for E(X). Then ∑

∞
i=2 i(i−1)xi−2 = 2/(1− x)3 for x < 1.

E(X2) =
∞

∑
k=1

k2P(X = k)

=
∞

∑
k=1

(k2 − k+ k)(1− p)k−1 p

=
∞

∑
k=1

k(k−1)(1− p)k−1 p+
∞

∑
k=1

k(1− p)k−1 p

= p(1− p)
∞

∑
k=1

k(k−1)(1− p)k−2 +E(X)

= p(1− p)(2/(1− (1− p))3)+1/p

= 1/p+2(1− p)/p2



3.1. STANDARD DISTRIBUTIONS 25

Then
var(X) = E(X2)− (E(X))2 = 1/p+2(1− p)/p2 − (1/p)2 = (1− p)/p2.

3.1.3 Binomial distribution

Definition 38 (Binomial process or trial). A Binomial process or trial is the independent repetition of identical
Bernoulli trials. Independent means the outcome of a Bernoulli trial (or experiment) is not dependent of previous
outcomes. We denote such a Binomial process with B(n, p), where n indicates the number of Bernoulli trials b(p),
and p the property of the Bernoulli trial (probability of success).

Let B(n, p) denote a binomial process or trial or experiment of n independent Bernoulli trials each one b(p).

Theorem 3.1. The probability of k successes in a binomial process B(n, p) is denoted by B(n, p;k) and given by

B(n, p;k) =
(

n
k

)
pk(1− p)n−k.

Corollary 10. The probability of one or more success is 1−B(n, p;0) = 1− (1− p)n = 1−qn, where q = 1− p is the
probability of failure.

Corollary 11. We toss a (fair) coin 8 times. Thus p = q = 1/2. The probability of no heads is 1/28 = 1/256. The
probability of at least one head is is 1− (1−1/2)8 = 1−1/256.

Theorem 3.2. Let X be a random variable that follows a binomial distribution with parameters n and p that is,
X ∼ B(n, p). Sometimes we use q = 1− p. The probability of k successes in n trials is B(n,p;k). The expected value
E(X) of X and its variance var(X) = σ2 are as follows.

E(X) = np, var(X) = σ
2(X) = npq.

Proof. We will use the binomial theorem that states

(a+b)n =
n

∑
j=0

(
n
j

)
a jbn− j,

and therefore also

(a+b)n−1 =
n−1

∑
j=0

(
n−1

j

)
a jbn−1− j,
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E(X) =
n

∑
k=0

k ·Pr(X = k) =
n

∑
k=0

k ·B(n, p;k)

=
n

∑
k=0

k ·
(

n
k

)
pk(1− p)n−k

=
n

∑
k=0

k · n!
k!(n− k)!

pk(1− p)n−k

= n · p ·
n

∑
k=1

(n−1)!
(k−1)!(n− k)!

pk−1(1− p)n−k

= n · p ·
n

∑
k=1

(n−1)!
(k−1)!(n−1− (k−1))!

pk−1(1− p)n−1−(k−1)

= np ·
n−1

∑
j=0

(n−1)!
j!(n−1− j)!

p j(1− p)n−1− j

= np · (1− p+ p)n−1 = np.

The binomial theorem was used in the last step. We then calculate E(X2). When we split the major sum, the latter
second term is E(X) above.

E(X2) =
n

∑
k=0

k2 ·B(n, p;k)

=
n

∑
k=0

(k2 − k+ k) ·
(

n
k

)
pk(1− p)n−k

=
n

∑
k=0

(k2 − k) · n!
k!(n− k)!

pk(1− p)n−k +
n

∑
k=0

k · n!
k!(n− k)!

pk(1− p)n−k

= p2 ·n · (n−1) ·
n

∑
k=2

k(k−1) · (n−2)!
k(k−1) · (k−2)! · (n− k)!

pk−2(1− p)n−k +np

= p2 ·n · (n−1) ·
n

∑
k=2

(n−2)!
(k−2)! · (n− k)!

pk−2(1− p)n−2−(k−2)+np

= p2 ·n · (n−1) ·
n−2

∑
j=0

(n−2)!
j! · (n− j)!

p j(1− p)n−2− j +np

= n(n−1)p2 · (p+1− p)n−2 +np

= n2 p2 +np(1− p).

Finally, we combine the two results for E(X2) and E(X) in the definition of variance to obtain the following.

var(X) = E(X2)−E2(X) = n2 p2 +np(1− p)− (np)2 = np(1− p) = npq.

Having provided those two detailed proofs, since X is the sum of n identical and independent Bernoulli random
variables Xi, which implies X =∑i Xi, we have E(X) = E(∑i Xi) = n×E(Xi) = np. By properties of variance var(X) =

∑v ar(Xi) = npq, thus proving the result directly without mathematical manipulations.

Example 18. Let Xi, i = 1, . . . ,n be n independent Bernoulli variables representing the outcomes of a sequence of n
coin tosses with bias p, where 0 < p < 1 that is, Xi ∼ b(p). Consider An =

1
n ∑

n
i=1 Xi. The latter is the fraction of Heads

in the n trials i.e. in space Xn = (X1, . . . ,Xn). Show the following.

E(An) = p, var(An) = p(1− p)/n.
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Proof. By way of the definition of An =
1
n ∑

n
i=1 Xi we have the following

E(An) = E(
1
n ∑

i
Xi) =

1
n ∑

i
E(Xi) = (1/n)np = p.

By the definition and properties of the variance, and the fact that XI are independent we have the following.

var(An) = var(
1
n ∑

i
Xi) =

1
n2 ∑

i
var(Xi) = (1/n2)n · pq = pq/n.
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Chapter 4

Moment generating function

In this and later sections we will interchangeably use the following notation for the exponential function: exp(Z) will
denote eZ .

4.1 Moment generating function

Definition 39. The moment generating function MX (t) of a random variable X , with cumulative distribution function
FX is defined as follows, provided that the expectation E(exp(tX)) is defined for t in some neighborhood of 0, in other
words there exists an h > 0 such that for all t in [−h,h], E(exp(tX)) exists.

MX (t) = E(exp(tX)) =
∫

∞

−∞

etx fX (x)dx.

Note that using Taylor’s expansion

exp(tX) = 1+ tX +
t2X2

2!
+

t3X3

3!
+ . . .+

tnXn

n!
+ . . . .

Taking expectations of both sides we derive the following.

E(exp(tX)) = 1+ tE(X)+
t2E(X2)

2!
+

t3E(X3)

3!
+ . . .+

tnE(Xn)

n!
+ . . . .

Differentiating n times MX (t) with respect to t and setting t = 0 we obtain the n-th moment mn = E(Xn) of r.v. X .

Example 19. The Bernoulli process b(p) has MX (t) = 1− p+ pet .

Proof. Let X ∼ b(p). X takes two values, 1 with probability p, and 0 with probability q = 1− p. Then

MX (t) = E(exp(tX)) = p · exp(t ·1)+(1− p) · exp(t ·0) = pet +1− p.

29
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Corollary 12. For a Bernoulli process b(p),

MX (t) = E(exp(tX))≤ exp(p(et −1)).

Proof. Starting with MX (t) = E(exp(tX)) = pet +1− p, we rewrite pet +1− p = 1+ p(et −1) and apply ex ≥ 1+ x
to obtain 1+ p(et −1)≤ exp(p(et −1)), as needed.

Theorem 4.1. Let Xi be independent random variables, with MGF MXi(t) respectively, i = 1, . . . ,n. Let Sn = ∑
n
i=1 Xi.

Then the following applies for the MGF of random variable Sn.

MSn(t) = MX1(t) . . .MXn(t) =
n

∏
i=1

MXi(t).

Furthermore, if Xi are identically distributed to random variable X, then

MSn(t) = (MX (t))
n .

Example 20. The Uniform distribution U(a,b) has

MX (t) =
etb − eta

t(b−a)
.

Example 21. The binomial distribution B(n, p) has

MX (t) = (1− p+ pet)n.

Example 22. The normal distribution N(µ,σ2) has

MX (t) = exp(µt +0.5σ
2t2).

Example 23. The Poisson distribution Poisson(λ ) has

MX (t) = exp(λ (et −1)).
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Example 24. The geometric distribution g(p) with parameter p, has

MX (t) =
pet

1− (1− p)et =
pet

1− et + pet .

Proof. Let X ∼ g(p). One can show E(X) = 1/p and var(X) = (1− p)/p2. For the moment generative function we
observe the following

MX (t) =
∞

∑
k=1

etk(1− p)k−1 p

= pet
∞

∑
k=1

et(k−1)(1− p)k−1

= pet
∞

∑
k=1

(et(1− p))k−1

= pet 1
1− et + pet

Note that the sum converges for et(1− p)< 1.
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Part II

Inequalities

33





Chapter 5

Probability inequalities

5.1 Probability inequalities

5.1.1 Convexity

Definition 40 (Convex function). Let f (x) be a real valued function on some interval [a,b] with b ≥ a. Function f is
called convex if for all x1 ̸= x2 ∈ [a,b], and for all λ such that 0 ≤ λ ≤ 1 we have

f (λx1 +(1−λ )x2)≤ λ f (x1)+(1−λ ) f (x2).

In other words, a function f is convex if the line segment between any two distinct points on the graph of the function
lies above or on the graph between the two points.

Equivalently, A differentiable function of one variable is convex on an interval if and only if its graph lies above all of
its tangents i.e. f (x) ≥ f (y)+ f ′(y)(x− y). If function f on one variable is twice differentiable, then f is convex if
f ′′(x)≥ 0.

5.1.2 Markov’s inequality

Theorem 5.1 (Markov’s inequality). For a non-negative random variable X with expectation µ that is thus non
negative and every positive a > 0 we have

P(X ≥ a)≤ E(X)

a
.

Proof.
(a) Discrete case. If X is non negative then X(s)≥ 0 and we then obtain the following. Note that we write X(s) for an

35
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s ∈ S rather that xi = X(si) for an si ∈ S to keep things simple and to separate the s with X(s)< a from X(s)≥ a.

E(X) = ∑
X(s)

X(s)p(s)

= ∑
0≤X(s)<a

X(s)p(s)+ ∑
X(s)≥a

X(s)p(s)

≥ ∑
X(s)≥a

X(s)p(s)

≥ a · ∑
X(s)≥a

p(s)

= a ·P(X(s)≥ a) = a ·P(X ≥ a).

(b) Continuous case.

E(X) =
∫

∞

−∞

x fX (x)dx

=
∫ a

−∞

x fX (x)dx+
∫

∞

a
x fX (x)dx

≥
∫

∞

a
x fX (x)dx

≥ a ·
∫

∞

a
fX (x)dx

≥ a ·
(

1−
∫ a

−∞

fX (x)dx
)

≥ a · (1−P(X ≤ a))

≥ a ·P(X ≥ a)

Technically, the latter (last line bound) is P(X > a). We could then rephrase the inequality as P(X > a)≤ E(X)/a.

Another proof considers an Indicator function, and works as follows. Let

I =
{

0 X < a
1 X ≥ a

}
Then

P(X ≥ a) = E[I]≤ E(
X
a
)≤ 1

a
E(X).

5.1.3 Cauchy-Schwartz inequality

Theorem 5.2 (Cauchy-Schwartz inequality). Let A and B be two random variables. with E(A2)<∞ and E(B2)<∞.
Then

|E(AB)| ≤
√

E(A2)
√

E(B2).

Proof. Consider E((A− tB)2)≥ 0. Then

E((A− tB)2) = E(A2)+ t2E(B2)−2tE(A)E(B)≥ 0.
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Choose t = E(AB)
E(B2)

. Then we have

E(A2)+

(
E(AB)
E(B2)

)2

E(B2)−2
E(AB)
E(B2)

E(AB) ≥ 0

E(A2)+
E2(AB)
E(B2)

−2
E2(AB)
E(B2)

≥ 0

E(A2)− E2(AB)
E(B2)

≥ 0

E(A2)E(B2) ≥ E2(AB).

The last inequality, after taking square roots concludes the proof.

5.1.4 Chebyshev inequality

Theorem 5.3 (Chebyshev’s inequality). Let X be a random variable X with finite expected value µ and non-zero
and finite standard deviation σ (variance σ2). Then for every positive t > 0,

P(|X −µ| ≥ σt)≤ 1
t2 .

Proof. It derives directly from Markov’s inequality. Note that in Markov’s case µ must be non-negative. This is not
needed here since the use of (X −µ)2 implies an expected value that is non-negative.

P(|X −µ| ≥ σt) = P(|X −µ|2 ≥ σ
2t2)≤ E[(X −µ)2]/σ

2t2 = σ
2/σ

2t2 = 1/t2.

If one replaces σt with t the following alternative form is derived.

Corollary 13 (Chebyshev variation 1). An alternative form is the following bound.

P(|X −µ| ≥ t)≤ var(X)

t2 =
σ2

t2 .

The following form starts from P(|X | ≥ t) instead of P(|X −µ| ≥ t) or P(|X −µ| ≥ σt).

Corollary 14 (Chebyshev variation 2). An alternative form is the following bound.

P(|X | ≥ t)≤ E(X2)

t2 .

One can obtain sharper bounds for small variance by considering P(|X −µ|k ≥ σt), where k > 2.
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Example 25. Let S be a random variable that is defined as Sn = X1 + . . .+Xn, where Xi are independent random
variables. Then var(Sn) = ∑i var(Xi). Chebyshev’s inequality is then given in the forn below

P

(
1
n
|

n

∑
i=1

(Xi −E[Xi])| ≥ t

)
≤ σ2

nt2 ,

where σ2 = (1/n)∑i var(Xi).

If we repeat an experiment n times, we can consider the outcome of each experiment a random variable and thus
describe the n experiments with r.v. X1,X2, . . . ,Xn, where Xi is the random variable associated with the i-the outcome.
If the experiments are independent of each other, then P(Xi = xk,X j = xl) = P(Xi = xk)P(X j = xl).

Proof. For Sn as defined, we have E[Sn] = ∑i E[Xi].

P(|Sn −E[Sn]| ≥ nt) ≤ var(Sn)

n2t2

P(
1
n
|Sn −E[Sn]| ≥ t) ≤ var(Sn)

n2t2

P(
1
n
|∑

i
Xi −E[∑

i
Xi]| ≥ t) ≤ nσ2

n2t2

P(
1
n
|∑

i
(Xi −E[Xi])| ≥ t) ≤ σ2

nt2

Example 26. Let Xi, i = 1, . . . ,n, be n (independent) Bernoulli trials with Xi ∼ b(1/2). (Xi are 0 or 1.) Let Sn = ∑i Xi
as before. Show that Pr(Sn ≥ 3n/4)≤ 2/n.

Proof. We have that E[Xi] = 1/2 and so is E[X2
i ] = 1/2. Thus var(Xi) = (1/2)− (1/2)2 = 1/4. For Sn = ∑i Xi, we

have var(Sn) = n · var(Xi) = n/4, and E[Sn] = n/2. Applying Chebyshev’s inequality,

P(Sn ≥ 3n/4)=P(Sn−n/2≥ n/4)=
1
2
·P(|Sn−n/2| ≥ n/4)= 0.5P(|Sn−E[Sn]| ≥ n/4)≤ 0.5·var(Sn)/(n/4)2 = 2/n.

5.1.5 Jensen’s inequality

Theorem 5.4 (Jensen’s inequality). Let g be a convex function on R that is, g : R 7→ R. Let X be a random variable,
and Y = g(X) another random variable defined. The the following applies

E(g(X))≥ g(E(X)).
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Proof.
Continuous case. Since g is convex for every t, graph of g lies above its tangent at t that is

g(x)≥ g(t)+S(x− t),

where S is the slope of the tangent on t. Then set X = x and t = E(X). We have the following, after taking expectations
of both sides,

g(x) ≥ g(t)+S(x− t)⇔
g(X) ≥ g(E(X))+S(x−E(X))⇔

E(g(X)) ≥ E(g(E(X)))+E(S(x−E(X)))⇔
E(g(X)) ≥ g(E(X))+S(E(x)−E(X)))⇔
E(g(X)) ≥ g(E(X)).

Discrete case. For a discrete random variable the proof follows. Let S = {a1, . . . ,an} and let X be a random variable
with xi = X(ai). Then let f (xi) = P(X = xi) and thus ∑i f (xi) = 1. Moreover, E(X) = ∑i xi f (xi). Let g(x) be a convex
function and thus for c1 + c2 = 1, we have g(c1x1 + c2x2) ≤ c1g(x1)+ c2g(x2) and this generalizes for n > 2, so that
for c1 + c2 + . . .+ cn = 1, we have g(c1x1 + . . .cnxn) ≤ c1g(x1)+ . . .+ cng(xn). We then obtain E(g(X)) ≥ g(E(X)).
The proof of the latter is by induction on n ≥ 2. For the base case n = 2 using the convexity of g and the fact that
∑i f (xi) = 1, we have

E(g(X)) = f (x1)g(x1)+ f (x2)g(x2)

≥ g( f (x1)x1 + f (x2)x2)

= g(E(X)),

as needed. For the inductive step, assuming that the result is true for n−1 and will be shown true for n, we have.

E(g(X)) =
n

∑
i=1

f (xi)g(xi)

= f (x1)g(x1)+ f (x2)g(x2)+
n

∑
i=3

f (xi)g(xi)

= ( f (x1)+ f (x2))

(
f (x1)

( f (x1)+ f (x2)
g(x1)+

f (x2)

( f (x1)+ f (x2)
g(x2)

)
+

n

∑
i=3

f (xi)g(xi).

By the convexity of g(x) the first two terms of the right-hand side get combined as follows

E(g(X))≥ ( f (x1)+ f (x2))g
(

f (x1)

( f (x1)+ f (x2)
x1 +

f (x2)

( f (x1)+ f (x2)
x2

)
+

n

∑
i=3

f (xi)g(xi). (5.1)



40 CHAPTER 5. PROBABILITY INEQUALITIES

On the right-hand size there are the n− 2 terms of the sum (from i = 3 through i = n) plus the newly generated one
further on the left, a total of n−1. By the inductive step we have the following.

E(g(X)) ≥ ( f (x1)+ f (x2))g
(

f (x1)

( f (x1)+ f (x2)
x1 +

f (x2)

( f (x1)+ f (x2)
x2

)
+

n

∑
i=3

f (xi)g(xi)

≥ g

(
( f (x1)+ f (x2))

f (x1)

( f (x1)+ f (x2)
x1 +( f (x1)+ f (x2))

f (x2)

( f (x1)+ f (x2)
x2 +

n

∑
i=3

f (xi)xi

)

= g

(
f (x1)x1 + f (x2)x2 +

n

∑
i=3

f (xi)xi

)

= g

(
n

∑
i=1

f (xi)xi

)
= g(E(X)),

as needed.

5.1.6 Law of large numbers

Definition 41 (Sample mean or sample average). Let X be a r.v. with expectation (mean) E(X) = µ and standard
deviation σ . Let an experiment is repeated n times with repetitions independent of each other. Let Xi be the random
variable associated with the i-th repetition Xi ∼ X . Then the sample mean or sample average of X1, . . . ,Xn is defined
as follows.

X̄ =
X1 +X2 + . . .+Xn

n
.

The sample mean X̄ is also a random variable.

Definition 42 (Law of Large Numbers). For any r > 0 the probablity that the sample mean X̄ of n independent
experiments has a value in the interval [µ − r,µ + r] is to the limit for large n equal to 1.

limn→∞P(|X −µ| ≤ r) = 0

5.1.7 Tails of the binomial distribution

The following result in the form of Equations (5.3) and (5.4) appears in Feller [9] and in its complete form including
Equation (5.2) as Theorem 1.1 in Bóllobás [3], where B(n, p;m) is expanded and bounded,
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Theorem 5.5 (Feller[9], Bóllobás[3]). Let random variables Xi be inpdependent and follow a Bernoulli distribution
that is, Xi ∼ b(p), and let Sn = ∑

n
i=1 Xi. Then for m = ⌈upn⌉, u > 1,

P(Sn ≥ m)≤ u
u−1

B(n, p;m). (5.2)

Furthermore,

P(Sn ≥ m)≤ m(1− p)
(m−np)2 . (5.3)

and

P(Sn ≤ m)≤ (n−m)p
(np−m)2 . (5.4)

The first form appears in [3]; the other two in [9].

Proof. Let B(n, p;k) =
(n

k

)
pk(1− p)n−k. Consider

B(n, p;k)
B(n, p;k−1

= 1+
(n+1)p− k

k(1− p)
. (5.5)

If k < (n+1)p the binomial terms form an increasing sequence. If k > (n+1)p the binomial terms form a decreasing
sequence. If (n+1)p = M, for integer M, then B(n, p;k) = B(n, p;k−1), since the fraction above is equal to 1. Then
there are two maxima for k and k−1 or in other words for M = (n+1)p and M−1 = (n+1)p−1. Otherwise there
exists only one integer T such that (n+1)p−1 < T ≤ (n+1)p. The same conclusion can be drawn if

B(n, p;k+1)
B(n, p;k

=
(n− k)p

(k+1)(1− p)
. (5.6)

If (n−k)p> (k+1)(1− p) or equivalently k < (n+1)p−1 then the sequence is increasing, if (n−k)p< (k+1)(1− p)
or equivalently k > (n+1)p−1 then the sequence is decreasing, and for (n−k)p = (k+1)(1− p) or k = (n+1)p−1,
the sequence attains a maximum at two points M−1 = k = (n+1)p−1 and M = k+1 = (n+1)p. In the remainder
we work with the second form. Note that m = ⌈upn⌉> (n+1)p.

Therefore B(n, p;m+1)/B(n, p;m) is a decreasing sequence. From Eq. (5.6) we have that

B(n, p;m+1)
B(n, p;m

=
(n−m)p

(m+1)(1− p)

Therefore P(Sn ≥ m) is a geometric series with largest term B(n, p;m) and ratio at most (n−m)p
(m+1)(1−p) ≤

(n−m)p
m(1−p) . Let us

call the ratio r. Then

P(Sn ≥ m)≤ 1
1− r

B(n, p;m). (5.7)

For r = (n−m)p
m(1−p) we have

r =
(n−m)p
m(1− p)

⇒

1
1− r

=
1

1− (n−m)p
m(1−p)

=
m(1− p)
m−np

(5.8)
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Therefore Eq. (5.7) by way of Eq. (5.8) becomes.

P(Sn ≥ m)≤ 1
1− r

B(n, p;m)≤ B(n, p;m)
m(1− p)
m−np

(5.9)

Between M = (n+1)p and m there are at least (m−np) terms that are at least B(n, p;m). Then we have

(m−np)B(n, p;m) ≤
m

∑
i=M

B(n, p; i)≤ 1

B(n, p;m) ≤ 1
(m−np)

. (5.10)

Therefore we conclude that Eq. (5.9) by way of Eq. (5.10) is as follows.

P(Sn ≥ m)≤ B(n, p;m)
m(1− p)
m−np

≤ m(1− p)
(m−np)2 , (5.11)

as needed in Eq. (5.3). We derive Eq. (5.4) by using the antisymmetry of the result of Eq. (5.3). In Eq. (5.4) we are
interested in at most m successes therefore at least n−m failures. Therefore we rewrite the just derived Eq. (5.3),
where q = 1− p is replaced by p and m is replaced by n−m and p is replaced by q i.e. 1− p. We then obtain the
following.

P(Sn ≥ n−m)≤ (n−m)p
((n−m)−n(1− p))2 ≤ (n−m)p

(mp−n)2 . (5.12)

This is a bound for failures ≥ n−m that also translates to a bound for successes ≤ m and this is Eq. 5.4, as required.
For Eq. 5.2 consider r < 1/u and thus in the derivation of Eq.5.8 1/(1− r)< u/(u−1), as needed.

5.1.8 Example

Example 27. Let X1, . . .Xn be bernoulli b(p) random variables. Then Sn = ∑i Xi is such that Sn ∼ B(n, p). Then
E(Sn) = np = µ and var(Sn) = ∑i var(Xi) = npq as noted earlier. Let us reformulate this as follows: let nX ∼ B(n, p)
that is Sn = nX . For any ε > 0 we have the following using Chebyshev’s inequality.

P(
1
n
|Sn −E(Sn)|> t) = P(|X −E(X)|> t)≤ pq/nt2

Proof. By Chebyshev’s inequality
P(|Sn −E(Sn)|> t)≤ var(X)/t2

Starting with

P(
1
n
|Sn −E(Sn)|> t) = P(|Sn −E(Sn)|> n · t)

and the latter by Chebyshev’s inequality

P(|Sn −E(Sn)|> n · t)≤ var(Sn)/n2t2

Therefore
P(

1
n
|Sn −E(Sn)|> t)≤ var(Sn)/n2t2 = ∑

i
var(Xi)/n2t2 = npq/n2t2 = pq/nt2.

Furthermore we note, Sn/n = X and E(Sn)/n = E(X) and the result follows.



Chapter 6

Chernoff’s inequalities

6.1 Chernoff’s method
In [4] bounds on the tails of a set of Bernoulli trials are discussed in the form of Theorem 1. Theorem 1 of [4] is
restated below as Theorem 6.1 after some relevant definitions. One can extract a variety of bounds out of Theorem 6.1.
Such bounds can lead to a sequence of lemmas such as Lemma 3, Lemma 4, Lemma 5, and Lemma 6 for the right
tails, and Lemma 7, and Lemma 8, and Lemma 9 for the left tails, and their associated corollaries along with some
obvious concentration bounds (left and right tail bounds).

Definition 43. Let Xi, i = 1, . . . ,n be independent random variables identical in distribution to random variable X
whose moment generating function is MX (t) = E(etX ), and its cumulative distribution function is FX (x) = P(X ≤ x).
Let E(X) = p = µ and define Sn = ∑

n
i=1 Xi and E(Sn) = nE(X) = nµ , and

m(r) = infE(et(X−r)) = infe−rtMX (t) = infe−rtE(etX ).

The infimum is with respect to the t’s values. MX (t) attains a minimum value m(0).

Skipping some other details, the t value for the minimum is finite unless P(X > 0) = 0 or P(X < 0) = 0 and then
m(0) = P(X = 0). If P(X ≤ 0)> 0 and P(X ≥ 0)> 0 then m(0)> 0. The following is Theorem 1 of Chernoff [4]

Theorem 6.1 (Chernoff [4]). If E(X)< ∞ and r ≥ E(X) then

P(Sn ≥ nr)≤ (m(r))n. (6.1)

If E(X)>−∞ and r ≤ E(X) then
P(Sn ≤ nr)≤ (m(r))n. (6.2)

If 0 < u < m(r) and E(X) might not exist,

lim
n→∞

(m(r)−u)n

P(Sn ≤ nr)
= 0. (6.3)

Proof. In order to prove Eq.(6.1) we perform the following transformation, using in the last step Markov’s inequality,
and before that the monotonically increasing function X 7→ etX . Consider a t > 0 and the monotonically increasing

43
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function f (x) = etx.

P(Sn ≥ nr) = P(tSn ≥ tnr)

= P(etSn ≥ enrt)

≤ E(etSn)

enrt

≤ e−nrtE(etSn) (6.4)
= e−nrtMSn(t). (6.5)

We then examine MSn(t) = E(etSn). Since Sn = ∑i Xi, then

E(etSn) = E(et ∑i Xi)

= E(∏
i

etXi)

= ∏
i

E(etXi)

= ∏
i

MXi(t)

= (MX (t))
n . (6.6)

From Eq. (6.5) by way of Eq. (6.6) we obtain the following.

P(Sn ≥ nr) ≤ e−nrtE(etSn)

≤ e−nrt (MX (t))
n

=
(
e−rtMX (t)

)n

= inf
t>0

(
e−rtMX (t)

)n

= inf
t>0

(m(r))n . (6.7)

This completes the proof of Eq.(6.1).
The proof of Eq.(6.2) is similar. Consider a t < 0 now.

P(Sn ≤ nr) = P(tSn ≥ tnr)

= P(etSn ≥ enrt)

≤ E(etSn)

enrt

≤ e−nrtE(etSn)

= e−nrtMSn(t). (6.8)

The rest is identical to the previous case.

In most of the discussion to follow we will assume that Xi and X follow a Bernoulli distribution i.e. Xi ∼ b(p) and
X ∼ b(p) and thus E(Xi) = E(X) = p, where 0 < p < 1. Then, Sn ∼ B(n, p). Therefore we have the following.

MX (t) = E(etX ) = et · p+1 · (1− p) = 1+ p(et −1)≤ epet−p.

The last part is because for all x, we have ex ≥ 1+ x.
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Definition 44 (Kullback-Leibler). The Kullback-Leibler divergence DKL or just simply D is defined as follows for
two distributions of n elements P = ∪i{pi} , pi ≥ 0, Q = ∪i{qi} , qi ≥ 0, i = 1, . . . ,n such that ∑i pi = ∑i qi = 1.

DKL(P||Q) = D(P||Q) = ∑
i

pi ln
pi

qi
. (6.9)

6.2 Derived right tails
We derive the first Chernoff bound for a Binomial r.v. Sn which is the sum of n Bernoulli random variables, using
Eq.(6.1).

Lemma 3. Let Xi be independent random variables following the same distribution as random variable X, X ∼ b(p),
where 0 < p < 1. Let Sn = ∑i Xi. Then, for any r such that p < r < 1 we have the following.

P(Sn ≥ rn)≤ exp(−D(r||p)n) =

[( p
r

)r
(

1− p
1− r

)1−r
]n

. (6.10)

Sometimes r = p+ t and the bound p < r < 1 becomes p < p+ t < 1 or equivalently 0 < t < 1− p. We report this
variant in Corollary 20.

Proof. (Of Eq. (6.10))
By Eq. (6.7) we have the following considering that MX (t) = E(etX ) = 1+ p(et −1)≤ epet−p.

P(Sn ≥ nr) ≤ inf
t>0

(
e−rtMX (t)

)n

≤ inf
t>0

(
e−rt(1+ p(et −1))

)n

≤ inf
t>0

(
(1+ p(et −1))

ert

)n

(6.11)

≤ inf
t>0

(exp( f (t)))n (6.12)

As indicated by Eq. (6.12), f (t) = ln((1+ p(et −1))− rt. Consider f
′
(t) = pet/(1 + pet − p)− r. Equating to

zero f
′
(t) = 0 and solving for t we obtain et = (1− p)r/(p(1− r)). Continuing with the second derivative we find

f
′′
(t) = p(1− p)et/(1+ pet − p)2 > 0. Therefore f (t) has a minimum for et = (1− p)r/(p(1− r)). We then continue

with Eq. (6.11) as follows.

P(Sn ≥ nr) ≤ inf
t>0

(
(1+ p(et −1))

ert

)n

(6.13)

The denominator exp(rt) for et = (1− p)r/(p(1− r)) is as follows.

exp(rt) = ((1− p)r/(p(1− r)))r =
(1− p)rrr

pr(1− r)r . (6.14)

Likewise the numerator is as follows.

(1+ p(et −1)) =
(1− p)rp
p(1− r)

+1− p =
1− p
1− r

(6.15)
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Therefore we have the following for the quantity below.

(1+ p(et −1))
ert =

1− p
1− r

· pr(1− r)r

(1− p)rrr =

[( p
r

)r
(

1− p
1− r

)1−r
]n

. (6.16)

The proof is completed.

We generate one more bound from Eq.(6.1). The bound is stronger than the Corollaries to follow that bring it into
an easier to deal with form.

Lemma 4. Let Xi be independent random variables following the same distribution as random variable X, X ∼ b(p),
where 0 < p < 1. Let Sn = ∑i Xi. Then, for any r such that p < r < 1 we have the following, after we substiture
r = (1+δ )p, δ > 0.

P(Sn ≥ rn) = P(Sn ≥ (1+δ )pn)≤
(

er · pr

ep · rr

)n

=

(
eδ

(1+δ )(1+δ )

)pn

(6.17)

Proof. By Eq. (6.7) we use MX (t) = E(etX ) = 1+ p(et −1)≤ epet−p, to obtain the following.

P(Sn ≥ nr) ≤ inf
t>0

(
e−rt(1+ p(et −1))

)n

≤ inf
t>0

(
e−rtepet−p

)n
(6.18)

≤ inf
t>0

(
exp(pet − p− rt)

)n

≤ inf
t>0

(exp( f (t)))n (6.19)

The second to last part is because for all x, we have ex ≥ 1+x. By Eq. (6.18) and Eq. (6.19) we have f (t) = pet − p−rt.
Since f

′
(t) = pet − r, setting f

′
(t) = 0 we obtain t = ln(r/p). Moreover, f

′′
(t) = pet is equal to f

′′
(ln(r/p)) = r > 0.

Therefore f (t) has a minimum at t = ln(r/p). Substituting this value for t in Eq.(6.19) the following is obtained.

P(Sn ≥ nr) ≤ inf
t>0

(
exp(pet − p− rt)

)n

≤ (exp(p(r/p)− p− r ln(r/p))n

≤
(

er · pr

ep · rr

)n

(6.20)

Finally we substitute r = (1+δ )p in Eq. (6.20) to obtain our result

P(Sn ≥ nr) ≤

(
e(1+δ )p · p(1+δ )p

ep · ((1+δ )p)(1+δ )p

)n

≤

(
eδ

(1+δ )(1+δ )

)pn

(6.21)

A simpler proof of Eq. (6.10) for binomial random variables is found in [5] and the proof is presented below.
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Lemma 5 ([5]). Let Xi be independent Bernoulli random variables following the same distribution as random variable
X, X ∼ b(p), where 0 < p < 1. Let Sn = ∑i Xi. Then, for any r such that p < r < 1 we have the following.

P(Sn ≥ rn)≤ exp(−D(r||p)n) =

[( p
r

)r
(

1− p
1− r

)1−r
]n

. (6.22)

Proof. Let B(n, p,k) = ∑
n
i=k B(n, p; i). For any x ≥ 1, we have

B(n, p,k) ≤
n

∑
i=0

(
n
i

)
pi(1− p)n−ixi−k

≤ x−k
n

∑
i=0

(
n
i

)
pi(1− p)n−ixi

≤ x−k
n

∑
i=0

(
n
i

)
(px)i(1− p)n−i

≤ x−k(1+(x−1)p)n. (6.23)

For r > p consider x = (1− p)r/(p(1− r)) and substitute for the x of Eq. (6.23). We obtain the following.

B(n, p,k) ≤ x−k(1+(x−1)p)n

≤
(
(1− p)r
p(1− r)

)−rn

·
(

1+
(
(1− p)r
p(1− r)

−1)p
))n

(6.24)

The result then follows.

We present an alternative Chernoff bound formulation which follows the simple case of Hoeffding bounds, where
ai = a = 0 and bi = b = 1. Naturally it applies to Bernoulli or binary random variables (e.g. Rademacher).

Lemma 6. Let Xi be independent Bernoulli random variables following the same distribution as random variable X,
X ∼ b(p), where 0 < p < 1. Let Sn = ∑i Xi. Then, for any r such that p < r < 1 we have the following.

P(Sn ≥ rn)≤ exp
(
−2n(r− p)2). (6.25)

Proof. The proof follows the steps of the proof of Theorem 6.1 to Eq.(6.4).

P(Sn ≥ nr) = P(tSn ≥ tnr)≤ E(etSn)

enrt ≤ e−nrtE(etSn) (6.26)

We then proceed differently as follows.

P(Sn ≥ nr) ≤ e−nrtE(etSn)

≤ e−nrtenptE(et(Sn−np))

≤ e−nrt+nptE(∏
i

et(Xi−p))

≤ e−nrt+npt
∏

i
E(et(Xi−p)) (6.27)
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We note that r.v. Xi − p is bounded and E(Xi − p) = E(Xi)− p = p− p = 0. Then, Proposition 10 that is being utilized
in Hoeffding bounds can be used to show the following.

E(et(Xi−p))≤ exp
(

t2

8

)
. (6.28)

Eq.(6.27) by way of Eq.(6.28) yields the following.

P(Sn ≥ nr) ≤ e−nrt+npt
∏

i
E(et(Xi−p))

≤ e−nrt+npt
∏

i
exp
(

t2

8

)
≤ e−nrt+npt exp

(
n

t2

8

)
≤ e−nrt+npt+ nt2

8 . (6.29)

Consider the exponent of Eq.(6.29): f (t) =−nrt+npt+nt2/8. Its first derivative is f
′
(t) =−nr+np+ t/4. Equating

it to zero and solving for t we have that f
′
(t) = 0 =−nr+np+ t/4 yields

t = 4(r− p). (6.30)

Given that f
′′
(t) = 1/4 > 0, we have a minimum at t = 4(r− p) for f (t). Therefore Eq.(6.29) by way of Eq.(6.30)

yields the following.

P(Sn ≥ nr) ≤ e−nrt+npt+ nt2
8

≤ e−nr·4(r−p)+np·4(r−p)+ n·16(r−p)2
8

≤ e−2n(r−p)2
. (6.31)

Eq.(6.31) is Eq.(6.25) as needed.

The following corollary is more widely known than Lemma 6.

Corollary 15. Let Xi be independent Bernoulli random variables following the same distribution as random variable
X , X ∼ b(p), where 0 < p < 1. Let Sn = ∑i Xi. Then, for any r such that p < r < 1 we have the following.

P(Sn −E(Sn)≥ rn)≤ exp
(
−2nr2). (6.32)

Proof. In Lemma 6 substitute r+ p for r. Then P(Sn ≥ (r+ p)n) = P(Sn ≥ rn+ pn) = P(Sn −E(Sn)≥ rn) and then
substitute r+ p for r in Eq.(6.25) to obtain Eq.(6.32).

The following Corollary can be obtained from Lemma 4. It provides a more tangible upper bound than the generic
one of the Lemma.

Corollary 16. Let Xi be independent random variables following the same distribution as random variable X , X ∼
b(p), where 0 < p < 1. Let Sn = ∑i Xi. Then, for any δ > 2e−1. we have the following,

P(Sn ≥ rn) = P(Sn ≥ (1+δ )pn)≤ 2−(1+δ )pn. (6.33)
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Proof. From Lemma 4, we have

eδ

(1+δ )(1+δ )
≤ e1+δ

(2e)(1+δ )
≤ e1+δ

(2e)1+δ
≤ 2−(1+δ ).

The result follows then.

The following Corollary is also obtained from Lemma 4. Note that δ > 0 is better than the δ used in Corollary 19
that follows it.

Corollary 17. Let Xi be independent random variables following the same distribution as random variable X , X ∼
b(p), where 0 < p < 1. Let Sn = ∑i Xi. Then, for any δ > 0 we have the following.

P(Sn ≥ (1+δ )pn)≤ exp
(

−δ 2

2+δ
· pn
)
. (6.34)

Proof. We would like to upper bound the bound of Eq.(6.17) of Lemma 4, as follows.

eδ

(1+δ )(1+δ )
≤ exp(

−δ 2

2+δ
)

Consider function f (t) defined as follows.

f (t) = δ − (1+δ ) ln(1+δ )+
δ 2

2+δ
.

By inequality 20

ln(1+δ )≥ 2δ

2+δ
.

Therefore we have the following result

f (t)≤ δ − (1+δ ) ln(1+δ )+
δ 2

2+δ
≤ δ (2+δ )− (1+δ )(2δ )+δ 2

2+δ
= 0

The Corollary then follows.

A small improvement has been proposed by McDiarmid in the following form.

Corollary 18 ([16]). Let Xi be independent random variables following the same distribution as random variable X ,
X ∼ b(p), where 0 < p < 1. Let Sn = ∑i Xi. Then, for any δ > 0 we have the following.

P(Sn ≥ (1+δ )pn)≤ exp
(

−δ 2

2+2 ·δ/3
· pn
)
. (6.35)

Proof. The proof utilizes the following inequality for all x > 0.

(1+ x) ln(1+ x)− x ≥ x2

2+(2/3)x
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The following Corollary can also be obtained from Lemma 4. It is similar to the one in [2] for the binomial case.

Corollary 19. Let Xi be independent random variables following the same distribution as random variable X , X ∼
b(p), where 0 < p < 1. Let Sn = ∑i Xi. Then, for any δ such that 0 < δ < 1 we have the following.

P(Sn ≥ rn) = P(Sn ≥ (1+δ )pn)≤ exp
(
−δ 2

3
· pn
)
. (6.36)

Proof. By inequality (27) we have for 0 < δ < 1, (1+δ ) ln(1+δ )≥ δ +δ 2/3. This results to

eδ

(1+δ )(1+δ )
≤ eδ

eδ+δ 2/3
≤ e−

δ2
3 .

The result follows. Note that as proved, δ < 1. However, we can improve the upper bound δ ≤ 1 by a more tedious
approach. We show it below. Consider as before in Corollary 17, function f (t) (t substitutes for δ ) defined as follows.

f (t) = t − (1+ t) ln(1+ t)+
t2

3
.

We would like to show f (t)≥ 0. We first calculate its first derivative.

f
′
(t) = 2t/3− ln(1+ t).

We note that f
′
(0) = 0 and f

′
(1) < 0. In order to study the monotonicity of f

′
(t) we go on calculating the second

derivative.
f
′′
(t) = 2/3−1/(1+ t).

We note that f
′′
(0)< 0 for t ≤ 1/2 and f

′′
(1)> 0 for t > 1/2. This means that f

′
(t) is monotonically decreasing for

t ≤ 1/2 and given f
′
(0) = 0, negative for t ≤ 1/2, and monotonically increasing and since f

′
(1)< 0 also negative for

1 > t > 1/2. One can also separately confirm that f (1/2)< 0. Thus f (δ )≤ 0 for all 0 < δ ≤ 1. The δ > 0 is needed
since r > p.

We report below a corollary variant of Lemma 3. This is Corollary 20.

Corollary 20. Let Xi be independent random variables following the same distribution as random variable X , X ∼
b(p), where 0 < p < 1. Let Sn = ∑i Xi. Then, for any t such that 0 < t < 1− p we have the following.

P(Sn ≥ (p+ t)n)≤ exp(−D((p+ t)||p)n) =

[(
p

p+ t

)p+t( 1− p
1− p− t

)1−p−t
]n

. (6.37)

6.3 Derived left tails
We proceed to deriving a Lemma identical to Lemma 3 for the left tails. This is stated next.
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Lemma 7. Let Xi be independent random variables following the same distribution as random variable X, X ∼ b(p),
where 0 < p < 1. Let Sn = ∑i Xi. Then, for any r such that 0 < r < p we have the following.

P(Sn ≤ rn)≤ exp(−D(r||p)n) =

[( p
r

)r
(

1− p
1− r

)1−r
]n

. (6.38)

Sometimes r = p− t, and the bound 0 < r < p becomes 0 < p− t < p or equivalently 0 < t < p.

Proof. (Of Eq. (6.38))
Method 1. A simple argument works as follows: the upper bound on the number of successes generates a correspond-
ing lower bound on the number of failures. Thus for Fi = 1−Xi, we have ∑Fi = n−∑i Xi or equivalently Yn = n−Sn.
Therefore

P(Sn ≤ rn) = P(n−Sn ≥ n(1− r)) = P(Yn ≥ n(1− r))

The latter bound by Lemma 3 is bounded above by Eq.(6.10) adjusting it with r replaced by the 1− r of Yn ≥ n(1− r)
and p by 1− p to account for the failures not the successes of random variable Yn. The end result is that

P(Sn ≤ rn)≤ exp(−D((1− r)||(1− p))n).

However D((1− r)||(1− p)) = D(r||p) and therefore

P(Sn ≤ rn)≤ exp(−D((1− r)||(1− p))n) = D(r||p).

Method 2. Now let us reprove it following the method of the proof of Lemma 3. Consider t > 0, and apply the
Chernoff trick and finally use Markov’s inequality as we did earlier.

P(Sn ≤ nr) = P(tSn ≤ tnr)

= P(−tSn ≥−tnr)

= P(e−tSn ≥ e−nrt)

≤ E(etSn)

enrt

≤ enrtE(e−tSn)

≤ enrt(E(e−Xt))n (6.39)

We calculate E(e−tX ) = 1+ p(e−t −1)≤ epe−t−p. The rest of the calculation are similarly to the ones before

P(Sn ≤ nr) ≤ inf
t>0

(
ert(1+ p(e−t −1))

)n

≤ inf
t>0

(exp( f (t)))n . (6.40)

As indicated by Eq. (6.40), f (t) = ln(1+ p(e−t −1))+ rt. Consider f
′
(t) = −pe−t/(1+ p−t − p)+ r. Equating to

zero f
′
(t) = 0 and solving for t we obtain e−t = (1− p)r/(p(1− r)). Continuing with the second derivative we find

f
′′
(t) = p(1− p)e−t/(1+ pe−t − p)2 > 0. Therefore f (t) has a minimum for e−t = (1− p)r/(p(1− r)). We then

continue with Eq. (6.40) as follows.

P(Sn ≤ nr) ≤ inf
t>0

(
ert(1+ p(e−t −1))

)n (6.41)
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The term exp(rt) for e−t = (1− p)r/(p(1− r)) is as follows.

exp(rt) =
pr(1− r)r

(1− p)rrr . (6.42)

Likewise the other term is as follows.

(1+ p(e−t −1)) =
p(1− r)− p2(1− r)+ p(1− p)r

p(1− r)
=

1− p
1− r

(6.43)

Therefore we have the following for the quatinty below.

ert · (1+ p(e−t −1)) =
1− p
1− r

· pr(1− r)r

(1− p)rrr =

[( p
r

)r
(

1− p
1− r

)1−r
]n

. (6.44)

We generate one more bound below.

Lemma 8. Let Xi be independent random variables following the same distribution as random variable X, X ∼ b(p),
where 0 < p < 1. Let Sn = ∑i Xi. Then, for any r such that 0 < r < p or, equivalently, for any δ such that 0 < δ < 1
we have the following.

P(Sn ≤ rn) = P(Sn ≤ (1−δ )pn)≤
(

er · pr

ep · rr

)n

=

(
e−δ

(1−δ )(1−δ )

)pn

(6.45)

Proof. We calculated earlier E(e−tX ) = 1+ p(e−t −1)≤ epe−t−p. By way of Eq.(6.40) we have the following.

P(Sn ≤ nr) ≤ inf
t>0

(
ert(1+ p(e−t −1))

)n

≤ inf
t>0

(
exp(pe−t − p+ rt)

)n (6.46)

≤ inf
t>0

(exp( f (t)))n (6.47)

By Eq. (6.46) and Eq. (6.47) we have f (t) = pe−t − p+ rt. Since f
′
(t) = r − pe−t , setting f

′
(t) = 0 we obtain

t = ln(p/r). Moreover, f
′′
(t) = pet is equal to f

′′
(ln(p/r)) = r > 0. Therefore f (t) has a minimum at t = ln(p/r).

Substituting this value for t in Eq.(6.46) the following is obtained.

P(Sn ≤ nr) ≤ inf
t>0

(
exp(pe−t − p+ rt)

)n

≤ (exp(pr/p− p+ r ln(p/r))n

≤
(

er · pr

ep · rr

)n

(6.48)

Finally we substitute r = (1−δ )p in Eq. (6.48) to obtain Eq.(6.45).

P(Sn ≤ nr) ≤

(
e(1−δ )p · p(1−δ )p

ep · ((1−δ )p)(1−δ )p

)n

≤

(
e−δ

(1−δ )(1−δ )

)pn

(6.49)
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There is a weaker but more easier to deal bound for small p. This is shown next. It is similar to the one in [2] for
the binomial case.

Corollary 21. Let Xi be independent random variables following the same distribution as random variable X , X ∼
b(p), where 0 < p < 1. Let Sn = ∑i Xi. Then, for any δ such that 0 < δ < 1 we have the following.

P(Sn ≤ (1−δ )pn)≤ exp
(
−δ 2

2
· pn
)
. (6.50)

Proof. By inequality (26) we have for every 0 < δ < 1, (1−δ ) ln(1−δ )≥−δ −δ 2/2. This results to

e−δ

(1−δ )(1−δ )
≤ e−δ

e−δ−δ 2/2
≤ e−

δ2
2 .

The result follows.

The symmetric case for the left tails to Lemma 6 is stated below.

Lemma 9. Let Xi be independent Bernoulli random variables following the same distribution as random variable X,
X ∼ b(p), where 0 < p < 1. Let Sn = ∑i Xi. Then, for any r such that 0 < r < p we have the following.

P(Sn ≤ rn)≤ exp
(
−2n(r− p)2). (6.51)

Proof. The proof is by symmetry to Lemma 6 for Yi = 1−Xi and ∑i Yi = n−Sn instead.

The following corollary is then evident.

Corollary 22. Let Xi be independent Bernoulli random variables following the same distribution as random variable
X , X ∼ b(p), where 0 < p < 1. Let Sn = ∑i Xi. Then, for any r such that 0 < r < p we have the following.

P(Sn −E(Sn)≤ rn)≤ exp
(
−2nr2). (6.52)

6.4 Derived concentration bounds
Finally the following Corollary can also be obtained from Corollary 19 and Corollary 21.

Corollary 23. Let Xi be independent random variables following the same distribution as random variable X , X ∼
b(p), where 0 < p < 1. Let Sn = ∑i Xi. Then, for any δ such that 0 < δ < 1 we have the following,

P(|Sn −np| ≥ δ pn)≤ 2 · exp
(
−δ 2

3
· pn
)
. (6.53)



54 CHAPTER 6. CHERNOFF’S INEQUALITIES

Proof. We have the following

P(|Sn −np| ≥ δ pn) = P(Sn −np ≥ δ pn)+P(Sn −np ≤−δ pn) = P(Sn ≥ (1+δ )pn)+P(Sn ≤ (1−δ )pn)

By Corollary (19) we bound P(Sn ≥ (1+δ )pn). By Corollary 21 we bound P(Sn ≤ (1−δ )pn). Simple manipulations
show exp

(
−δ 2

2

)
< exp(−δ 2

3 ). The result then follows.

The following is a direct consequence of Corollary 15 and Corollary 22.

Corollary 24. Let Xi be independent Bernoulli random variables following the same distribution as random variable
X , X ∼ b(p), where 0 < p < 1. Let Sn = ∑i Xi. Then, for any r such that 0 < r < p we have the following.

P(|Sn −E(Sn)| ≥ rn)≤ 2 · exp
(
−2n(r− p)2). (6.54)



Chapter 7

Hoeffding’s inequalities

7.1 Hoeffding’s method

We now present Theorem 1 and Theorem 2 of Hoeffding [13]. The work [13] deals with random variables that are not
necessarily Bernoulli but are bounded e.g. 0 ≤ Xi ≤ 1 or ai ≤ Xi ≤ bi. Theorem 1 [13] for the case of Bernoulli trials
takes the form of Corollary 20 associated with a Chernoff bound.

That’s why several times the terms Chernoff and Hoeffding refer to the same bound. Theorem 1 of [13] is the
strongest among the Hoeffding bounds. The bounds are sufficient for large deviations. Otherwise one can use bounds
available in [3] and [9]. Angluin-Valiant bounds [2] are weaker but more useful; the latter are or may be more useful
for small p.

7.2 Derived right tails

Note that all random variables X in the two theorems that follow are to have finite first and second moments. This
Theorem 1 of [13] follows.

Theorem 7.1. Let Xi be an independent random variable, i = 1, . . . ,n. Let Sn = ∑i Xi, X̄ = Sn/n and p = E(X̄). Then
for any h such that 0 < h < 1− p we have the following.

P(X̄ − p ≥ h)) = P(Sn ≥ (p+h)n)

≤ exp(−D((p+h)||p)n)

≤

[(
p

p+h

)p+h( 1− p
1− p−h

)1−p−h
]n

. (7.1)

Note that if h > 1− p, then Eq. (7.1) remains true, and for h = 1− p, the right-hand side can be replaced by the
limit h → 1− p which is pn.

We provide a proof below for the Theorem following the techniques of the Chernoff’s method also attributed to
Cramér [7]. The theorem also appears as Theorem 5.1 in [15].

Proof. In order to prove Eq.(7.1) we perform the following transformation, using in the last step Markov’s inequality,
and before that the monotonically increasing function X 7→ etX . Consider a t > 0 and the monotonically increasing

55
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function f (x) = etx. Note that 0 < h < 1− p below.

P(X̄ − p ≥ h)) = P(
Sn

n
− p ≥ h)

= P(Sn −E(Sn)≥ hn)

= P(Sn − pn ≥ hn)

= P(Sn ≥ (p+h)n) (7.2)

= P(etSn ≥ et(p+h))

≤ E(etSn)

en(p+h)t

= e−n(p+h)tE(etSn) (7.3)

We then examine E(etSn).

E(etSn) = E(et ∑i Xi)

=
n

∏
i=1

E(etXi) (7.4)

By the convexity of function f (x) = exp(tx) we have the following: the line segment connecting the points (a, f (a))
and (b, f (b)) lies over f (x). The equation of the line segment is as follows.

y− eta =
etb − eta

b−a
(x−a). (7.5)

Therefore,

y = etb x−a
b−a

+ eta b− x
b−a

. (7.6)

Because of the convexity of f we also have the following.

etx ≤ y = etb x−a
b−a

+ eta b− x
b−a

. (7.7)

We now consider E(etXi). We have the following.

E(etXi)≤ etb E(Xi)−a
b−a

+ eta b−E(Xi)

b−a
. (7.8)

Because 0 ≤ Xi ≤ 1, a = 0 and b = 1, Eq.(7.8) can be simplified.

E(etXi)≤ etE(Xi)+ e0(1−E(Xi))≤ et pi +1− pi, (7.9)

where pi = E(Xi). Then we plug Eq.(7.9) into Eq.(7.4). We derived the following.

E(etSn) =
n

∏
i=1

E(etXi)

=
n

∏
i=1

(et pi +1− pi) (7.10)

Given that geometric means are at most their arithmetic means we have the following.(
n

∏
i=1

(et pi +1− pi)

)1/n

≤ ∑
i

(et pi +1− pi)

n
≤ (et p+1− p). (7.11)
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Therefore Eq.(7.11) into Eq.(7.10) yields the following.

E(etSn) =
n

∏
i=1

(et pi +1− pi)

≤ (et p+1− p)n

From Eq.(7.3) utilizing Eq.(7.12) we finally derive the following.

P(
Sn

n
− p ≥ h) ≤ e−n(p+h)tE(etSn)

≤ e−n(p+h)t(et p+1− p)n (7.12)
≤ exp(−n(p+h)t +n · ln(et p+1− p))

≤ exp(g(t)) (7.13)

We consider the monotonicity of function g(t).

g
′
(t) =−(p+h)n+npet/ ln(1− p+ pet). (7.14)

Setting g
′
(t) = 0 and solving for t we have,

t0 = ln
(p+h)(1− p)
p(1− p−h)

, et0 =
(p+h)(1− p)
p(1− p−h)

. (7.15)

Moreover (p+h)(1− p)≥ p(1− p−h) and thus t0 > 0, since h < 1− p and thus 1− p−h > 0. Substituting Eq.(7.15)
for t in g(t) in Eq.(7.13) the result in the form of equation Eq.(7.1) follows.

Theorem 1 of [13] includes (weaker) upper bounds of Eq.(7.1) of the form exp(−nh2k(p)), where

k(p) =
1

1−2p
ln

1− p
p

,

for 0 < p < 1/2, and

k(p) =
1

2p(1− p)
,

for 1/2 ≤ p < 1. The proof arguments are tedious and we refer to [13]. Furthermore, a weaker bound of the form
exp(−2nh2) can also be derived. This can be established also through Theorem 2 of [13] that is stated and proved
below.

Theorem 2 of [13], utilizes the following result that is proven separately.

Proposition 10 (Hoeffding [13], Eq (4.16)). For a random variable X such that a ≤ X ≤ b with E(X) = 0 and for any
t > 0, we have the following.

E[etX ]≤ exp
(

t2(b−a)2

8

)
.

Proof. The function f (x) = exp(tx) is a convex function. Therefore by Eq.(7.7), we have the following.

etX ≤ x−a
b−a

etb +
b− x
b−a

eta.



58 CHAPTER 7. HOEFFDING’S INEQUALITIES

Moreover, E(X) = 0. By taking expectations on both sides we conclude the following.

E(etX ) ≤ E(
x−a
b−a

etb +
b− x
b−a

eta)

≤ E(x)−a
b−a

etb +
b−E(x)

b−a
eta

≤ 0−a
b−a

etb +
b−0
b−a

eta

≤ −a
b−a

etb +
b

b−a
eta

Consider

E(etX ) ≤ exp
(

lg
(

−a
b−a

etb +
b

b−a
eta
))

= exp(ln(g(t))).

The function g(t) will be rewritten as f (t) = ln(g(t)), and furthermore by some change of variables, using p =
b/(b−a) and therefore 1− p=−a/(b−a), and x=(b−a)t. Then we have, after renaming variables with substitution,
the following. Note that ta = (x/(b−a)) ·a = (x/(b−a)) · (p−1)(b−a) = x(p−1).

f (t) = ln(g(t))

f (t) = ln
(

−a
b−a

etb +
b

b−a
eta
)

= ln
(

eta
(

−a
b−a

et(b−a)+
b

b−a

))
= ln

(
eta
(
(1− p)et(b−a)+ p

))
= ln

(
eta ((1− p)ex + p)

)
= ta+ ln((1− p)ex + p)

f (x) = x(p−1)+ ln((1− p)ex + p) (7.16)

Function f (x) as indicated in Eq 7.16 has the following properties: f (0) = 0 and f ′(0) = 0. We point out that

f ′(x) = p−1+
(1− p)ex

p+(1− p)ex ,

and

f ′′(x) =
(1− p)ex(p+(1− p)ex)− (1− p)ex(1− p)ex

(p+(1− p)ex)2 =
p(1− p)ex

(p+(1− p)ex)2 .

Using Taylor’s formula we obtain
f (x) = f (0)+ f ′(0)+ f

′′
(r)x2/2!,

for some r. We are going to find the maximum of f ′′(x). We observe that f ′′(x) = A ·B, where A+B = 1, with
A = (p)/(p+ (1− p)ex) and B = ((1− p)ex)/(p+ (1− p)ex). Therefore the second derivative is maximized for
A = B = 1/2 and f ′′(x)≤ 1/4. This implies.

f (x) = f (0)+ f ′(0)+ f
′′
(r)x2/2! ≤ 0+0+(1/4)(1/2)x2 ≤ x2/8.

Moving backwards, Equation (7.16) then yields, after recovering the original variable names,

E(etX ) ≤ exp(ln(g(t)))
≤ exp(x2/8)
≤ exp

(
(b−a)t2/8

)
.
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Theorem 2 of [13] is stated and proved below. Whereas in Theorem 1 of [13] variables Xi were bounded in range
by 0 and 1, the bounds next are variable, in the sense that ai ≤ Xi ≤ bi.

Theorem 7.2. Let Xi be an independent random variable, i = 1, . . . ,n. Let Sn = ∑i Xi, X̄ = Sn/n, where ai ≤ Xi ≤ bi
and p = E(X̄) and E(Sn) = np. Then for any h such that 0 < h < 1− p we have the following.

P(X̄ − p ≥ h)) = P(Sn ≥ (p+h)n)≤ exp
(

−2n2h2

∑
n
i=1(bi −ai)2

)
. (7.17)

Proof. In order to prove Eq.(7.17) we work out similarly to the other bound of Eq.(7.1). Consider a t > 0 and the
monotonically increasing and convex function f (x) = etx.

P(X̄ − p ≥ h)) = P(Sn −E(Sn)≥ hn)

= P(et(Sn−E(Sn)) ≥ ethn))

≤ E(et(Sn−E(Sn)))

ehtn

≤ e−htnE(et(Sn−E(Sn))) (7.18)

≤ inf
h>0

e−htnE(et(Sn−E(Sn)))

We then examine E(et(Sn−E(Sn))). Note that Xi are independent random variables for Eq.(7.19) to be valid.

E(et(Sn−E(Sn))) = E(et(∑i Xi−E(∑i Xi)))

=
n

∏
i=1

E(et(Xi−E(Xi))) (7.19)

Since E(Xi −E(Xi)) = 0, the conditions of Proposition 10 are satisfied. Therefore

E(et(Xi−E(Xi)) ≤ exp
(

t2(bi −ai)
2

8

)
. (7.20)

Eq.(7.18) by way of Eq.(7.19) and Eq.(7.20) yields the following.

P(X̄ − p ≥ h)) ≤ inf
h>0

e−htnE(et(Sn−E(Sn)))

≤ inf
h>0

e−htn
n

∏
i=1

E(et(Xi−E(Xi)))

≤ inf
h>0

e−htn
n

∏
i=1

exp
(

t2(bi −ai)
2

8

)

≤ inf
h>0

exp

(
−htn+ t2

n

∑
i=1

(bi −ai)
2

8

)
(7.21)

≤ inf
h>0

exp(g(t)) (7.22)

Function t(t) is a parabola. Its minimum is for

t0 =
4hn

∑
n
i=1(bi −ai)2 (7.23)
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Substituting t0 for t in Eq.(7.21) yields the following equation.

P(X̄ − p ≥ h) ≤ inf
h>0

exp

(
−htn+ t2

n

∑
i=1

(bi −ai)
2

8

)
(7.24)

≤ exp
(
− 2h2n2

∑
n
i=1(bi −ai)2

)
. (7.25)

The proof is complete as Eq.(7.25) is Eq.(7.17).

By symmetry one can also prove the following e.g. by Yi =−Xi.

Theorem 7.3. Let Xi be an independent random variable, i = 1, . . . ,n. Let Sn = ∑i Xi, X̄ = Sn/n, where ai ≤ Xi ≤ bi
and p = E(X̄) and E(Sn) = np. Then for any h such that 0 < h we have the following.

P(X̄ − p ≤−h)) = P(Sn ≤ (p−h)n)≤ exp
(

−2n2h2

∑
n
i=1(bi −ai)2

)
. (7.26)

In [15], Theorem 7.1 appears as Theorem 5.1, and Theorem 7.2 and Theorem 7.3 appear as Theorem 5.7 there.
There are variants of Theorem 7.1 and Theorem 7.2. These include the following ones.

Corollary 25. Let Xi be an independent random variable, i = 1, . . . ,n, such that a ≤ Xi ≤ b. Let Sn = ∑i Xi and
E(Sn) = np. Then for any δ such that 0 < δ < (1− p)/p we have the following.

P(Sn ≥ (1+δ )pn) ≤ exp
(
−2n2δ 2 p2

n(b−a)2

)
. (7.27)

Proof. Set h = δ p in Theorem 7.1. Moreover ai = a, bi = b, i = 1, . . . ,n.

A similar corollary to Corollary 25 can be proven for P(Sn ≤ (1− δ )pn), if one bounds the number of failures
rather than successes with Theorem 7.2 or if ai = 0 and bi = 1, equivalently consider Yi = −Xi. The upper bound
would be identical then.

Corollary 26 appears in [15] as 5.3 in Corollary 5.2 for a = 0 and b = 1.

Corollary 26. Let Xi be an independent random variable, i = 1, . . . ,n, such that a ≤ Xi ≤ b. Let Sn = ∑i Xi and
E(Sn) = np. Then for any h such that 0 < h < n−np we have the following.

P(Sn ≥ pn+h) ≤ exp
(

−2h2

∑
n
i=1(bi −ai)2

)
. (7.28)

Proof. Replace hn in Theorem 7.2 with h.

Moreover one can combine Corollary 26 and Corollary 30 to bound P(|Sn − pn| ≥ h).
The following is due to [2]. It also appears as Corollary 19 and Corollary 21
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Theorem 7.4 (Angluin-Valiant[2]). For every n, p, b with 0 ≤ p ≤ 1 and 0 ≤ b ≤ 1, we have the following.

k=⌊(1−b)np⌋

∑
k=0

B(n, p;k)≤ exp(−b2np/2),

and
n

∑
k=⌈(1+b)np⌉

B(n, p;k)≤ exp(−b2np/3).

For the case of a binomial distribution of Bernouli trials the following becomes available.

Corollary 27. Let Xi be an independent random variable, i = 1, . . . ,n, such that Xi ∼ b(p), where 0 < p < 1. Let
Sn = ∑i Xi and E(Sn) = np. Then for any δ such that 0 < δ < (1− p)/p we have the following.

P(Sn ≥ (1+δ )pn) ≤ exp
(
−2nδ

2 p2). (7.29)

Corollary 28. Let Xi be an independent random variable, i = 1, . . . ,n, such that Xi ∼ b(p), where 0 < p < 1. Let
Sn = ∑i Xi and E(Sn) = np. Then for any h such that 0 < h < n−np we have the following.

P(Sn ≥ pn+h) ≤ exp
(
−2h2

n

)
. (7.30)

7.3 Derived left tails

Corollary 29. Let Xi be an independent random variable, i = 1, . . . ,n, such that a ≤ Xi ≤ b. Let Sn = ∑i Xi and
E(Sn) = np. Then for any δ such that 0 < δ < 1 we have the following.

P(Sn ≤ (1−δ )pn) ≤ exp
(
−2n2δ 2 p2

n(b−a)2

)
. (7.31)

Proof. Bound the number of failures rather than successes with Theorem 7.2 or equivalently consider Yi =−Xi.

Corollary 30 appears in [15] as 5.4 in Corollary 5.2 for a = 0 and b = 1.

Corollary 30. Let Xi be an independent random variable, i = 1, . . . ,n, such that a ≤ Xi ≤ b. Let Sn = ∑i Xi and
E(Sn) = np. Then for any h such that 0 < h < 1− p we have the following.

P(Sn ≤ pn−h) ≤ exp
(

−2h2

∑
n
i=1(bi −ai)2

)
. (7.32)
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For the case of Bernoulli trials we have the following simplifications.

Corollary 31. Let Xi be an independent random variable, i = 1, . . . ,n, such that Xi ∼ b(p), where 0 < p < 1. Let
Sn = ∑i Xi and E(Sn) = np. Then for any δ such that 0 < δ < 1 we have the following.

P(Sn ≤ (1−δ )pn) ≤ exp
(
−2nδ

2 p2). (7.33)

Corollary 32. Let Xi be an independent random variable, i = 1, . . . ,n, such that ≤ Xi ∼ b(p), where 0 < p < 1. Let
Sn = ∑i Xi and E(Sn) = np. Then for any h such that 0 < h < 1− p we have the following.

P(Sn ≤ pn−h) ≤ exp
(
−2h2

n

)
. (7.34)

7.4 Derived concentration bounds
The following Corollary combines Corollary 25 with Corollary 29.

Corollary 33. Let Xi be an independent random variable, i = 1, . . . ,n, such that a ≤ Xi ≤ b. Let Sn = ∑i Xi and
E(Sn) = np. Then for any δ such that 0 < δ < 1 we have the following.

P(|Sn −np| ≥ δ pn) ≤ 2exp
(
−2n2δ 2 p2

n(b−a)2

)
. (7.35)

The following Corollary combines Corollary 26 with Corollary 30 instead.

Corollary 34. Let Xi be an independent random variable, i = 1, . . . ,n, such that a ≤ Xi ≤ b. Let Sn = ∑i Xi and
E(Sn) = np. Then for any h such that 0 < h < 1− p we have the following.

P(|Sn − pn| ≥ h) ≤ 2exp
(

−2h2

∑
n
i=1(bi −ai)2

)
. (7.36)



Chapter 8

Miscellanea

8.1 Combinatorial inequalities

Inequality 1. For any integer n > we have the following.

n! ≤ nn, and n! ≥ (n/2)n/2.

We also have the following.

n! ≤
(n

2

) n
2

nn/2 and n! ≥ n
n
2−

√
n

2 .

Proof.
Starting with n! = 1 ·2 · . . . · (n−1) ·n, we have that

n! = 1 ·2 · . . . · (n−1) ·n
≤ n ·n · . . . ·n ·n
≤ nn.

Likewise n! = 1 ·2 · . . . · (n−1) ·n leads to

n! = 1 ·2 · . . . ·n/2 · . . .(n−1) ·n
≥ 1 ·1 · . . . ·n/2 · . . .n/2 ·n/2

≥ (n/2)(n/2).

Ignoring
√

n terms we have the following.

n! = 1 ·2 · . . . ·
√

n · . . .(n−1) ·n
≥ 1 ·1 · . . . ·

√
n · . . .(n−1) ·n

≥
(√

n
)n−

√
n

≥ n
n
2−

√
n

2 .

The corresponding upper bound can be proven similarly.
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Stirling’s approximation for the factorial.

Inequality 2. For any integer n > 0 we have the following.

(n/e)n ≤ n! ≤ en(n/e)n.

Inequality 3. For any integer n > 0 and 1 ≤ k ≤ n we have the following.(n
k

)k
≤
(

n
k

)
≤
(ne

k

)k
.

Proof.

(
n
k

)
=

n!
k!(n− k)!

=
n · (n−1) · . . . · (n− k+1)

k!

=
nk

k!
Stirling′s approximation

≤ nk

(k/e)k

=
(en

k

)k

Instead of using Stirling’s approximation for the factorial we could have used the following Taylor expansion for ek.

ek =
∞

∑
i=0

ki

i!
≥

i=k

∑
i=k

ki

i!
≥ kk

k!

The last one implies ek/kk ≥ 1/k!.
For the lower bound we have the following.(

n
k

)
=

n!
k!(n− k)!

=
n · (n−1) · . . . · (n− k+1)

k · (k−1) · . . . ·1
=

k−1

∏
t=0

n− t
k− t

≥
k−1

∏
t=0

n
k
≥
(n

k

)k

For t = 0, (n− t)/(k− t) = n/k ≥ n/k. For t = 1 through t = k− 1, we have that (n− t)/(k− t) ≥ n/k, as long as
k ≤ n.

Inequality 4. For any integer n > 0 and k ≤ n we have the following.(
n
k

)
≤ 2n.
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Inequality 5. For any integer n > 0 we have the following.

22n

2
√

n
≤
(

2n
n

)
≤ 22m

√
2m

.

Inequality 6. The following holds. (
2n
n

)
=

(2n)!
n! ·n!

≥ 2n.

Proof.

(2n)!
n! ·n!

=
(2n) · (2n−1) · . . . · (n+1)

n · (n−1) · . . . ·1

=
(2n) · (2n−1) · . . . · (2n− i) · . . . · (2n− (n−1))

n · (n−1) · . . . · (n− i) · . . . · (n− (n−1))

=
(2n)

n
· (2n−1)

n−1
· . . . · (2n− i)

n− i
· . . . · 2n− (n−1)

n− (n−1)

≥ 2 · n
n
·2 · (n−1/2)

n−1
· . . . ·2 · (n− i/2)

n− i
· . . . ·2 · n− (n−1)/2

n− (n−1)
≥ 2n

The latter is due to the fact that
n− i/2

n− i
≥ 1 ⇔ n− i/2 ≥ n− i ⇔ i/2 ≤ i.

Inequality 7 ([3]). Let b ≤ b+ x < a and 0 ≤ y < b ≤ a. The following hold.(
a−b− x

a− x

)x

≤
(

a− x
b

)(
a
b

)−1

≤
(

a−b
a

)x

≤ e−(b/a)x.

The following also holds. (
b− y
a− y

)y

≤
(

a− y
b− y

)(
a
b

)−1

≤
(

b
a

)y

≤ e−(1−b/a)y.

8.2 Series
The primary source for the listed inequalities is [1], [17].
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Inequality 8 (Mercator-Newton). For every −1 < x ≤ 1 we have

ln(1+ x) =
∞

∑
i=1

(−1)i+1 xi

i
= x− x2

2
+

x3

3
− . . .

Proof. Obtained from Inequality 11 after a Taylor series expansion of ln(x) for x = 1, and then substitution x+1 for
x.

Inequality 9. For −1 ≤ x < 1 we have the following equality by substituting −x for x in Inequality (8).

ln(1− x) =
∞

∑
i=1

(−1)
xi

i
=−x− x2

2
− x3

3
− . . .

Moreover we obtain the following.

ln(n+1)− ln(n−1) = 2
(

1
n
+

1
3n3 +

1
5n5 + . . .

)
.

Furthermore we can also conclude that for a finite t we have the following.

ln(1− x)≤
t

∑
i=1

(−1)
xi

i
,

and the following trivially holds.

ln(1− x)≥
t

∑
i=1

(−1)
xi

i
− xt

t
.

Inequality 10. For x > 1/2 we have as follows.

ln(x) =
∞

∑
i=1

1
i
·
(

x−1
x

)i

=
x−1

x
+

1
2

(
x−1

x

)2

+
1
3

(
x−1

x

)3

+ . . .

Inequality 11. For every 2 ≥ x > 0 we have the following.

ln(x)≥
∞

∑
i=1

(−1)i+1 (x−1)i /i
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Inequality 12. For we have as follows.

exp(−1
n
) =

∞

∑
i=1

(−1)i 1
i! ·ni = 1− 1

n
+

1
2! ·n2 − 1

3! ·n3 ≥ 1− 1
n
.

8.3 Exponential inequalities
The primary source for the listed inequalities is [1], [17].

Inequality 13. Note that for positive integer n > 0, we have the following.

(1+1/n)n ≤ e, (1+1/n)n−1 ≥ e, (1−1/n)n−1 ≥ e−1.

They can proved by taking logarithms of both sides, then set t = 1/n, t > 0, and finally clear determine the
monotonicity of a function f (t) of t by calculating its first derivative and f (0).

Inequality 14. The following are true.
ex ≥ 1+ x ∀x ∈ R.

For integer k ≥ 1, we have that

e1/k ≥ k+1
k

, and e−1/(k+1) ≥ k
k+1

.

In other words,

e ≥ (1+1/k)k, and e−1/(k+1) ≥ k
k+1

.

Inequality 15. For all x ∈ R and different from zero and x < 1.

exp(− x
1− x

)< 1− x < exp(−x),
1

1− x
> exp(x),

Furthermore,
x < ex −1 <

x
1− x

Inequality 16. For every x >−1 we have the following.
x

1+ x
< (1− e−x)< x.

For every x >−1 we have the following.
1+ x > exp(

x
1+ x

).
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For every 0 < x ≤ 1.5936 we have the following.

e−x < 1− (x/2).

Inequality 17. For every x > 0,y > 0 we have the following.

ex > (1+
x
y
)y > e

xy
x+y .

Inequality 18. For all x ∈ R and different from zero and x >−1

1+ x > exp(
x

1+ x
),

and x
1+ x

< 1− exp(−x)< x.

Inequality 19. It is (1−1/N)n ≥ (1−n/N) for any integer n ≥ 1 and N > 0.

Proof.
Proof by induction on n. For n = 1 obviously (1−1/N)1 ≥ (1−1/N).
For n = k let (1−1/N)k ≥ 1− k/N. Then for n = k+1 we have

(1−1/N)k+1 = (1−1/N)k · (1−1/N)

≥ (1− k/N) · (1−1/N)

= 1− (k+1)/N + k/N2

≥ 1− (k+1)/N.

8.4 Logarithmic and other inequalities
The primary source for the listed inequalities is [1], [17], [2] , [11].

Inequality 20. For every x >−1 and x ̸= 0 we have the following.

x
1+ x

< ln(1+ x)< x.

For every x > 0 we have the following.
ln(x)≤ x−1.
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For every x < 1 and x ̸= 0 we have the following.

x <− ln(1− x)<
x

1− x
.

The following is true.

Inequality 21. For every x >−1 and x ̸= 0 we have the following.

x
1+ x

< ln(1+ x)≤ x(6+ x)
6+4x

< x.

Inequality 22. For every x > 0 we have the following.

ln(1+ x)≥ x
1+ x/2

.

Proof. Consider f (x) = ln(1+ x)− x/(1+ x/2). It is f (0) = 0. Take the first derivative, and it is positive, for all
x >−1. f

′
(x) = x2/((2+ x)2(x+1)), therefore f (x) is increasing for x ≥ 0.

Inequality 23. For every ∞ > x ≥ 0 we have the following.

2x
2+ x

≤ ln(1+ x)≤ x(x+2)
2 · (x+1)

.

For every −1 < x ≤ 0 we have the following.

2x
2+ x

≥ ln(1+ x)≥ x(x+2)
2 · (x+1)

Inequality 24. For every x ≥ 0 we have, as a consequence of Inequality 8, the following hold.

ln(1+ x)≤ x− x2/2+ x3/3,

and
ln(1+ x)≥ x− x2/2.
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Inequality 25. For every 0 < x < 0.5828 we have the following.

| ln(1− x)|< 1.5x.

Inequality 26. For every 0 ≤ δ < 1 we have the following.

(1−δ ) ln(1−δ )≥−δ +δ
2/2.

Proof. For 0 ≤ x < 1,

ln(1− x) = −
∞

∑
i=1

xi/i

= −x− x2/2− x3/3− x4/4− . . .

(1− x) ln(1− x) = −x− x2/2− x3/3− x4/4− . . .

+ +x2 + x3/2+ x4/3+ x5/4+ . . .

(1− x) ln(1− x) = −x+ x2/2+ x2/6+ . . .

The missing terms in the last form of the equation are positive. We can then conclude

(1− x) ln(1− x)≥−x+ x2/2+ x2/6 ≥−x+ x2/2

Inequality 27. For every 0 ≤ δ ≤ 1 we have the following.

(1+δ ) ln(1+δ )≥ δ +δ
2/3.

Proof. For 0 ≤ x ≤ 1,

ln(1+ x) = x− x2/2+ x3/3− x4/4+ . . .

(1+ x) ln(1+ x) = x− x2/2+ x3/3− x4/4+ . . .

+ x2 − x3/2+ x4/3− x5/4+ . . .

(1+ x) ln(1+ x) ≥ x+ x2/2− x3/6

We can then conclude since 0 ≤ x ≤ 1 that

(1+ x) ln(1+ x)≥ x+ x2/2− x3/6 ≥ x+ x2/2− x2/6 ≥ x+ x2/3.

Set x = δ and the result follows.

Inequality 28. For every 2e−1 < δ we have the following.

(1+δ ) ln(1+δ )≥ (2e)2e.
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Inequality 29.
(a) For integer n > 0 the following holds.

1
n+1

≤ ln(1+
1
n
)≤ 1

n
(b) For integer n > 1 the following holds.

1
n
≤− ln(1− 1

n
)≤ 1

n−1

Proof.
Both are also a consequence of Inequality 20. (a) Graph y = 1/x on the Euclidean plane. Consider x = 1 and x =
1+ 1/n. The curve y = 1/x between the two x points is bounded below by a rectangle of x side 1/n and y side
1/(1+1/n). It is also bounded above by a rectangle of x side 1/n and y side 1. Then we have the following.

1
n
· 1

1+1/n
≤

∫ 1+1/n

1

1
x

dx ≤ 1
n
·1 ⇐⇒

1
n+1

≤ ln(1+
1
n
)≤ 1

n
⇐⇒

n
n+1

≤ n · ln(1+ 1
n
)≤ 1 ⇐⇒

n
n+1

≤ ln(1+
1
n
)n ≤ 1 ⇐⇒

The second part above proves (a). Furthermore, We take the limit limn→∞ ln(1+ 1
n )

n. We have

lim
n→∞

ln(1+
1
n
)n ≥ lim

n→∞

n
n+1

= 1

and
lim
n→∞

ln(1+
1
n
)n ≤ lim

n→∞
1 = 1

Therefore limn→∞ ln(1+ 1
n )

n = 1 or equivalently limn→∞(1+ 1
n )

n = e.
(b) Graph y = 1/x on the Euclidean plane. Consider x = 1 and x = 1− 1/n. The curve y = 1/x between the two x
points is bounded above by a rectangle of x side 1/n and y side 1/(1−1/n). It is also bounded below by a rectangle
of x side 1/n and y side 1. Then we have the following.

1 · 1
n

≤
∫ 1

1−1/n

1
x

dx ≤ 1
1−1/n

· 1
n

⇐⇒

1
n

≤ − ln(1− 1
n
)≤ 1

n−1
⇐⇒

1 ≤ −n · ln(1− 1
n
)≤ n

n−1
⇐⇒

The second part above proves (b). Furthermore, We take the limit limn→∞− ln(1− 1
n )

n. We have

lim
n→∞

− ln(1− 1
n
)n ≥ lim

n→∞
1 = 1

and
lim
n→∞

− ln(1− 1
n
)n ≤ lim

n→∞

n
n−1

= 1

Therefore limn→∞− ln(1− 1
n )

n = 1 or equivalently limn→∞(1− 1
n )

n = 1/e.



72 CHAPTER 8. MISCELLANEA

Inequality 30 ([3]). For every 0 < t < 0.45 we have the following.

ln(1+ t)> t − t2/2+ t3/4.

For every 0 < t < 0.69 we have the following.

ln(1− t)>−t − t2.

For every 0 < t < 0.431 we have the following.

ln(1− t)>−t − t2 − t3/3.

8.5 Combinatorial equalities
All numbers are non-negative integers unless otherwise stated.

Lemma 11. For any n,k we have the following. (
n
k

)
=

(
n

n− k

)

Proof. The number of ways to select k objects out of n is the number of ways to UNselect n− k objects out of n thus
selecting the remaining k objects.

Lemma 12. For any n,k we have the following.(
n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)

Proof. The number of ways to select k objects out of n is equal to the number of selections of k objects that contain 1
plus the number of selections of k objects that DO NOT contain 1. If the selection of k objects contains 1 the number
of such selections is to select out of the (out of 1) remaining n−1 objects k−1 of them and add to the mix 1. This is(n−1

k−1

)
. If the selection of k objects does not contain 1 the number of such selections is to select out of the (out of 1)

remaining n−1 objects k of them. This is
(n−1

k

)
.

Theorem 8.1. For any x,y ∈ R, and n we have the following.

(x+ y)n =
n

∑
k=0

(
n
k

)
xnyn−k.
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Corollary 35. We have the following.

(1+1)n = 2n =
n

∑
k=0

(
n
k

)
.

Corollary 36.

(1−1)n = 0 =
n

∑
k=0

(
n
k

)
(−1)k.

Corollary 37. The number of subsets of {1,2, . . . ,n} of even cardinality is equal to the number of subsets of
{1,2, . . . ,n} of odd cardinality and thus we have the following.

(1−1)n = 0 =
n

∑
k=0

(
n
k

)
(−1)k.

Proof.

(1−1)n = 0 =
n

∑
k=0

(
n
k

)
(−1)k.

implies (
n
0

)
+

(
n
2

)
+ . . .=

(
n
1

)
+

(
n
3

)
+ . . .

Corollary 38. For n and a, we have the following.

(1+b)n = 0 =
n

∑
k=0

(
n
k

)
bn−k.

(b+1)n = 0 =
n

∑
k=0

(
n
k

)
bk.

Lemma 13. For any n,k,m, with k ≤ r ≤ n, we have the following.(
n
r

)(
r
k

)
=

(
n
k

)
+

(
n− k
r− k

)
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Proof. The number of ways to choose k balls for bin RED and r− k balls for bin BLUE is to select first r balls out of
n and then out of the r balls choose the k balls to go to bin RED with the unchosen going to bin BLUE. This is the
first left-hand side. Equivalently, First pick out of n the k RED bin balls. From the remaining n− k ones pick the r− k
BLUE bin balls.

Lemma 14. For any p,q, and r we have the following.

r

∑
k=0

(
a
k

)(
b

r− k

)
=

(
a+b

r

)

Proof. We have a+b call it n balls, a are RED and b are BLUE. In how many ways can we pick r balls out of n?

Lemma 15. For n and m, where m ≤ n we have the following.

m

∑
k=0

(
n
k

)
(−1)k = (−1)m

(
n−1

m

)
.

Proof. Use induction on m.



Part III

Probability problems
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Chapter 9

Entropy function and random vectors

Problem 1.
Find the maximum of the entropy function f (x) =−x lgx− (1− x) lg(1− x). 0 < x < 1.

Proof.
We are using logarithms base two. Note that Consider 2y = e i.e. y = lge by definition. Taking ln of both sides we
hage y ln2 = 1. Thus lge = y = 1/ ln2. It is easy with a calculator to establish that lge > 1 and in fact and lge ≈ 1.442.
Consider now,

2lgx = elnx = x.

Take lg of both sides. Therefore lgx = lnx lge. We use it to convert f (x) into

f (x) =−x lgx− (1− x) lg(1− x) =−x lnx lge− (1− x) ln(1− x) lge = g(x) lge

where g(x) is as follows.
g(x) =−x lnx− (1− x) ln(1− x).

Note that f
′
(x) = g

′
(x) lge. Find the first derivative of g(x).

g
′
(x) =− lnx− x/x+ ln(1− x)− (1− x)(−1)/(1− x) =− lnx+ ln(1− x)

Setting g
′
(x) = 0 and solving for x we get x = 1/2. This is also the case for f

′
(x). We note that

f (1/2) = 1,

and that’s the minimum value. For this to be the case we should have confirmed earlier that f ′′(x)< 0 or equivalently
g′′(x) < 0. Note that f

′′
(x) = g

′′
(x)(lge)2, and the last term is always positive. The monotonicity of f

′′
(x) is the

monotonicity of g
′′
(x). Needless

g
′′
(x) =−1/x−1/(1− x)

and thus g
′′
(1/2) = −4 < 0. This means that f (x) and also g(x) has a maximum at x = 1/2. It is not difficult to

establish that f (1/2) = 1.
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Problem 2.
Find the minimum of F(x) = x lg(x)+(n− x) lg(n− x), 0 < x < n, for n > 0.

Proof.
For 0 < x < n we use y = x/n that is x = yn, and then 0 < y < 1. Then

F(x) = x lg(x)+(n− x) lg(n− x)

F(yn) = yn lg(yn)+(n− yn) lg(n− yn) = yn lgy+ yn lgn+n(1− y) lg(1− y)+n(1− y) lgn

= yn lgy+n(1− y) lg(1− y)+n lgn

= nG(y)+n lgn

In the remainder we study G(y) with 0 < y < 1.

G(y) = y lg(y)+(1− y) lg(1− y).

But
G(y) =− f (y),

where f (y) is the function of the previous problem (it does not matter that we called the function there f (x), the alias
x or y does not matter). The maximum of f (y) at y = 1/2 (previous problem) translates into a minimum for G(y) at
y = 1/2 and a minimum for F(yn) and y = 1/2 or a minimum for F(x) at x = yn = n/2.

If the previous problem was not there, and you do not like change of bases then we proceed as follows.
We first find f ′(y).

f ′(y) =
lny+ y ·1/y− ln(1− y)+(1− y)(−1)/(1+ y)

ln2

=
lny− ln(1− y)

ln2
.

f ′(y) = 0 for y = 1− y i.e. y = 1/2. Then we find the second derivative of f .

f
′′
(y) =

1
ln2

(
1
y
+

1
1− y

)
.

Then we conclude f
′′
(1/2) = 4/ ln2 > 0. Thus f has a minimum for y = 1/2 and so does F at x = yn = n/2.
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Problem 3.
You are given a random vector a = (a1, . . .an), where ai is equally likely and independently to be 0 or 1, i.e. Pr(ai =
1) = Pr(ai = 0) = 1/2. Answer the following questions.
(a) (Warmup) What’s the probability that a is the all zero vector ?
(b) Suppose that a,b are two 0-1 vectors of length n whose components were chosen uniformly at random as discussed
previously. What is the expected value of the inner product a ·b = ∑

n
i=1 aibi? Explain.

(c) Let d be a vector of integers mod p (i.e. elements of d are 0, . . . p− 1), where p is a prime. Let a be a random
vector of 0-1’s chosen as before. What is an upper bound on the probability that ∑diai ≡ 0 mod p? Explain.

Proof.
(a) 1/2n.
(b) n/4.

E[c] = E[ab] = E[∑
i

aibi] = ∑
i

E[aibi]

aibi is 0 with probability 3/4 and 1 with probability 1/4 (when both ai = bi = 1).

E[aibi] = 0(3/4)+1(1/4) = 1/4

Therefore
E[c] = E[ab] = E[∑

i
aibi] = ∑

i
E[aibi] = n(1/4)

(c) The vector d is given (and is not necessarily random). Assume d ̸= 0, i.e. at least one component of the vector is
non-zero since otherwise the problem is trivial. ∑diai ≡ 0 mod p.

∑
i

diai ≡ 0 mod p

d1a1 +d2a2 + . . .+dnan ≡ 0 mod p

d1a1 ≡ (−d2a2 − . . .−dnan) mod p

d1a1 ≡ Z mod p

where Z ≡ (−d2a2 − . . .−dnan) mod p. Then,

∑
i

diai ≡ 0 mod p

d1a1 ≡ Z mod p

a1 ≡ (d1)
−1Z mod p

a1 ≡ B mod p

The inverse of d1 exists since d1x ≡ 1 mod p has a single solution for x by the fact that d1 < p is such that (d1, p) = 1
and p is prime. B = (d1)

−1Z mod p is an integer in 0, . . . , p−1. a1 is a (uniformly at) random (chosen) 0,1. What is
the probability that the random a1 is B? Naturally this probability is at most 1/2, as after we fix B, a1 can agree with
this fixed value of B half of the time only. If the ai’s were not binary but ternary, then the probability bound would be
1/3 instead.
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Chapter 10

Balls and bins, bernoulli and binomial

Problem 4.
Examine the monotonicity of the binomial process B(n, p).

Proof.
Let B(n, p;k) =

(n
k

)
pk(1− p)n−k. Consider

B(n, p;k)
B(n, p;k−1)

= 1+
(n+1)p− k

k(1− p)
.

If k < (n+1)p the binomial terms form an increasing sequence. If k > (n+1)p the binomial terms form a decreasing
sequence. If (n+1)p = t then B(n, p;k) = B(n, p;k−1), since the fraction above is 1. Otherwise there exists only one
integer m such that (n+1)p−1 < m ≤ (n+1)p.

81



82 CHAPTER 10. BALLS AND BINS, BERNOULLI AND BINOMIAL

Problem 5.
Let Sn = X1 + . . .+Xn, where Xi are individually independent Bernoulli processes with Xi ∼ b(p). Then Sn ∼ B(n, p).
Given the expectation, and the variance of Sn and show that

P(Sn ≥ t)≤ t(1− p)/(t −np)2

for t > np.

Proof.
if t > np this implies t ≥ np+1 ≥ (n+1)p since p ≤ 1. Let B(n, p;k) =

(n
k

)
pk(1− p)n−k. Consider

B(n, p;k)
B(n, p;k−1)

= 1+
(n+1)p− k

k(1− p)
.

If k < (n+1)p the binomial terms form an increasing sequence. If k > (n+1)p the binomial terms form a decreasing
sequence. If (n+1)p = t then B(n, p;k) = B(n, p;k−1), since the fraction above is 1. Otherwise there exists only one
integer m such that (n+1)p−1 < m ≤ (n+1)p.
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Problem 6.
Let Sn = ∑

n
i=1 Xi, where Xi are individually independent Bernoulli processes with Xi ∼ b(p). Then Sn ∼ B(n, p). Show

that for 6np < n we have the following
P(Sn ≥ 6np)≤ 2−6pn,

using Chernoff bounds.

Proof.
Consider Corollary 16. For δ > 2e−1, the following applies.

P(Sn ≥ (1+δ )pn)≤ 2−(1+δ )pn.

If we pick (1+δ ) = 6 the result follows.
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Problem 7.
Let Sn = ∑

n
i=1 Xi, where Xi are individually independent Bernoulli processes with Xi ∼ b(1/2). Then Sn ∼ B(n,1/2).

In n coin tosses (p = 1/2 of a fair coin), what is the probability of having r Heads, where r < n/2?

P(r Heads, r < n/2)?

Use a Chernoff or Hoeffding bound. Do not browse later questions.
Use the bound to answer the following question: What is the probability that in 100 coin tosses we have 25 or

fewer heads?

Proof.
Use Chernoff Corollary 21

P(Sn ≤ (1−δ )np)≤ exp(−δ
2np/2).

with (1−δ )n/2 = m i.e. δ = 1−2m/n. Now n = 100, m = 25, δ = 1−50/100 = 1/2 we have

P(Sn ≤ 25)≤ exp−(1/4)25 < 2/1000.
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Problem 8.
(Coin tossing continues.) Let Sn = ∑

n
i=1 Xi, where Xi are individually independent Bernoulli processes with Xi ∼

b(1/2). Then Sn ∼ B(n,1/2).
In n coin tosses (p = 1/2 of a fair coin), what is the probability of having r Heads, where r < n/2?

P(|Sn/n−1/2| ≥ δ )

Use a Chebyshev and then a Chernoff or Hoeffding bound.
Consider the cases δ = 1/2, δ =

√
1.5ln(n)/n and δ = 2

√
1.5ln(n)/n. Observe variation when delta doubles for

the last two choices.

Proof.
Chebyshev first.

P(|Sn/n−1/2| ≥ δ ) = P(|Sn −n/2| ≥ δn)≤ var(Sn)

δ 2n2 ≤ 1
4δ 2n

.

Note that var(Sn) = npq = n(1/2)(1/2) = n/4.
Let us go for the familiar Corollary 23. The term below (n/2) is introduced to form np= n/2 next to δ per Corollary 23.

P(|Sn/n−1/2| ≥ δ ) = P(|Sn −n/2| ≥ δn) = P(|Sn −n/2| ≥ 2δ (n/2))≤ 2exp(−(n/2)4δ
2/3)≤ 2exp(−(2/3)nδ

2).

The latter one
(a) for δ = 1/2 becomes 2e−n/6,
(b) for δ =

√
1.5ln(n)/n becomes 2/n, and

(c) for δ = 2
√

1.5ln(n)/n becomes 2/n4.
Consider now a Hoeffding bound (e.g. Corollary 33.

P(|Sn/n−1/2| ≥ δ ) = P(|Sn −n/2| ≥ 2δ (n/2))≤ 2exp(−2nδ
2).

The latter one
(a) for δ = 1/2 becomes 2e−n/2,
(b) for δ =

√
1.5ln(n)/n becomes 2/n3, and

(c) for δ = 2
√

1.5ln(n)/n becomes 2/n12.
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Problem 9.
Let Sn = ∑

n
i=1 Xi, where Xi are individually independent Bernoulli processes with Xi ∼ b(p). Then Sn ∼ B(n, p). Show

that for r > np,
P(Sn −np ≥ r)≤

(npe
r

)r
.

Proof.
We use the Chernoff trick with the moment generating function. For this we note the following.

E(exp t(Xi − p)) = p · et(1−p)+(1− p) · e0 = pet(1−p)+1− p ≤ pet +1 ≤ epet
.

In the application of the Chernoff trick, the first inequality is by Markov’s inequality’s application. The last step uses
the result above

P(Sn −np ≥ r) = P(t(Sn −np)≥ tr)

= P(exp t(Sn −np)≥ exp tr)

≤ e−trE(exp(t(Sn −np)))

= e−trE(exp(t(∑
i

Xi −np)))

= e−tr
∏

i
E(exp(t(Xi − p)))

= e−tr
∏

i
e(pet ))

We have thus concluded the following.

P(Sn −np ≥ r) ≤ e−tr
∏

i
epet

= e−trenpet

= e−tr+npet

The exponent is f (t) =−tr+npet . We find f
′
(t) =−r+npet . We then equate it to zero and solve for t that is, f

′
(t) =

−r+ npet = 0 implies et = r/(np) and consequently t = ln(r/(np)). Deriving f
′′
(t) = npet = np(r/(np)) = r > 0.

Thus f (t) has a minimum at t = ln(r/(np)). Substituting for t the right-hand side value we have.

e− ln(r/(np))r+np(r/(np))) = (
np
r
)rer = (

npe
r

)r.
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Problem 10.
Let Sn = ∑

n
i=1 Xi, where Xi are individually independent Bernoulli processes with Xi ∼ b(p). Then Sn ∼ B(n, p). Show

the following for 1 ≤ r < n.
P(Sn ≥ r)≤

(npe
r

)r
.

P(Sn < r)≤
(

n
n− r

)
(1− p)n−r.

Proof.
We prove a variation of the previous problem i.e.

P(Sn ≥ r)≤
(npe

r

)r
.

Consider all subsets S of cardinality r of {1,2, . . . ,n}. There are
(n

r

)
of them and for j ∈ S we consider experiment

X j a success. We call the event related to the given S, event ES (where all experiments described by S are a success).
P(ES) = pr. Thus P(Sn ≥ r) is upper bounded by the union of all such events possible.

P(Sn ≥ r)≤ P(∪ES)≤ ∑
S,|S|=r

P(ES)≤
(

n
r

)
pr. (10.1)

However, the problem in question asks for a bound of the following.

P(Sn < r)

The probability of having fewer than r successes is also the probability of having at least n− r failures. This is
Eq.(10.1) substituting failure for success and thus probability of failure 1− p for probability of success p. Therefore

P(Sn < r) = P(B(n, p;k)< r)P(B(n,(1− p);k ≥ n− r)≤
(

n
n− r

)
(1− p)n−r.
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Problem 11.
Let Sn = ∑

n
i=1 Xi, where Xi are individually independent Bernoulli processes with Xi ∼ b(p). Then Sn ∼ B(n, p). Show

that for r ≤ np,

P(Sn < r)≤ r(1− p)
np− r

B(n, p;r).

Proof.
Consider

P(Sn < r) = P(B(n, p)< r) =
r−1

∑
i=0

B(n, p; i).

Now take the ration

B(n, p; i−1)
B(n, p; i

=
i

n− i+1
1− p

p

≤ r
n− r

1− p
p

=
rq

(n− r)p
.

The inequality above follows from 1/(n− i+1)< 1/(n− r)⇔ r > i. We then call a the ratio a = rq/((n− r)p). Note
that a ≤ 1 since r(1− p)≤ (n− r)p ⇔ r ≤ pn, with the latter given as a condition in the problem statement. Therefore
for all i = 0, . . . ,r−1

B(n, p; i−1)≤ aB(n, p; i),

which implies

r−1

∑
i=0

B(n, p; i) ≤
r

∑
i=1

arB(n, p;r)

≤ B(n, p;r)
r

∑
i=1

arB(n, p;r)

≤ B(n, p;r)
∞

∑
i=1

arB(n, p;r)

≤
(

1
1−a

−1
)

B(n, p;r).

≤ a
1−a

B(n, p;r).

Note that a/(1−a) = rq/(np− r).
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Problem 12.
Give the number of derangements of permutations on n elements {1,2, . . . ,n}.
A permutation π is a derangement if and only if it does not have a fixed point. Point i is a fixed point of a

permutation π if π(i) = i. Therefore in a derangement π we have π(i) ̸= i ∀i, i = 1, . . . ,n.

Proof. Let S be the set of all permutations. Let Ai = {π ∈ S : π(i) = i}. A permutation π is a derangement if and only
if

π ∈ A1 ∪ . . .∪An

Moreover AI , I ⊆ {1,2, . . . ,n} with |I| = k contains all permutations with k fixed points. There are |AI | = (n− k)! of
them. Let us try to count instead

n!−A1 ∪ . . .∪An

or
A1 ∪ . . .∪An

By the principle of inclusion exclusion we get

|A1∪ . . .∪An|∑
i
|Ai|−∑ i < j|Ai∩A j|+∑ i < j < k|Ai∩A j ∩Ak|− . . .=

n

∑
i=1

(−1)i+1
(

n
i

)
(n− i)! = n!

n

∑
i=1

(−1)i+1/i!.

Thefore n!−|A1 ∪ . . .∪An|= ∑
n
i=0(−1)i+1/i!.
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Problem 13.
(a) Calculate P(n,k) the number of permutations of n objects taken k at a time.
(b) Calculate C(n,k) the number of combinations of n objects taken k at a time. Order in the set (of a combination)

makes no difference.

Proof.
(a) We have n possibilities for the first element of the permutation, n−1 for the second, etc. Total is

P(n,k) = n(n−1) . . .(n− (k−1)) =
n!

(n− k)!

(b) We have P(n,k) possibilities but then need to adjust because order is not important by dividing with k!. Total is

C(n,k) = P(n,k)/k! = n(n−1) . . .(n− (k−1)/k! =
n!

(n− k)!k!
=

(
n
k

)
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Problem 14.
Find the number of ways you can throw n balls into N bins for the following scenarios.

(a) Distinct balls into distinct bins.
(b) Indistinct balls into distinct bins.
(c) Indistinct balls into distinct bins with at least one ball per bin.
(d) Indistinct balls into distinct bins with at least ki balls into bin i?
(e) Indistinct balls into distinct bins at most one ball per bin.
(f) Distinct balls into distinct bins at most one ball per bin.
(g) Distinct balls into indistinc bins at least one ball per bin.
(h) Distinct balls into indistict bins at most one ball per bin.
(i) Indistinct balls into indistict bins at most one ball per bin.

Proof.
(a) We describe the distribution as a n-digit sequence, each digit taking one of N values representing a bin’s ID (e.g.
from 1 to N). There are

N ×N × . . .× . . .N︸ ︷︷ ︸
since there are n digits

= Nn

(b) This is equivalent to ni the number of balls in bin i: ∑
N
i=1 ni = n. In other words, the number of solutions ni of this

equation in the non-negative integers is the answer to the original question. This is
(n+N−1

N−1

)
=
(n+N−1

n

)
. Think also

N + 1 vertical lines (inclusive of first and last). First and last are fixed, they can be ignored thus the position of the
remaining N −1 varies. Total number is out of n+N −1 marked positions we pick N −1 and turn them into vertical
line markers

(N+n−1
N−1

)
. Between the markers we count balls per corresponding bin.

(c) Place one indistinct ball per bin. The remaining n−N balls remain to be distributed into the N bins. By case (b)
we have

(n−1
N−1

)
. Equivalently, the n balls create n−1 gaps between them. Pick k−1 out of the n−1 gaps in

(n−1
N−1

)
.

(d) Similar to (c). Put ki balls as neede into bin i. The remaining balls are handled as in (b) above.(
n−∑i ki

N −1

)
.

(e) Implied is that N ≥ n. We need to choose which n of the N urns will be assigned a ball! Thus
(N

n

)
.

(f) N choice for first ball, N − 1 for second and so on. Total N(N − 1) . . .(N − n+ 1). Note that if N = n, then the
answer is n!. Moreover, n > N, answer is 0.

(g) That’s a Stirling number
{

N
n

}
.

(h) Not many choices: if n < N the answer is 1; otherwise it is zero!
(i) See the previous question. Not many choices: if n < N the answer is 1; otherwise it is zero!



92 CHAPTER 10. BALLS AND BINS, BERNOULLI AND BINOMIAL

Problem 15.
We throw n (indistinguishable) balls into N (indistinguishable) bins. Label them 1, . . . ,n and 1, . . . ,N respectively.
(a) What is the probability all balls fall into bin k? What is the probability that bin k is empty?
(b) What is the expected number of balls in bin k?
(c) What is the expected number of empty bins ?

Proof.
(a) All balls fall into bin k with probability (1/N)n. Bin k remains empty with probability (1−1/N)n.
(b) Let us use a random variable Xi is 1 if ball i goes to bin k, and 0 if it goes to another bin. Then Yk = ∑i=1 nXi counts
the number of balls into bin k. We have

E(Xi) = 1 ·1/N +0 · (1−1/N) = 1/N.

Then using the linearity of expectation.

E(Yk) = E(
n

∑
i=1

Xi) = ∑
i

E(Xi) = n ·1/N = n/N.

(c) Let Ak be the event that bin k is empty. Then, p(Ak) is the probability bin k is empty. Let Bk be a random variable
that is 1 if bin k is empty and 0 otherwise. Then, B = ∑k Bk counts the number of empty bins. First,

P(Ak) = (1−1/N)n

Then by linearity of expectation.
E(B) = E(∑

k
Bk) = ∑

k
E(Bk)

Finally
E(Bk) = 1 ·P(Ak)+0 · (1−P(Ak) = (1−1/N)n

We conclude that
E(B) = ∑

k
E(Bk) = N(1−1/N)n.

The latter is ≈ Ne−n/N .
If n = N, it says that 1/e of the N bins are empty. If we throw n more balls 1/e ·1/e ·N of the bins will be empty. How
many times m do we need to repeat this so that (1/e)mN < 1 ? Solving for m we find m > ln(N).
Let C be the event that there is an empty bin. Then we have the following.

P(C) = P(∃eptybin) = P(∪N
k=1empty−bink)≤ ∑

k
P(empty−bink)≤ N(1−1/N)n.

We could have proved the same by Markov’s inequality.

P(B ≥ 1)≤ E(B)/1 = N(1−1/N)n.

What is n so that P(C) is w.h.p? Let us say we want P(C) ≤ 1/N or equivalently we want Ne−n/N ≤ 1/n. Set
n = 2N lnN. Then Ne−n/N ≤ 1/N indeed.
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Problem 16.
We throw n (indistinguishable) balls into N (indistinguishable) bins. Label them 1, . . . ,n and 1, . . . ,N respectively.
Continuing the previous problem for what value of n do we expect to see two balls in one bin, say bin k? This assumes
there is one ball already into bin k.

Proof. The probability p of no second ball is as follows. We use ex ≥ 1+ x for all x ∈ R in the form e−x ≥ 1− x.

1 · (1− 1
N
) · (1− 2

N
) · (1− 3

N
) . . . · (1− n−1

N
)≤ e−1/Ne−2/N . . .e−(n−1)/N = e−n(n−1)/(2N)

The birthday paradox says that if we bound this probability by 1/2

e−n(n−1)/(2N) ≤ 1/2

the probability of a collision becomes ≥ 1/2. Solving the equation above for n we have n ≈
√

2ln(2)N. For a planet
(Earth) with 365 days on a non-leap year this means that in a group of 23-24 people there would be two with same
birthday (with probability at least 0.5).
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Problem 17.
Assume n = N. What is the probability that bin k has at least t balls in it?
We provide the following definition

Definition 45. We say an event E dependent on n occurs with high probability, if P(E)≤ 1−1/nc for some constant
c > 1.

Instead of writing ”with high probability” we shall write ”w.h.p.” or “whp” instead.

Proof. Our current scenario simplifies to n balls into n bins the fullest bin has O(lgn lg lgn) balls w.h.p.
Let bin k has t balls. The probability this is the case is B(n, p; t). A reminder

B(n, p; t) =
(

n
t

)
pt(1− p)n−t .

By Eq.(5.2) with t = ⌈upn⌉, p = 1/n and t = ⌈u⌉, u > 1. In Eq.(5.2) the u/(u−1) becomes at most 1.5 for u > 3 or
equivalently t > 3. Therefore for t > 3

P(Bin k ≥ t) = P(Sn ≥ t)≤ u
u−1

B(n, p; t)≤ 1.5
(

n
t

)
(1/n)t . (10.2)

This bound makes sense if we can put (1− p)n−t into use that we obviously did not do.
An alternative is to argue as follows (for bin k that is).

P(Bin k ≥ t)≤ ∑
Sn⊆{1,...,n},|Sn|=t

∏
i

P(ball i ∈ Snis in bin k)≤
(

n
t

)
pt =

(
n
t

)
(1/n)t (10.3)

Note that in this set-up, we guarantee the balls of Sn fall into k, but there might be other balls falling into it; we do not
use (1− p)n−k and thus this effectively become 1n−k or the other balls are free agents: they can fall into k or not.

The difference between Eq.(10.2) and Eq.(10.3) is a 1.5. We proceed discarding 1.5 as follows.
Using inequality 3 we obtain from Eq.(10.3) the following.

P(Bin k ≥ t)≤
(ne

tn

)t
≤
(e

t

)t
.

Assum n ≥ e2 implying a lnn ≥ 2. Furthermore choose t = c ln(n), with c = e2. Then if t = e2 ln(n) we have the
following. Note that 2c = 2e2 ≈ 14.778 > 14

P(Bin k ≥ t) ≤
(e

t

)c lnn

≤
( e

e2 lnn

)c lnn

≤
(

1
e lnn

)c lnn

≤
(

1
e

)c lnn

·
(

1
lnn

)c lnn

≤ 1
nc ·

1
nc

≤ 1
n2c ≤ 1

n14 .
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Then

P(number of balls any bin ≥ t) = P((number of balls of bin 1 ≥ t)

∪(number of balls of bin 2 ≥ t)

∪ . . .

∪(number of balls of bin k ≥ t)

∪ . . .

∪(number of balls of bin n ≥ t))

≤ ∑
i

P((number of balls of bin k ≥ t)

= n ·P((number of balls of bin k ≥ t)

= n ·P((Bin k ≥ t)

≤ n · 1
n14

= · 1
n13 ,

since c = e2. This means t = e2 ln(n) is too generous. We can make it smaller.
The bound t = c lnn/ ln lnn for c = 2e2 gives. First let’s bring our bound in an exponential form that we did not do

so before.

P(number of balls any bin ≥ t) ≤ n ·P((number of balls of bin k ≥ t)

≤ n · et

tt

≤ exp(lnn+ t − t ln t)

≤ 1
n6 .

The bound holds for n > 4000000 > eee1
. This is to make sure ln ln lnn/ ln lnn is small enough. Thus the result has

been proven w.h.p i.e. that with probability at least 1−1/n6 every bit has no more than 2e2 lnn/ ln lnn=Θ(lnn/ ln lnn)
balls.
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Problem 18.
If we throw n balls into n bins, what is,

a) the expected number of empty bins?
b) the expected number of bins with exactly one ball?
c) the expected number of bins with exactly two balls?

Proof.
Part (a) has been answered earlier for the general case. Set N = n to obtain the answer in (a) below. For all the parts
below, let X be a random variable that takes values 1 or 0 depending on whether a bin is empty (for part (a)), contains
exactly one ball (for part (b)), or exactly two balls (for part (c)). Then let Y be a random variable that counts the
number of empty bins for part (a), or the balls with exactly one/two ball(s) for parts (b) and (c) respectively. It is clear
that E(Y ) = nE(X).
a) Let’s consider one bin and call it for convenience only, bin 1. The probability that a ball falls in it is 1/n (and
therefore the probability that a ball does not fall in it is 1−1/n). The probability that none of the n balls falls into this
bin is thus (1−1/n)n. Then for the X variable we get that E(X) = (1−1/n)n. Summing for the n bins we get that Y
is such that: E(Y ) = n(1−1/n)n ≤ n/e.
b) Again, for bin 1, we find the probability that exactly one ball falls into that bin. Among n balls, the probability
that exactly one falls into bin 1 is equal to (n

1

)
(1/n)(1− 1/n)n−1 = (1− 1/n)n−1. As in part (a), we get E(X) = 1 · Pr(X =

1)+ 0 ·Pr(X = 0) = (1− 1/n)n−1, and therefore for Y (that gives the number of bins with exactly one ball) we find
that E(Y ) = n(1−1/n)n−1 = n2

n−1 (1−1/n)n ≤ n2

e(n−1) .
c) As in parts (a), (b), the probability that bin 1 has exactly two balls is now: (n

2

)
(1/n)2(1−1/n)n−2, and therefore the X (the

random variable that take values 1 or 0 depending on whether a given bin has exactly two ball or not) has expectation
E(X) =

(n
2

)
(1/n)2(1−1/n)n−2. Then for Y , we get that E(Y ) = nE(X) = n n(n−1)

2
1

n2
(1−1/n)n

(1−1/n)2
≤ n2

2e(n−1) .
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Problem 19.
Let us throw t balls into n bins. What is the probability that bin 5 is empty?
Implicit in the statement above is that we have enough bins to allow for bin 5 (i.e. if we label them 1,2, ,3, . . . we have
5 bins or more)!

Proof.
There is nothing specific about bin 5. We just want to stress that the question is for a specific bin. The possible
outcomes is nt . We can write down an t-digit sequence, and every ’digit’ is a value from 1 to n indicating a bin number
(that identifies a signle bin). The number of outcomes is nt as each one of the t digits take n values. The event we are
interested in is the one where the t-digit sequence contains no 5 at all. We have (n−1)t such sequences (all possible
digits other than 5). Thus the probability of bin 5 being empty is (n−1)t divided by nt i.e.

(n−1)t

nt =

(
1− 1

n

)t

.
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Problem 20.
Let us throw t balls into n bins. What is the probability that bins 5, 8 is empty?
Implicit in the statement above is that we have enough bins to allow for bin 5, 8 (i.e. if we label them 1,2, ,3, . . . ,5, . . . ,8, . . .),
we have 8 bins or more!

Proof.
It is not difficult to conclude that

(n−2)t

nt =

(
1− 2

n

)t

.
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Problem 21.
Let us throw balls into n bins one by one. Let Yi be a random variable that counts the number of balls needed to fill
one more bin, the i-th bin (not necessarily bin i). Obviously Y1 = 1, since before the throw of the first ball we assume
all bins are empty.

Examine the properties of random variable Y , where Y = ∑
n
i=1 Yi.

The problem is also known as the coupon’s collector problem. Consider also an alternative view let us call it
baseball-player cards. Bob has decided to to build a collection baseball cards of n players. For that he purchases
individual enveloped baseball cards; one card is contained in an opaque envelope. The chance that he gets one of any
of the n players of his election is 1/n. How many cards should he gather to make sure that he has at least one of its
one of the n players?

Proof.
For Y1 = 1. Random variable Y2 follows a geometric distribution with Y2 ∼ g(p2), where p2 = (n−1)/n. We can even
say that Y1 ∼ g(p1), whre p1 = n/n = 1. In general pi = (n− (i−1))/n. The expected number of balls thrown to fill
a second bin is E[Y2], etc to fill the i-th bin is E[Yi] and so on. Since Yi g(pi) with p=(n− (i−1))/n the E[Yi] = 1/pi.
Therefore, using also the linearity of expectation,

E(Y ) = E(∑
i

Yi) = ∑
i

E(Yi) = sumn
i=1

n
n− (i−1

= n(1+1/2+ . . .+1/n)nHn,

where Hn is the harmonic series of order n. Hn = ln(n)+ γ , where γ is Euler’s constant. Furthermore,

var(Y ) = var∑
i

Yi) = ∑
i

var(Yi)

= ∑
i=1

n(1− pi)/p2
i

≤ ∑
i=1

n1/p2
i

= ∑
i=1

n
n2

(n− i+1)2

= n2
∑
i=1

n
1

(n− i+1)2

= n2
∑
i=1

n
1
i2

= n2
π

2/6,

utilizing the Basel problem’s sum due to Euler that says

∑
i=1

n
1
i2

= π
2/6.
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Problem 22.
We throw n identical balls into n distinct bins with equal probability. Let Xi be the number of balls in bin i. Obviously
0 ≤ Xi ≤ n and n = ∑i Xi. Moreover, Xi ∼ B(n, p;k) with p = 1/n, q = 1− p = 1−1/n. Furthermore, E(Xi) = np =
n(1/n) = 1 and var(Xi) = npq = n(1/n)(1−1/n) = 1−1/n = 1−q.
(a) What is the probability that a given bin i gets more than 2

√
n balls? Use Chebyshev and Chernoff or Hoeffding

bounds.
(b) What is the probability that any bin gets more than 2

√
n balls or equivalenty every bin has no more than 2

√
n balls?

Proof.
(a.1) Let Xi be the r.v. associated with the number of balls in bin i. Noting that E(Xi) = 1, and using Markov’s
inequality we have the following.

P(Xi > 2
√

n) = P(Xi ≥ 1+2
√

n)

= P(Xi ≥ E(Xi)+2
√

n)

= P(Xi −E(Xi)≥ 2
√

n)

= P((Xi −E(Xi))
2 ≥ 4n)

≤ E((Xi −E(Xi))
2)/4n

≤ var(Xi)/4n

≤ (1−1/n)/4n

≤ 1/4n.

(a.2) We first utilize the Chernoff bound of Corollary 16. We pick δ = 2
√

n > 2e−1 for sufficienly large n, and remind
ourselves pn = 1.

P(Xi > 2
√

n) = P(Xi ≥ 1+2
√

n) = P(Xi ≥ np+2
√

n) = P(Xi ≥ (1+δ )np) = 2−δ pn = 2−2
√

n

We next pick Lemma 4 with r = 2/sqrtn. The bound is an even better ≈ 1/n
√

n. Hoeffding provides the same bound
through Theorem 7.1. Corollary 25 or Corollary 26 of Hoeffding’s theorem provide lesser bound exp(−8n).
(b) Let Ei be the event that a given bin i gets more than 2

√
n balls? By part (a) we proved P(Ei)≤ 1/(4n. We want to

calculate the probabibility of event E where E is the event that any bin get more than 2
√

n balls. Then

P(E) = P(E1 ∪E2 ∪ . . .∪En)≤ ∑
i

P(Ei)≤ nP(Ei)

Using Chebyshev’s bound nP(Ei)≤ n(1/4n)≤ 1/4
One could prove the latter as follows. Let Yi be a random variable that is 1 if bin i has more than 2

√
n balls and 0

otherwise. Then E(Yi) = 1 ·P(Xi > 2
√

n) ≤ 1/(4n). Let us then define random variable Y such that Y = ∑i Yi i.e. it
counts the number of bins with more than 2

√
n balls. Obviously E(Y ) = nE(Yi) P(E) is P(Y ≥ 1). The latter can be

computed through Markov’s inequality

P(Y ≥ 1)≤ E(Y )≤ nE(Yi)≤ n(1/(4n)) = 1/4.



101

Problem 23.
We pick random points Pi in the unit square i.e. Pi = (xi,yi), with −1/2 ≤ xi,yi ≤+1/2. We then check whether Pi is
inside the circle C with center (0,0) i.e. x2 +y2 ≤ 1. Then pi = P(Pi ∈C) = π/4, as the probability that Pi falls into C
is proportional to the area of the circle relative to that of the square. We define random variable Xi that is equal to one
if Pi ∈C, and 0 otherwise.

We generate n random points Pi. Let Sn be another random variable with Sn = ∑i Xi. We have Xi ∼ b(pi). It is
pi = p = π/4. Furthermore E(Sn) = nE(Xi) = np = nπ/4. Consider then another random variable Yn = (4/n) · Sn.
Then

E(Yn) = (4/n)E(Sn) = (4/n)(nπ/4) = π

Therefore Yn = (4/π)Sn → π .
Compute

P(|Yn −E(Yn)| ≤ επ)

for some 0 < ε < 1. Use a Chebyshev inequality and a Chernoff bound.

Proof.
Let us find some properties of the relevant random variables.

E(Yn) = E((4/n)Sn) = (4/n)E(Sn) = (4/n)(nπ/4) = π.

The we find the variance of Yn; we note p = π/4 and q = 1− p = 1−π/4.

var(Yn) = var((4/n)Sn) = (16/n2)var(Sn) = (16/n2)(npq) = 16pq/n.

We use Chebyshev’s inequality below

P(|Yn −E(Yn)| ≥ επ) ≤ var(Yn)

ε2π2

≤ 16pq
nε2π2

≤ 4−π

nπε2 .

Therfore,

P(|Yn −E(Yn)| ≤ επ)≥ 1−P(|Yn −E(Yn)| ≥ επ)≥ 1− 4−π

nπε2 .

We use Chernoff’s bound below in the form of Corollary 23. Note that pn = πn/4 and we use δ = ε .

P(|Yn −E(Yn)| ≥ επ) = P(|4
n

Sn −
4
n

E(Sn)| ≥ επ)

= P(|Sn −E(Sn)| ≥ nεπ/4)

≤ 2exp
(
−ε2πn

3 ·4

)
≤ 2exp

(
−δ 2πn

12

)
.

For P(|Yn −E(Yn)| ≤ επ) we do as before.
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Chapter 11

Birthdays, coupons and coins

Problem 24.
Birthday Problem
We have m people that have birthdays that take n values, and let for siplicity they are drawn from the set {1,2, . . . ,n}.

The probability that all m have different birthdays is

p =
n(n−1) . . .(n−m+1

nm

How large should m be so that this p at least 1/2 = 1−1/2, 1−1/4, 1−1/8, etc 1−1/210.

Proof.
Let m−1 = k

√
n where k is some small integer. We can also use that for x ≤ 1/2 we have e−2x ≤ 1−x or equivalently

1− x ≥ e−2x. Then (1− i
n )≥ e−2i/n.

p = (1− 1
n
)(1− 2

n
)(1− 3

n
) . . .(1− m−1

n
)

≥ exp(−2 ·1/n) · exp(−2 ·2/n) · exp(−2 ·3/n) · . . .exp(−2 · (m−1)/n)

≥ exp(
−2m(m−1)

2n
)≥ exp(−k2)
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Problem 25.
Coupon Collector
Let {1,2, . . . ,n} be a set of n cards (coupons). In a collection of m coupons how large should m be sort that there

is at least one instance of each one of the n coupons? We will show that m = (1+ ε)n lnn for some ε > 0.

Proof.
For any fixed i ∈ {1,2, . . . ,n}, the probability i is not chosen in m choices is given by pi

pi =

(
1− 1

n

)m

= exp(−m
n
)

Then the probability p1 ∨ p2 ∨ p3 ∨ . . .∨ pn is at most ∑i pi = nexp(−m
n ). The latter probability for m = (1+ ε)n lnn.

nexp(−m
n
) = nexp(−(1+ ε) lnn) = 1/nε .

Anothe way to view this problem is by introducing an indicator variable Xi = 1 if coupon i is never drawn and Xi = 0
otherwise. The number of coupons NOT drawn is X = ∑i Xi. The expected number of coupons NOT drawn is

E[X ] = E[∑
i

Xi] = ∑
i

E[Xi]

But E[Xi] = 1 ·P(Xi = 1) = (1−1/n)m. Thus

E[X ] = E[∑
i

Xi] = ∑
i

E[Xi] = n(1−1/n)m

For m = (1+ ε)n lnn this becomes E[X ] = 1/nε . Therefore if E[X ] < 1 there is a way that all coupons have been
drawn.
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Problem 26.
Toss a coin n = 2m times. What is the probability of exactly n/2 = m heads?

Proof.
Let pk =

(n
k

)
pk(1− p)n−k Assuming the coin is fair p = q = 1− p = 1/2 and thus n = 2m and n/2 = m, we have

p =

(
n
k

)
pk(1− p)n−k

(
2m
m

)
pm(1− p)2m−m =

(
2m
m

)
(1/2)m(1/2)2m−m =

(
2m
m

)
(1/2)2m.=

(
n

n/2

)
(1/2)n.

Furthermore we use Stirling’s formula for n > 10 i.e. n! ≈
√

2πn(n/e)n

p =
n!

(n/2)!(n/2)!
1
2n =

√
2πn(n/e)n√

2πn/2(n/2e)n/2
√

2πn/2(n/2e)n/2

1
2n =

√
2√

πn
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Chapter 12

Hash tables

Problem 27.
In open addressing under the uniform hashing assumption, let p(n,N) be the probability that there are no collisions,
during the insertion of n keys into a hash table T with N slots that is originally empty.
Show by induction that

p(n,N)≤ exp(−n(n−1
2N

).

Deduce that for n >
√

N the probability of having a collision grows to close to one.
Note that expx = ex ≥ 1+ x for any real x.

Proof.
Consider p(n+1,N) and argue similarly to the derivation of the number of probes for Insertion. For the n+1-st key
not to cause any collision in a hash table with n keys inserted with no collisions, it must hit an empty slot an event
that occurs with probability 1−n/N. This assumes that the insertion of the n+1-st key is independent of the previous
insertions. Therefore p(n+ 1,N) = (1− n/N)p(n,N), since the probability that the insertion of say n+ 1 cause not
collision is the probability that the insertion of the n+ 1-st key causes no collisions and the prior insertion of the
remaining n keys caused no collisions; the latter is p(n,N). Therefore

p(n+1,N) = (1−n/N)p(n,N)

= (1−n/N)(1− (n−1)/N)p(n−1,N)

= (1−n/N)(1− (n−1)/N) . . .(1−1/N)(1−0/N)p(0,N)

= (1−n/N)(1− (n−1)/m) . . .(1−1/N)

Since ex ≥ 1+ x, setting x =−i/N we obtain that 1− i/N ≤ e−i/N . Therefore

p(n+1,N) = (1−n/N)(1− (n−1)/N) . . .(1−1/N)

≤ exp(−n/N)exp(−(n−1)/N) . . .exp(−1/N)

≤ exp(−(1+2+ . . .+n)/N)

= exp(−n(n+1)/2N)

Therefore p(n,N)≤ exp(−(n−1)n/(2N)) as required. Consider n ≫
√

N, the n(n−1)/2N ≫ 1, and thus p(n,N) is
upper bounded by exp(−A), where A is large and positive. However exp(−A) goes to zero and thus p(n,N) goes to
zero as well.
Note. One might remark that the probability of having a collision is 0+ 1/N + 2/N + . . .+ n/N = n(n− 1)/(2N).
This is not correct. This bound is not exact but an upper bound. Thus, if one uses

P(Nocollision)+P(Collision) = 1
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given that
P(Collision)≤ n(n−1)/(2N)

one can derive a lower bound for
P(Nocollision)≥ 1−n(n−1)/(2N)

However this is not useful. To understand why the bound above is not exact think of the case of three keys only.

CP=CollisionProbability NCP= Probability of NO collisions

|--> CP=0

No key-> 1stkey- |--> CP= 1/N

|-->NCP=1-->2ndkey- |-> CP= 2/N

|-->NCP= 1-1/N-->3rdkey-

|->NCP=1-2/N

Think of the diagram as a binary tree with root on the left. Let’s see for what probability we reach a leaf a CP or NCP
and add the probabilities of reaching all CP leaves and all NCP leaves. There is one NCP leaf on the rightmost side.
We reach this with probability (1−1/N)(1−2/N) which is the probability of no collisions after three keys have been
inserted. The probability bound is the product of probabilities on all intermediate nodes. There are three CP nodes.
The topmost one is 0, the second one is reached with probability 1/N and the last one with probability (1−1/N)2/N.
Thus the probability of having a collision after three keys are inserted is 1/N +2/N − (1/N)(2/N) which is close to
1/N + 2/N but not equal to. This problem is a variant of a problem known as the Birthday problem. Let N = 365
(forget about leap years). Suppose you have n people in a room. What is the probability of having no two with the
same birthday? For what value of n is the probability of having two people with the same birthday close to 1? One can
see that for n =

√
N collisions start to show up with a significant (non negligible) probability, i.e. people exist with the

same birthdays.
This problem is also known as the Birthday problem. Let m = 365 (forget about leap years). Suppose you have
n people in a room. What is the probability of having no two with the same birthday? For what value of n is the
probability of having two people with the same birthday close to 1? One can see that for n =

√
m collisions start to

show up with a significant (non negligible) probability, i.e. people exist with the same birthday.
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Problem 28.
Hashing with chaining (continues with the following problem which is also serves as a generalization). Assume
uniform hashing i.e. a key x is equally likely to get hashed into any of the n slots. A total of n keys get hashed into n
slots of table T . Let ni be the number of keys hashed into slot i. Answer the following.
(a) What is the probability pk that k keys get hashed into slot i?
(b) Let k > 1. Show that

pk/pk+1 > 1.

(c) Show that for k > 1,

P(ni ≥ k) =
n

∑
j=k

P(ni = j)≤ nP(ni = k).

(d) Show that for n ≥ 20, A = e2 +1, and k = A lnn
ln lnn ,

P(ni = k)≤ 1
n7 .

(e) Conclude that P(ni ≥ k)≤ 1
n6 .

(f) Provide an bound bound for the expected size of ni, i.e. show that

E[ni]≤ k+1,

where k is as defined in (d) above.
(g) After all keys are inserted into the slots randomly (uniformly at random), let D be the maximum number of in a
slot. Show that qk, the probability D is k is

qk ≤ npk.

(h) Find the expected value of E[D]. (Hint: use the rationale of (f) above.)

Proof.
(a) The size of slot i, ni, follows a binomial distribution that is, ni ∼ B(n, p;k), where p = 1/n. Therefore,

pk = P(ni = k) = B(n,1/n,k) =
(

n
k

)
(1/n)k(1−1/n)n−k.

(b) Let k > np = n(1/n) = 1. Consider pk/pk+1.

pk

pk+1
=

P(ni = k)
P(ni = k+1)

=

(n
k

)
(1/n)k(1−1/n)n−k( n

k+1

)
(1/n)k+1(1−1/n)n−k−1

=
(k+1)(n−1)

n− k
.

We claim that for k > 1, (k+1)(n−1)/(n− k) > 1. This is true as long as kn > 1. The latter is true as k > 1 and by
implication n ≥ k > 1 as well.
(c) We have that P(ni ≥ k) = ∑

n
j=k P(ni = j) = ∑

n
j=k p j. Since pk/pk+1 ≥ 1 by part (b), the terms p j , j ≥ k are

bounded above by pk. Therefore

P(ni ≥ k) =
n

∑
j=k

p j ≤ (n− k+1)pk ≤ npk.

Moreover pk = P(ni = k).
(d) From (a) above we have

pk =

(
n
k

)
(1/n)k(1−1/n)n−k,
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and (1−1/n)n−k ≤ 1. Since
(n

k

)
≤ (ne/k)k, we then obtain the following.

pk ≤
(

n
k

)
(1/n)k

≤ (ne/k)k(1/n)k

≤ ek/kk

≤ exp
(

ln(ek/kk)
)

≤ exp(lnZ),

where Z = ln(ek/kk). In the remainder we are going to first form lnZ = ln(ek/kk) = k− k lnk. Then we are going to
find an upper bound for lnZ ≤ −7lnn, which would then translate into an upper bound for exp(lnZ). This way we
shall prove the following.

pk ≤ exp(lnZ)

≤ exp(−7lnn)

≤ 1
n7

We start with lnZ after choosing, A = e2 +1, and

k = A · lnn
ln lnn

.

Then

lnZ = ln(ek/kk) = k− k lnk

=
A lnn
ln lnn

− A lnn
ln lnn

· ln f racA lnnln lnn

=
A lnn
ln lnn

− A lnn
ln lnn

· (lnA+ ln lnn− ln ln lnn)

= A(1− lnA)
lnn

ln lnn
−A lnn+A lnn · ln ln lnn

ln lnn

= A(1− lnA)
lnn

ln lnn
− (A−1) lnn+A lnn ·

(
−1+

ln ln lnn
ln lnn

)
= Q1 − (A−1) lnn+Q2.

Quantity Q1 is such that

Q1 = A(1− lnA)
lnn

ln lnn
.

Since A = e2 +1 and thus lnA > 2, we conclude Q1 < 0. Furthermore, quantity Q2 is such that

Q2 = A lnn ·
(
−1+

ln ln lnn
ln lnn

)
.

Q2 < 0 i.e. 1 ≥ ln ln lnn
ln lnn for n ≥ 20 . Therefore we have the following noting that A = e2+1 and thus A−1 = e2 ≥ 7.38.

lnZ = Q1 − (A−1) lnn+Q2

≤ 0− (A−1) lnn+0
≤ 0−7.38lnn+0
≤ 0−7lnn+0.
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We then conlude the desired result.

pk ≤ exp(lnZ)

≤ exp(−7lnn)

⇔

pk = P(ni = k) ≤ 1
n7 .

(e) From (c) above, using the upper bound for pk derived from (d) above we have we have that

P(ni ≥ k)≤ npk ≤ n
1
n7 ≤ 1

n6

(f) We are going to estimate E[ni] for any i = 1, . . . ,n. We have, note also from (b) that pk/pk+1 > 1. The value of k
used is

E[ni] =
n

∑
j=0

j ·P(ni = j)

=
n

∑
j=1

j ·P(ni = j)

=
k−1

∑
j=1

j ·P(ni = j)+
n

∑
j=k

j ·P(ni = j)

≤
k−1

∑
j=1

k ·P(ni = j)+
n

∑
j=k

n ·P(ni = j)

≤ k ·
k−1

∑
j=1

P(ni = j)+n ·
n

∑
j=k

·P(ni = j)

≤ k ·1+n ·
n

∑
j=k

·P(ni = k)

≤ k+n ·n ·P(ni = k)

Combining with the result from (e) we conclude that

E[ni] ≤ k+n ·n ·P(ni = k)

≤ k+n2/n6 < k+1.

The value of A = e2 +1 and k is given as described in (d) above.

k = A · lnn
ln lnn

.

(g) Below k is as defined earlier in (d) above. Let D = maxn
i=1 ni = max{n1,n2, . . . ,nn}. We utilize also (b) that states
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P(ni = k)≤ 1/n7 and this is true for all i, i = 1, . . . ,n.

P(D = k) = P(
n

max
i=1

ni = k)

= P(∃ i : ni = k∧nl ≤ k∀l ̸= i)

≤ P(∃ i : ni = k)

≤ P(n1 = k∪n2 = k∪ . . .∪nn = k)

≤ nP(ni = k)

≤ n · (1/n7) =
1
n6 .

(h) For the expected value of E[D] we work similarly as before for the E[ni]. The conclusion is the same E[D] <
k+1.
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Problem 29.
Hashing with chaining. A total of n keys are hashed into an N = n slot table T . Answer the following.
(a) What is the expected number of keys per slot?
(b) Show that for n → ∞, P(maxi ni ≥ 2lnn) = 0.
(c) What is the expected number of empty slots?
(d) What is the expected number of slots with one key?

Proof.
(a) Let ni be the keys per slot i. Then ni follows a binomial distribution with parameters n and p = 1/n i.e. B(n, p;k).
Let q = 1− p, i.e. p+q = 1. Let ni B(n, p;k). Then E[ni].

B(n, p;k) =

(
n
k

)
pkqn−k ⇒

E[ni] =
n

∑
k=0

k ·
(

n
k

)
pkqn−k

E[ni] =
n

∑
k=1

k ·
(

n
k

)
pkqn−k

E[ni] =
n

∑
k=1

k · n!
k!(n− k)!

pkqn−k

E[ni] =
n

∑
k=1

· n!
(k−1)!(n− k)!

pkqn−k

E[ni] = np
n

∑
k=1

· (n−1)!
(k−1)!(n− k)!

pk−1qn−k

E[ni] = np
n

∑
k=1

·
(

n−1
k−1

)
pk−1qn−k

E[ni] = np
n−1

∑
k=0

·
(

n−1
k

)
pkqn−1−k

E[ni] = np(p+q)n−1

E[ni] = np

Another way to prove the same is the n keys follow a Bernoulli distribution with p = 1/n. Thus let X j be 1 if key k j
falls into slot i and 0 otherwise. Then ni = ∑ j X j and therefore

E[ni] = E[∑
j

X j] = nE[X j] = np.

Theorem 12.1 (Chernoff). Suppose X1, . . .Xn are independent random variables taking values in {0,1}. Let X =
sum jX j denote their sum and let m = E[X ] denote the sum’s expected value. Then for any δ > 0,

P(X ≥ (1+δ )m) ≤

(
eδ

(1+δ )1+δ

)m
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(b) For δ = 2lnn−1, m = np = n(1/n) = 1, we have

P(ni ≥ 2lnn) ≤ eδ

(1+δ )1+δ

≤ e2lnn−1

(2lnn)2lnn

≤ n2

e ·n2 ·n2ln lnn

≤ 1
e ·n2ln lnn

Then

P(maxi(ni)≥ 2lnn) ≤ nP(ni ≥ 2lnn)

≤ n
e ·n2ln lnn

≤ 1
n2ln lnn−1

The latter upper bound goes to 0 as n → ∞. Moreover if n > e3, we have 2ln lnn−1 ≥ 1.0, and thus the probability is
at most 1/n.
(c) Since ni ∼ B(n, p;k), we have that P(ni = 0) =

(n
0

)
p0(1− p)n = (1− p)n. Let indicator random varible Bi be 1 if

ni = 0, and 0 otherwise. Then C = ∑i Bi is the number of empty slots.

E[C] = E[∑
i

Bi] = ∑
i

E[Bi] = ∑
i

P(ni = 0) = n(1− p)n

If p = 1/n then E[C] = n(1−1/n)n ≈ n/e.
(d) Since ni ∼ B(n, p;k), we have P(ni = 1) = np(1− p)n−1. Defining a random variable just like before and call D,
the expected number of slots with one key, we derive similarly,

E[D] = n2 p(1− p)n−1

If p = 1/n this is E[D] = n(1−1/n)n−1 ≈ n2/(e(n−1)).
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Problem 30.
Hashing with chaining. A total of n keys are hashed into an N = n2 slot table T . Answer the following for simple
uniform hashing (assumption).
(a) What is the probability that slot i is empty after hashing n keys?
(b) What is the probability that slot i has two or more keys?

Proof.
(a) The probability that slot i is empty is the probability that all n keys missed it. In general this is (1− 1/N)n.
Probability 1/N is for a key k j to hit i or 1− 1/N is the probability that k j misses i. Given that we have n keys the
formula derives. One can prove the first derivation below by induction on n. It also follows by expanding the power
on the left side

(1− 1
N
)n ≥ (1− n

N
)

If N > n then ≥ becomes >.
(b) This is a binomial distribution’s term: b(n,k; p), where k = 1, p = 1/N and thus(

n
1

)
pk(1− p)n−k =

n
N
(1−1/N)n−1

Given that N ≥ n, we have N > n−1. Thus from the observation and deriviation in (a) we have

n
N
(1−1/N)n−1 >

n
N

(
1− n−1

N

)
=

n
N
− n(n−1)

N2

(c) The probability that a slot has two or more keys is one minus the probability it has zero minus the probability it has
one key. From (a) and (b) above we have

P(ni ≥ 2) ≤ 1− (1− n
N
)− n

N
+

n(n−1)
N2

P(ni ≥ 2) ≤ n(n−1)
N2

If we substitute N = n2 we see that the probability a slot i has 2 or more keys is at most 1/n2. The probability that
there exists a slot (0 or 1 or etc or i or etc N −1) that has two or more keys is at most n ·1/n2 = 1/n. Equivalently all
slots have zero or one keys with probability at least 1− 1/n. If we increase N from N = n2 to N = nk, k > 2 we can
further decrease the bound 1/n or increase 1−1/n.
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Problem 31.
We would like to determine whether k ∈ A or not. We would attempt to examine the problem from a deterministic and
randomized point of view.
(a) Give a deterministic algorithm for this problem and its solves this problem deterministically in time O(n) is linear
search.
(b) Say there is a randomized algorithm that determines membership in A i.e. whether k ∈ A or k ̸∈ A. The randomized
algorithm performs a test T (k) that take time Θ(1) i.e. constant time. If k ∈ A then T (k) is always a YES indicating
indeed k ∈ A. If k ̸∈ A then T (k) is a YES appears with probability 1− p indicating k ∈ A (false positive) and a NO
appears with probability p indicating k ̸∈ A correctly. A test T (k) is independent of any previous tests involving k
or other keys. Thus it is possible for the same key k to have a YES followed by a NO. The randomized algorithm is
repeated m times for each key k. What is its running time?
(c) if k ̸∈ A what is the probability that k passes all m tests?
(d) Let Q be some fixed parameter. How large should m be so that a key k is incorrectly labeled is at most Q? (You
may assume 0 < Q < 1.)
(e) How many tests do we need until we can conclude with cetainty k ̸∈ A? Give the expected number of tests E[T ].

Proof.
(b) Obviously Θ(m).
(c) It is (1− p)m.
(d) The probability for a key k such that k ̸∈ A we have to have a false positive conclusion is (1− p)m. THis is
(1− p)m ≤ Q for m ≤ lgQ/ lg(1− p). Thus for m > lgQ/ lg(1− p) the probability of false positive is Q or less.
(e) This is a geometric distribution. The probability that we have a proof of non-membership in i tests is P(T = i) =
(1− p)i−1 p. Then the expected number of tests E[T ] is

E[T ] =
∞

∑
i=0

i(1− p)i−1 p

= p/(1− p) ·
∞

∑
i=0

i(1− p)i

=
p

1− p
· 1− p
(1− (1− p))2

=
p

1− p
· 1− p

p2

=
1
p
.

The latter step come from anohter problem when x → ∞ and x < 1. We then substitute 1− p for x.
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Problem 32.
The following question relates to the results of the previous problem.
You have a fair coin where in a coin toss the probability of Heads is pH = 1/2 and so is the probability of Tails
pT = 1/2. (From now on we use H or T to indicate one or the other outcome.)
(a) What is the expected number of tosses for a T ? (For example, in the experiment HHHT we have four tosses to a
T .)
(b) What is the expected number of tosses to get T H? (For example, in the experiment TTTH we have four tosses to a
T H.)

Proof.
(a) It is a geometric distribution with expected number of tosses equal to 1/pT , where pT = 1/2, i.e. two tosses.
(b) First in an expected number of two tosses i.e. 1/pT we get a T . From that point on in an expected number of
1/pH tosses we get an H. By the sum of expectations E[A+B] = E[A] +E[B] we get that the answer is the sum
1/pT +1/pH = 4.
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Chapter 13

Random graphs

Problem 33.
A random graph with edge probability p is a graph that is formed by flipping a coin with probability p and

deciding to include an edge if it comes H and not include edge for a T outcome. Let us assume that we use a fair coin
p = q = 1− p = 1/2. Is the graph connected?

Proof.
If the graph is not connected there exist at least two subgraphs (”components”) with no edges from one to the other.
If one subgraph G1 has i vertices and the other/others G2 has n− i vertices it means the i(n− i) vertices between the
two pieces are missing. The probability that this is the case for one possible partion of i and n− i is 2−i(n−i). This is
the probability the graph is NOT connected for a given split. For each value of i from 1 to n/2 there are

(n
i

)
ways to

pick the vertices of G1 and the remaining n− i vertices are of G2. The probability the graph G is not connected is the
probability of the union of those events which is at most the sum of those probabilities. Thus

p ≤
i=n/2

∑
i=1

(
n
i

)
2−i(n−i) ≤

i=n/2

∑
i=1

ni2−i(n−i) ≤
i=n/2

∑
i=1

(n2−n+i)i ≤
i=n/2

∑
i=1

(n2−n/2)i ≤ n/2 ·n2−n/2 = n2/2n/2

For n/2n/2 < 1 i.e. n > 5, the sum is a geometric sequence. Being a bit sloppy at the end we realize that p → 0 as
n → ∞. Thus the graph is almost always connected.
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Problem 34.
A random directed graph with edge probability p is a graph that is formed by flipping a coin with probability p

and deciding to include an edge in one direction if it comes H and include the edge in the opposite direction for a T
outcome. Let us assume that we use a biased coin with p = a/(n−1) and thus q = 1− p. What is the probability that
for vertex i there is some edge directed into node i?

Proof.
Let us call pi this probability. There are n− 1 other vertices (other than i). If all of them are directed OUT of i this
occurs with probability (1−a/(n−1))(n−1) ≈ e−a. Thus pi is given by the following equation

pi = 1− e−a

What is now the probability Q that this is true for EVERY vertex?

Q = ∏
i

pi ≤ (1− e−a)n

Obviously Q → 0 as n → ∞. node?
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Problem 35.
A tournament is a directed graph which has one edge between every pair of vertices in one or the other direction.

Some tournament contains n!/2n Hamiltonian cycles.

Proof.
For a given permutation of the vertices the probability it is a Hamiltonian cycles is 1/2n. There are n! permutations of
n vertices, so the expected number of Hamiltonian cycles is n!/2n.
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Problem 36.
What is the expected number of Hamiltonian cycles in the random graph with edge probability p = a/(n−1)?

Proof.
Let now i range over the n! permutations of the n vertices of the graph. Let Xi = 1 if permutation i leads to a hamiltonian
cycle, and Xi = 0 otherwise. Then

E[Xi] = (a/(n−1))n

and

E[X ] = E[∑
i

Xi] = n!(a/(n−1))n ≈ (n/e)n(a/(n−1))n ≈ (a/e)n1/(1−1/n)n ≈ (a/e)n · e ≥ (a/e)n
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Problem 37.
Show that for sufficiently large n, a random n×n bipartite graph where each possible edge is present with proba-

bility .5 is very likely to have a perfect matching. (Hint: recall Hall’s theorem to decide whether a bipartite graph has
a perfect matching).

Proof.
Hall’s theorem states that a bipartite graph has a perfect matching unless there is a subset of vertices A on the left such
that | A |>| R(A) |. We shall show that the probability that any A has | R(A) |≤| A | −1 is small. For a particular A,
| R(A) |<| A | only if there are at least n− | A |+1 vertices on the right to which there are no edges from A. The chance
that this happens for some A is less than the sum of the chances it happens for any particular A. Thus

Pr(there is no p.m.) ≤
n

∑
i=1

(
n
i

)(
n

n− i+1

)
(0.5)i(n−i+1)

=
n/2

∑
i=1

(
n
i

)(
n

n− i+1

)
(0.5)i(n−i+1)+

n

∑
i=n/2+1

(
n
i

)(
n

n− i+1

)
(0.5)i(n−i+1)

<
n/2

∑
i=1

nini(0.5)i(n−i+1)+
n

∑
i=n/2+1

nn−inn−i+1(0.5)i(n−i+1)

=
n/2

∑
i=1

(
n2

2n−i+1 )
i +

n

∑
i=n/2+1

(
n2

2i )
n−i+1

<
n/2

∑
i=1

(
n2

2n/2 )
i +

n

∑
i=n/2+1

(
n2

2n/2 )
n−i+1

→ 0

Thus for sufficiently large n, the chance that a random n×n bipartite graph does not have a perfect macthing is very
small.
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Problem 38.
Let G(n, p), 0 ≤ p ≤ 1, be an undirected graph on n labeled vertices, where each edge e (among the n(n− 1)/2

possible edges on n vertices) is included in the graph with edge probability p, independently of any other edge. If
p = (1+ε) logn

n where ε > 0 (the logarithms here are natural ones), show that with high probability (i.e. with probability
tending to 1 when n → ∞), G(n, p) has no vertex of degree less than 11.

Proof.
The probability that a given vertex has degree exactly k is equal to (n−1

k

)
pk(1− p)n−1−k . Summing for all values of k from 0

to 10 we get the probability that a vertex has degree less than 11. If we multiply by n we get an upper bound on the
probability that some vertex has degree less than 11. It suffices to prove that the latter expression (call it P) is upper
bounded by a function ε(n) such that ε(n)→ 0, as n → ∞. This can be proven as follows . We use p = (1+ε) logn/n,
ε > 0, and thus (1− p)n ≤ e−pn = 1

n1+ε , while 1/(1− p)< 2. We also use
(n−1

k

)
≤ nk.

P = n
10

∑
k=0

(
n−1

k

)
pk(1− p)n−1−k ≤ n(1− p)n

10

∑
k=0

nk (1+ ε)k logk n
nk(1− p)k+1 ≤ n

1
n1+ε

10

∑
k=0

(1+ ε)k logk n 2k+1 ≤ 11 211(1+ ε)10 log10 n
nε

→ 0 when n → ∞.

where the last sum, was bounded above by 11 times its largest term. Note, that no matter how bad i overestimated, I
got the desired result.
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Problem 39.
Let G(n, p), 0 ≤ p ≤ 1, be an undirected graph on n vertices where each edge e (among the possible n(n− 1)/2

edges on n vertices) is included in the graph with edge probability p independent of any other edge. If p = 1
2 show

that:
a) With high probability (i.e. with probability tending to 1 as n → ∞) the maximum size of an independent set in
G(n, 1

2 ) is no more than (4+ ε) logn, for any ε > 0.
b) Deduce then, that for some constant c > 0, with probability tending to 1 as n → ∞,

cn
logn

≤ γ(G),

where γ(G) is the chromatic number of G.

Proof.
The probability that an n vertexgraph with edge probability 1

2 has a k independent set is at most(
n
k

)
2−(

k
2) ≤ nk2−

k2
4

For k = (4+ ε) lgn, this means the chance there is an independent set larger than that is no more than

(n2−
k
4 )k ≤ (nn−1− ε

4 )k

= n−εk

Which converges to 0 for all ε > 0.
For part b), simply recall that the vertices of any color class in G must be an independent set. As no color is used

more times than the size of the largest independent set, the fact that with high probability no independent set is larger
than 5lgn implies that with high probability γ(G)≥ n

5lgn .
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Problem 40.
Show that any bipartite graph G(X ∪Y,E) (| X |=|Y |= n) with edge probability p = 1

2 has a perfect matching with
high probability (i.e. with probability tending to 1 as n → ∞).

Proof.
Hall’s theorem states that a bipartite graph has a perfect matching unless there is a subset of vertices A on the left such
that | A |>| R(A) |. We shall show that the probability that any A has | R(A) |≤| A | −1 is small. For a particular A,
| R(A) |<| A | only if there are at least n− | A |+1 vertices on the right to which there are no edges from A. The chance
that this happens for some A is less than the sum of the chances it happens for any particular A. Thus

Pr(there is no p.m.) ≤
n

∑
i=1

(
n
i

)(
n

n− i+1

)
(0.5)i(n−i+1)

=
n/2

∑
i=1

(
n
i

)(
n

n− i+1

)
(0.5)i(n−i+1)

n

∑
i=n/2+1

(
n
i

)(
n

n− i+1

)
(0.5)i(n−i+1)

<
n/2

∑
i=1

nini(0.5)i(n−i+1)+
n

∑
i=n/2+1

nn−inn−i+1(0.5)i(n−i+1)

=
n/2

∑
i=1

(
n2

2n−i+1 )
i +

n

∑
i=n/2+1

(
n2

2i )
n−i+1

<
n/2

∑
i=1

(
n2

2n/2 )
i +

n

∑
i=n/2+1

(
n2

2n/2 )
n−i+1

→ 0

Thus for sufficiently large n, the chance that a random n×n bipartite graph does not have a perfect matching is very
small.



127

Problem 41.
For an undirected connected graph G = (V,E), let d(i, j) be the shortest path (for graphs with no weights, the

length) between vertex i and vertex j . The diameter (diam(G)) of G is defined to be the maximum among all the
shortest paths between any two vertices in G, i.e.

diam(G) = max
i, j∈V i ̸= j

d(i, j)

Show that for an appropriate p all Gn,p graphs have diameter 2 with high probability (i.e. with probability tending
to 1 as n → ∞).

Proof.
A graph has diameter 2 if between any two distinct points there exist either an edge or a path of length 2, therefore for
the second case, for every two points x, z there exists a point y connected to both x, z. For Gn,p (we’ll fix p at the end
of our discussion) graph y is connected to both x,z with probability p2. We examine the complement of the problem,
namely we’ll try to find the probability (an upper bound) that there exists a set of two points not connected by a path
of length 1 or 2. This is at most (

n
2

)
(1− p)(1− p2)(n−2) ≤ n2

2
e−p2(n−2)

since, we can choose two points x,z in
(n

2

)
ways and no other point y (among the other n− 2 points) is in the path

between x,z with probability (1− p)(n−2). Therefore the above expression is an upper bound on the probability that
there exists two points not connected by a path of length 2 (note that we ignore the case that the graph has diameter 1

which occurs with probability pO(n2) since this term is finally absorbed by the term shown above). Let p=
√

(2+ε) logn
n .

Then the above expression is bounded above by

1
nε

→ 0 as n → ∞

and therefore the probability that the graph is of diameter 2 tends to 1 for large n.
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Problem 42.
We may view a tournament Tn on n vertices as a tournament on n players, where an edge exists between vertex

i and vertex j in Tn, if player i beats (or outranks) player j. A tournament Tn has property Sk if for every k players
x1, . . . ,xk there is some other player y who beats all of them. Show that for every k, there is a finite Tn with property
Sk. Find the smallest possible value of n you can, in terms of k, so that a tournament on at least so many vertices, has
property Sk.

Proof.
We use a probabilistic argument to show that for n sufficiently large, the probability a random tournament does not
have property Sk is less than 1. This probability is at most(

n
k

)
Pr(a particular x1, . . . ,xk are not all beaten by some vertexy)

For any set of k vertices, the probability some other particular vertex“beats” them all is 2−k. So the chance it does not
beat them all is 1−2−k, and the chance that none of the other vertices beat the entire set of k is (1−2−k)n−k. Thus the
probability that a random tournament does not have property Sk is at most(

n
k

)(
1− 1

2k

)n−k

< nke−
n−k
2k

For this to be less than 1, we want e
n−k
2k ≥ nk, or equivalently n−k

2k ≥ k lnn, and hence n ≥ k2k lnn+ k. This can be
achieved by picking n ≥ 2k22k.
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Problem 43.
Let Gn,p be a undirected random graph on n vertices generated by independently including each edge with proba-

bility p. What is the expected number of (exactly) ten vertexcycles if p = 2
n ? How does this expectation grow with n

(as n goes to ∞)?

Proof.
We first find the number of cycles we can form with k fixed objects (we will fix k to be 10 at the end). There are
k! permutations among k objects, and k!/k = (k− 1)! cyclic permutations among them (snce any cyclic permutation
gives rise to k ordinary permutations) and these cyclic permutations define (k− 1)!/2 unique cycles (since a cyclic
permutation and its reverse define the same cycle, e.g. 1 → 2 → 3 → 1 ≡ 3 → 2 → 1 → 3). We can choose k among
n vertices in

(n
k

)
ways. From a cyclic permutation we get a cycle in a graph if all the k edges implied by the cyclic

permutation appear, and this occurs with probability pk. For k = 10 we have
( n

10

)
(9!/2) distinct cycles of length 10

and each of them appears with probability p10, therefore the expected number of cycles of length 10 is:

E =

(
n
10

)
9!
2

pk =
n!

10!(n−10)!
9!
2
(

2
n
)10 =

n!
n10(n−10)!

210
2 ·10

=
n(n−1)(n−2) . . .(n−9)

n10
210

2 ·10

where we substituted p = 2/n. For n → ∞,

n(n−1) . . .(n−9)
n10 → 1,

so we have

E → 210

2 ·10
= 102.4
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Problem 44.
Suppose an n by n bipartite graph is generated randomly by including each edge independently with probability p.

i) What is the expected number of perfect matchings?

ii) For what value of p is this approximately 1?

iii) For the value of p from ii), show that the probability that the graph has a perfect matching is exponentially small.
(Hint: Consider the probability that there is an isolated vertex).

Proof.
i) This part has been solved in problem Set 6 (extra problem). Once again, every perfect matching in a bipartite graph
G = (X ∪Y,E) with X = {x1, . . . ,xn}, Y = {y1, . . . ,yn}, corresponds to a permutation of the elements of X onto the
elements of Y . We have n! permutations (and each mapping of an element of X to an element of Y corresponds to an
edge of a perfect matching) and each one of them has probability pn to appear, and therefore the expected number of
perfect matchings is n!pn.
ii) n!pn = 1 gives p ≈ e/n (if we use Stirling’s aprroximation for the factorial).
iii) A given vertex of X is isolated with probability (1− p)n = (1− e/n)n ≈ e−e. The probability that a vertex is not
isolated is (1− e−e). The probability that all vertices of X are not isolated is (1− e−e)n (since all these probabilities
are independent of each other). The probability that there exists a perfect matching that saturates X is at most the prob-
ability that all vertices of X are not isolated, and therefore this probability is at most (1−e−e)n which is exponentially
small( 1− e−e < 1 and therefore the (1− e−e)n → 0 exponentially fast).
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Random matrices

Problem 45.
Show that there exists an n×n matrix of 0’s and 1’s where each row has seven 1’s, but where every n

2 ×
n
2 submatrix

(a matrix made up of the intesections of subsets of n
2 of the rows and n

2 of the columns, not necessarily consecutive)
contains at least one 1.

Proof.
We count the probability that a n

2 ×
n
2 submatrix contains only 0 entries. We examine the problem for the general case

where we allow k 1’s in a row and therefore the probability we have a 1 in a row is equal to k
n . The probability that a

n
2 ×

n
2 submatrix contains only 0 entries is equal to (1− k

n )
n2
4 since a zero element appears in a row with probability

(1− k
n ) and an n

2 ×
n
2 submatrix has n2/4 elements.

The number of n
2 ×

n
2 submatrices is equal to

(
n
n
2

)2

since we can choose n
2 rows (out of a total of n) in

(
n
n
2

)
ways (the same holds for columns too).

Therefore, the probability that a n
2 ×

n
2 submatrix contains only 0 elements as entries is bounded above by(

n
n
2

)2

(1− k
n
)

n2
4

We know employ Stirling’s approximation formula. We get an upperbound by ignoring the square root terms.(
n
n
2

)2

(1− k
n
)

n2
4 ≈

(
( n

e )
n

( n
2e )

n/2( n
2e )

n/2

)2

(1− k
n
)

n
k

kn
4 ≤ 4ne−

kn
4 (14.1)

since we know that
(1− k

n
)

n
k ≤ e−1

From the equation above we get that

4ne−
kn
4 = (

4
ek/4 )

n

For k ≥ 6 (and therefore for k=7) the base 4
ek/4 is less than 1 and therefore equation (2) goes asymptotically to 0 when

n goes to infinity. This means that the probability that a submatrix contains only 0 elements is small and therefore the
probability that all submatrices contain at least one 1 is sufficiently large i.e. such a matrix exists.
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Problem 46.
Show that for sufficiently large n, there exists an n×n matrix of 0’s and 1’s where each pair of rows differs in at

least 49n
100 positions.

Proof.
The number of possible n×n matrices is 2n2

. We examine the complement of the problem i.e we would like to have,
for sufficiently large n, that the number of matrices with a pair of rows (at least) that differ in less than 49n

100 positions
is too small (in our discussion below we would ignore constant ±1 differences in positions of the two rows). We now
estimate the number of matrices that have a pair of rows with at most 49n

100 differing positions (if we wanted to be correct
this should be 49n

100 −1 differing positions, but as we said we ignore such constants by overestimating).
An overestimate on the number of such matrices is the following(

n
2

) 49n
100

∑
i=0

(
n
i

)
2i 2n−i 2n2−2n

The first term gives the choices of 2 rows out of n. The last term gives the number of ways of filling the other n−2 rows
of the matrix. We now explain the terms in the sum. The first term gives the number of ways of selecting i differing
positions, the second term gives the number of ways of filling these positions. Note, that if we fix these i positions in
the first row, we have the same positions in the second row fixed too (a 0 in one of these i positions in the first row is a
1 in the corresponding position in the second row and similarly for a 1 in the first row in one of these positions). The
third term counts the number of ways of filling the n− i identical positions (since they must be the same in the two
chosen rows). Now we divide this expression by 2n2

to find the probability that we have such a situation. Note that the

sum is a geometric series and therefore the dominating term is
(

n
49n
100

)
. Since 2i ·2n−i = 2n we can move 2n out of

the sum, which is at most twice the dominating term.(
n
2

)
2 ·
(

n
49n
100

)
2n 2n2−2n

2n2

which is (
n
2

)(
n

49n
100

)
2n−1

For the
(

n
49n
100

)
we use Stirling’s approximation formula which finally yields (after upperbounding the square root

that appears in the denominator) the following expression(
n
2

)
2αn

2n−1

where a =− 49
100 log 49

100 −
51
100 log 51

100 . All logarithms are base 2. The term 2αn is the result of writing as powers of 2 the

terms (49/100)49/100n, (51/100)51/100n that appear in the approximation of the
(

n
49n
100

)
term (since bbn = 2b logb·n).

Finally, we get that the ratio of ”bad” matrices over the total number of 0-1 matrices is equal to

n2

2(1−α)n−1

The nominator and denominator in the above term become equal for n ≈ 116660 and therefore for n sufficiently
large ( say n ≥ 150000, where this ratio is equal to 0.002) we have that the probability of having a ”bad” matrix goes
to 0, therefore the result we want to prove holds with high probability. The result, generally holds when instead of 49

100
we have 1

2 − ε for ε sufficiently small and positive.
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Problem 47.
What is the expected value of the determinant and the permanent of a n×n matrix if each element takes values 0

or 1 independently with probability a half? The permanent of a matrix A = [ai j] is defined to be equal to:

per(A) = ∑
all permutations σ on {1,2,...,n}

n

∏
i=1

aiσ(i)

Proof.
We examine the case where n > 1, since the n = 1 is trivial (expectation 1/2). Every ai j element takes equiprobably
only two values. The following trivially holds. ∏

n
i=1 aiσ(i) = 1 if and only if aiσ(i) = 1 ∀i. The probability that all

aiσ(i) = 1,∀i is just 2−n, and the result holds for all permutations σ . Then:

E(
n

∏
i=1

aiσ(i)) = 1 ·Pr(
n

∏
i=1

aiσ(i) = 1)+0 ·Pr(
n

∏
i=1

aiσ(i) = 0) = 1 ·2−n = 2−n (14.2)

We first find the expected value of the permanent. We have that:

E(per(A)) = E( ∑
all permutations σ on {1,2,...,n}

n

∏
i=1

aiσ(i)) = ∑
all σ on {1,2,...,n}

E(
n

∏
i=1

aiσ(i))

since the expectation of the sum is equal to the sum of the expectations. The variable ∏
n
i=1 aiσ(i) is equal to 1 iff

∀iaiσ(i) = 1, that is with probability 1
2n . Otherwise, it is 0, and therfore, 1

2n is also the expectation of ∏
n
i=1 aiσ(i) for

each of the n! distinct permutations σ ). Thus we get,

E(per(A)) = ∑
σ on {1,2,...,n}

2−n = n! ·2−n

The computation of the determinant is very similar, useing the same observation as above. We need only to note that
half the permutations are odd (and thus of sign 1) and half even (and of sign 0). (The definition of an odd or an even
permutation can be found in the textbook.) Then (−1)sign(σ) is half of the times 1 and the other half -1.

E(det(A)) = ∑
σ on {1,2,...,n}

(−1)sign(σ)E(
n

∏
i=1

aiσ(i))) = ∑
σ on {1,2,...,n}

(−1)sign(σ)2−n = 2−n 0 = 0

We got the first equality by using the formula for the expectation of the sum of random variables, and the observation
that the value of the product does not depend on the permutation chosen but only on the values of the ai j. The second
equality is due to (1), and the third comes from the fact that n!/2 permutations are even and contribute each one of
them an 1, while n!/2 are odd and contribute −1. Another way to solve this problem is expansion by minors.
Note. In a random bipartite graph (we have two sets of n vertices, the left and the right one, and a vertex of the left
set is connected to a vertex of the right set with probability p, independently of the other choices), we show that the
expected number of perfect matchings is pnn!. The number of perfect matchings is just the permanent of a matrix
with entries ai j that take values 1 or 0 with probabilitites p and 1− p respectively (and a value of 1 indicates an edge
from vertex i of the left set to vertex j of the right one). A permutation is just an 1-1 function on {1,2, . . . ,n}. Each
permutation gives a perfect matching, and a given permutation appears with probability pn (since an edge from vertex
i of the left set to σ(i) of the right set, for a permutation σ , appears with probability p). We have n! permutations,
therefore the expected number of perfect matchings is just n!pn. Take p = 1/2 and you have another solution for the
permanent part of the problem.
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Randomness

Problem 48.
We have the following function call RandomBit() that returns a zero or one with equal probability (1/2). We use if
the as follows.

flip(int n) {

1. m = 0;

2. for(i=0 ; i < n ; i++){

3. m = 2 * m + RandomBit();

4. }

5. return(m)

(a) What is the minimum and the maximum value returned by m?
(b) Does flip(n) generate a uniformly at random drawn integer?

Proof.
(a) Obviously min m is 0 and max m is 2n − 1. One can prove it inductively. Prior to i = 0, we have m = 0. At the
conclusion of i = 0, the only possible values for RandomBit() are 0 and 1, and thus of m 0 or 1 respectively. If by
induction at the conclusion of the i = k iteration the min and max value of m are 0 and 2k −1 respectively, then at the
conclusion of the i = k+1 iteration m is minimally 0 (one more RandomBit() that is 0), and the maximum value is

m = 2∗m+1 = 2∗ (2k −1)+1 = 2k+1 −1.

Thus at the conclusion of i = n−1, we have that the maximum value of m is 2n −1.
(b) When m is equal to N at the conclusion of iteration n− 1 then, m has generated the righmost bit of N. In other
words, m generates in iteration i the i-leftmost bit of N. The range of values for N is 0 and 20 + . . .+2n−1 = 2n −1,
and each such value is generated uniformly at random with probability 1/2×1/2× . . .×1/2︸ ︷︷ ︸

n times

.
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Problem 49.
In order to find the minimum (MIN) of n keys of A[0..n−1], the following algorithm can be used.

Min(A[0..n-1],n)

1. min = A[0];

2. for(i=1 ; i < n ; i++){

3. if A[i] < min

4. min=A[i];

5. }

6. return(min);

Assume all elements of A are distinct
(a) What is the probability that A[i] is the MIN?
(b) What is the probability that line 4 is executed?
(c) What is the expected number of times line 4 is executed?

Proof.
(a) The probability that A[i] is the MIN is 1/n, as there are n numbers distributed over the n slots of A.
(b) The probability that line 4 is executed is the probability that A[i] is the minimum of the i keys A[0], . . .A[i] i.e.
1/(i+1) using the same argument as in (a) above.
(c) Let Xi be a random variable that is 1 if line 4 is executed and 0 otherwise. Then X = ∑i Xi is the number of times
line 4 is executed. We are interested in finding

E[X ] = E[∑
i

Xi] = ∑
i

E[Xi]

We note that
E[Xi] = 1 ·P(Xi = 1)+0 ·P(Xi = 0) = P(Xi = 1)

From part (b) P ( Xi = 1) = 1/(i+1). Therefore,

E[X ] = ∑
i

E[Xi] =
n−1

∑
i=0

1
i+1

.

The latter sum is the harmonic series Hn thus
E[X ] = lnn+ γ.
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Problem 50.
Alice and Bob have each received a sealed envelope and an assurance that each contains some money and that one

contains exactly twice as much as the other. They are given the option of making the following agreement: they both
open their envelopes and whoever has the more money gives it to the other person.

Alice convinces herself that taking up this option is advantageous to her by the following argument: Assume her
envelope contains x amount of money. Then Bob’s envelope contains either 2x or x/2, each possibility being with
probability one half. Hence Alice’s expected gain in taking up the option is

1
2
·2x− 1

2
· x = x/2 > 0

Since she has a positive expected gain it is worth her while to play the game. By an analogous argument Bob also
concludes that taking up the option gives him an expected gain. Surely this is a contradiction.

Identify the fallacy in the previous paragraph.

Proof.
Alice and Bob are mistaken in assuming that the probabilities that the other envelope contains 2x and x/2 are both one
half. That depends on the distribution of how the envelopes were originally filled, which is unknown and by no means
necessarily uniform. So for different values of x, the probability that x is the larger of the two amounts is likely to vary,
in which case this expected value calculation is not correct.
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Problem 51.
Show that n! ∤ nn for n > 2.

Proof.
It suffices to show that (n−1)! ∤ nn−1. Assume by way of contradiction that (n−1)!|nn−1.
We have two cases two consider.
(a) n is a prime number. Since (n−1)|(n−1)! and (n−1)!|nn−1 we have (n−1)|nn−1. We have two subcases then.
(a.1) n− 1 is a prime number. Since (n− 1)|nn−1 and n is also a prime number (case (a)), we have n− 1|n. Since
n−1|n−1 then n−1|n− (n−1), i.e. n = 2 but this is impossible since n > 2.
(a.2) n−1 is NOT a prime number. From the decomposition theorem, n−1 = pa1

1 . . . pak
k , where 1 < pi < n−1. Since

pai
i |(n−1) and (n−1)|nn−1, we obtain pai

i |nn−1 i.e. pi = n. This is a contradiction since pi < n−1 < n.
(b) n is NOT a prime number. Consider its decomposition n = qb1

1 . . .qbt
t . Say n−1 = pa1

1 . . . pak
k as in case (a.2). Then

pi|n− 1 and (n− 1)!|nn−1 i.e. pi divides one of the q j. Then pi = q j and this is true for all i. Pick any one of them
arbitrarily. Say it is p1. Therefore since p1|n− 1 and p1 = q j we have that p1|n i.e. p1|(n− (n− 1)) i.e. p1|1 i.e.
p1 = 1. This contradicts the primeness of p1.
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Problem 52.
PermutE(A,n) // A is an array A[1..n]

1. for(i=1;i<=n;i++) {

2. //random(1,n) returns

3. //a uniformly at random integer between 1 and n

4. swap(A[i], A[random(1,n)]);

5. }

6. return(A);

(a) Does PermutE(A,n) generate a permutation?
(b) Does PermutE(A,n) generate a random permutation?

Proof.
YES and NO.
(a) YES, one can show easily that a permutation is returned.
(b) NO. Algorithm PermutE generates permutations but not uniformly at random. Consider for example the case of
n = 3. On 3 keys, there are 3! = 6 different permutations. Algorithm PermutE can generate 33 = 27 possible outcomes
each one corresponding to a permutation; however not all of them are distinct from each other. Given that there are
only 6 distinct permutations on 3 items, and that 6 does not divide 27, some of these 6 permutations will be generated
more often than the others, i.e. there is a bias towards certain permutations over others. If you exhaustively generate
all possible 27 outcomes of the algorithm, you can see that three permutations show up 5 times and 3 show up 4 times,
i.e. there is a bias in favor of certain permutations such as (2,3,1). You can see in the drawing below the possible
outcomes after only the first two swaps have been performed. Out of the 9 possible permutations that can be generated
so far (2,1,3), (1,2,3) and (2,3,1) appear twice already. In general the ”decision tree” corresponding to the outcomes
has nn leaves, each one reached with the same probability. The number of permutations for n items is however n!.
The leaves can not be divided equally among the permutations since nn is not a multiple of n! for n > 2. Thus each
permuation is not available with the same equal probability 1/n! and thus the algorithm is incorrect.

Starting Input A[i]=i for i=1,2,3

1 9 27

1st 2nd (2,1,3)

------> (1,2,3) --- (1,2,3)

| (1,3,2)

|

| 1st 2nd (1,2,3) 3rd not shown

(1,2,3) ------> (2,1,3) --- (2,1,3) .... and so on ...

| (2,3,1)

|

| 1st 2nd (2,3,1)

------> (3,2,1) --- (3,2,1)

(3,1,2)

1st = Possible outcomes after swap ( A[1], A[random(1,3)] ) is done

2nd = Possible outcomes after swap ( A[2], A[random(1,3)] ) is done

3rd = Possible outcomes after swap ( A[3], A[random(1,3)] ) is done



140 CHAPTER 15. RANDOMNESS

Problem 53.
Consider the following algorithm.

FunPermute(A,n) // A is an array A[1..n]

1. for(i=1; i<= n-1 ; i++){

2. swap(A[i], A[random(i+1,n)];

3. }

4. return(A)

Does this code generate any permutation ? Does it produce a uniform at random non-identity permutation?

Proof.
No or not if n > 2. The element in the first position is swapped out at i = 1; in the remainder it cannot be re-occupy
A[1].
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Problem 54.
You are given RAND(a,b) that returns a random integer number between a (inclusive) and b (inclusive) with uniform
probability. Show how to use this RAND function to generate a random permutation in O(n) time of n distinct objects
stored in array X [1..n]. You may assume that a call to RAND takes constant time O(1).

For example if X has three items < 10,20,30 > then after your algorithm is run it is equally likely that the output
is < 10,20,30 > or < 20,10,30 > or any one of the remaining 4 permutations of the three distinct objects 10, 20, 30.

Proof.

Permute(A,n) // A is an array A[1..n]

1. for(i=1;i<=n;i++) {

2. //random(1,n) returns

3. //a uniformly at random integer between 1 and n

4. swap(A[i], A[random(i,n)]);

5. }

6. return(A);

or

Permute(A,n) // A is an array A[1..n]

1. for(i=n; i>=1 ;i--) {

4. swap(A[i], A[random(1,i)]);

5. }

6. return(A);

The algorithm (second version) works in-place. At the start, at the conclusion of iteration I = 1, where i= n+1−I, the
items at index i = n+1− I stores any one of the items in position n+1− I,n− I, . . . ,1, a choice among n+1− I = n
items. By induction, in iteration I, where i = n+ 1− I, the items at index i = n+ 1− I stores any one of the items
in positions n+ 1− I,n− I, . . .1, a choice among i of them. Therefore for iteration I = 1 (equivalent to i = n), there
are n outcomes for A[i], for iteration I = 2 (equivalent to i = n−1) there are n−1 outcomes for A[i]), and so on. The
decision tree has n! leaves, corresponding to the outcomes of Permute. Each of the outcomes is generate with the same
probability 1/(n(n−1) . . .1) = 1/n!.
The running time is obviously O(n) if a single call to RAND is O(1).
Inductive hypothesis: Before the start of iteration i, A[1..i− 1] contains an (i− 1)-permutation (i− 1 of the n keys)
with probability (n− i+1)!/n!. (For a base case this is true as well by default.)
Inductive step. An i-permuations is an (i−1)-permutation followed, in the i-th iteration by the element picked for A[i].
Let the (i−1)-permuation of the induction step be p. Its probability of occurence is by the inductive hypothesis (n− i+
1)!/n!. The even that a given item is picked among the A[i..n] and swapped at A[i] is 1/(n− i+1). Thus the probability
that the i-permuation generated at the end of the i iteration is as is is 1/(n− i+ 1) · (n− i+ 1)!/n! = (n− i)!/n!. At
the completion of the i = n iteration, a given permutation formed appears with probability (n− n)!/n! = 1/n!, as
required.
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Problem 55.
The Higlander Casino plays a game of random permutations on 4 items as follows.

• The client bets on a permutation of his/her choice.

• The casino uses the incorrect one of the algorithms (i.e. PermutE) to generate a random permutation.

• The casino pays the client the fair amount of money if the client won (i.e. guessed right). Fair money means
in the long run neither the client nor the casino would make any money IF their algorithm chose correctly and
fairly a permutation (i.e. for n items the casino pays n dollars for every dollar bet right).

Since the casino’s algorithm is incorrect, what methodology could you follow to gain over the casino? What edge
(percentage-wise) do you expect to gain over the casino? Explain.

Proof.
The casino is using PermutE. With 4 items the decision tree has 44 = 256 leaves. There are however 4! = 24 permuta-
tions on 4 items and these 24 permutations correspond to the 256 leaves. So, on the average 256/24 leaves correspond
to each permutation (or a given permutation appears on the average that often as outcome of PermutE). The ratio
256/24 is equal to 10.666. A permutation can appear as a leaf 10 or 11 times but not 10.666 times. Therefore there
must be a permutation that appears at least 11 times since otherwise all permutations appear only 10 times and there-
fore the 24 of them can only appear 24×10 = 240 times as leaves but there are 256 leaves permutation generated by
PermutE. Therefore our algorithm in beating the casino is to identify this permutation (keeping track of what shows
up as a result of successive games and histograming these outcomes) and after doing so, to bet on it time after time.
Our expected probability of winning would thus be (at least) 11/256. Since the casino pays fair money, if we bet 1 we
win 24$. So our expected return would be 11/256∗24 = 264/256 = 1.03125. So our edge over the casino is 3.125%.
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Problem 56.
You are given a random vector a = (a1, . . .an), where ai is equally likely and independently to be 0 or 1, i.e. P(ai =
1) = P(ai = 0) = 1/2. Answer the following questions.
(a) (Warmup) What’s the probability that a is the all zero vector (3 points)?
(b) Suppose that a,b are two 0-1 vectors of length n whose components were chosen uniformly at random as discussed
previously. What is the expected value of the inner product a ·b = ∑

n
i=1 aibi? Explain (17 points).

(c) Let d be a vector of integers mod p (i.e. items of d are 0, . . . p−1), where p is a prime. Let a be a random vector
of 0-1’s chosen as before. What is an upper bound on the probability that ∑diai ≡ 0 mod p? Explain.

Proof.
(a) 1/2n.
(b) n/4.

E[c] = E[ab] = E[∑
i

aibi] = ∑
i

E[aibi]

aibi is 0 with probability 3/4 and 1 with probability 1/4 (when both ai = bi = 1).

E[aibi] = 0(3/4)+1(1/4) = 1/4

Therefore
E[c] = E[ab] = E[∑

i
aibi] = ∑

i
E[aibi] = n(1/4)

(c) The vector d is given (and is not necessarily random). Assume d ̸= 0, i.e. at least one component of the vector is
non-zero since otherwise the problem is trivial. ∑diai ≡ 0 mod p.

∑
i

diai ≡ 0 mod p

d1a1 +d2a2 + . . .+dnan ≡ 0 mod p

d1a1 ≡ (−d2a2 − . . .−dnan) mod p

d1a1 ≡ Z mod p

where Z ≡ (−d2a2 − . . .−dnan) mod p. Then,

∑
i

diai ≡ 0 mod p

d1a1 ≡ Z mod p

a1 ≡ (d1)
−1Z mod p

a1 ≡ B mod p

The inverse of d1 exists since d1x ≡ 1 mod p has a single solution for x by the fact that d1 < p is such that (d1, p) = 1
and p is prime. B = (d1)

−1Z mod p is an integer in 0, . . . , p−1. a1 is a (uniformly at) random (chosen) 0,1. What is
the probability that the random a1 is B? Naturally this probability is at most 1/2, as after we fix B, a1 can agree with
this fixed value of B half of the time only. If the ai’s were not binary but ternary, then the probability bound would be
1/3 instead.
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Problem 57.
SomeIT has two types of professors: mean and nice. A generous professor gives A’s to all 100% of the students in
his class. A mean professor gives A’s to 80% of the students and B+ to the remaining students. Let’s assume that all
course/class grades are available in the form of arrays and all arrays have the same size n. How fast can you determine
reliably (i.e. you are confident on your estimate 51% of the time or more) whether the grades of a given professor
correspond to a mean or a nice one?
Note that your algorithm does not need to be correct all the time. However it needs to be fast. An obvious O(n)
solution that is correct 100% of the time is to go through array G and if we find a B+ we return mean otherwise we
return generous.
This is too slow however.

Proof.
We look at say 11 random indices i1, . . . i11.

1. SomeIT(A.roster,n,A.instructor)

2. for(j=1;j<=11;j++){

3. k=ChooseRandom(1,n) //Choose random index in 1..n

4. i[j]=k;

5. if A[k] == "B+’

6. printf("mean");

7. return;

8. }

9. printf("nice");

10. return;

SomeIT is an instance of a probabilistic algorithm. It always returns an answer, but sometimes the answer might be
incorrect (unreliable). When SomeIT returns mean through lines 6-7, we know that the instructor is indeed "mean",
since a B+ grade has been found in the roster. When SomeIT returns nice through lines 9-10 we might have of two
cases.
Case 1. The instructor in question is nice and there was no chance of finding a B+ whether 11 or n of the grades were
to be examined. The answer given is thus correct.
Case 2. The instructor in question is mean and thus the answer given is misleading and unreliable. SomeIT failed to
detect a B+ in 11 trials, i.e. it detected an A in 11 trials.
What are the chances that the answer is unreliable i.e. Case 2 applies? The chance that we get an A answer to a lookup
given a mean professor is 0.8 (80%). The chance that we get an A 11 times in a row in randomly picked probes is
0.811 < 0.086 < 0.10. Therefore > 1−0.10 = 90% of the time a mean professor would be detected through lines 6-7,
but only ≤ 8.6% of the time a potentially unreliable answer will be given through lines 9-10.
A probabilistic algorithm similar to SomeIT always tells the truth when it says mean. Every time it says nice the
result is reliable with confidence 90% or more. SomeIT is what we call a Monte-Carlo algorithm.
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Problem 58.
Planet CS has an n-day year. Among a population of k people of this planet find the expected number of triples of

these people who have the same birthday. How large should k be for the expected value to be at least 1?

Proof.
The number of triples of people is

(k
3

)
and the persons in a triple have all the same birthday with probability 1

n2 .
Therefore the expected number of triples of people having the same birthday is

(k
3
) 1

n2 . This value is 1 when k ≈ cn2/3

for a constant c.
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Chapter 16

Ramsey numbers

Problem 59.
Let r = R(C3,k) be the smallest number of vertices so that no matter how the edges of Kr are colored using k

colors, Kr has a monochromatic (i.e. all edges are of the same color) C3 (a cycle of length 3) as a subgraph. Show, by
using constructive rather than probabilistic arguments, that:

2k ≤ R(C3,k)≤ 3 · k!

Proof.
a) We first prove the lower bound through the use of induction (over k)! We are going to prove that R(C3,k)> 2k. For
k = 1 the result is trivially true (R(C3,1) = 3). Suppose it is true for all values up to k. We are going to prove the bound
for k+ 1, namely that R(C3,k) ≥ 2k+1. Since we assume the result true for k, we pick two copies of the complete
graph on 2k vertices. We can color the first copy with k colors without a monochromatic triangle from the inductive
hypothesis, and similarly the second copy using the same k colors. Then we can color the edges that go from the first
copy of K2k to the second one with a new, k+1-st color. Since no triangle exists in any of the two copies for the first k
colors then we can’t have a triangle of the k+1-st color (this would require an edge of k+1-st color in a single copy
of K2k ) and thus, we get that the complete graph on K2k+1

is free of monochromatic triangles. We now prove the upper
bound.
b) (Exercise : Show that this bound can be as small as ek!+ 1.) We prove that R(C3,k) ≤ 3k! by induction. It is
trivially true that R(C3,1)≤ 3. Assume it is true for all colors less than or equal to k−1. We will prove the claim for k
colors (and let us use colors 1, . . . ,k). Let us pick a complete graph on 3k! vertices. Color its edges in some way. Pick
an arbitrary vertex and let’s call it v. Let Si be the vertices w that are connected to v thru an edge of color i. We have
k colors and 3k!− 1 vertices adjacent to v. Then there must exist a set S j for some color j of size at least 3(k− 1)!
(because if all sets had sizes at most 3(k−1)!−1, then we would have had at most 3k!− k vertices adjacent to v, but
for k > 1, we have 3k!−1 of them). If in S j we can find two vertices u, w connected by an edge of color j, then we are
done, a monochromatic triangle is (v,u,w). Otherwise no edge of color j connects any two vertices in set S j, i.e. the
edges of this set utilize the other k− 1 colors only and the size of set S j is at least 3(k− 1)!. We apply the inductive
hypothesis on this set and we can find a monochromatic triangle in S j. This completes the induction.
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Problem 60.
For any k > 4, show R(k,k)≥ 2k/2.

Proof.
Let n = R(k,k)< 2k/2.

We (uniformly at random) color the edges of Kn with red or blue color. Edges are colored independently of each
other P(red) = P(blue) = p = 1/2 = q = 1− p. Think of flipping a coin for every edge and if it comes H we interpret
it as red and we interpret T for blue. Or we interpret H for an edge to include and likewise a T for an edge not to
include

For every fixed set of k vertices, the probability that they form a clique (are all red) is p = 2−(
k
2).

Likewise for every fixed set of k vertices, the probability that they form an independent set (are all blue) is also
p = 2−(

k
2).

There are
(n

k

)
k-sets of vertices that can give rise to a clique or an independent set. If we use Lemma 1 the

probability of a union of events is at most their sum of probabilities. Thus

P(Graph has k-clique or k independent set ≤ 2
(

n
k

)
2−(

k
2).

Noting n < 2k/2 we have the following.

2
(

n
k

)
(

1
2
)(

k
2) = (

ne
k
)k(

1
2
)k(k−1)/2 =

(
2k/2e

k

)k(
1
2

)k(k−1)/2

=

(
2k/2e

k2(k−1)/2

)k

=
( e

k2−1/2

)k
=

(√
2e
k

)k

For k > 4 the probability is less than one. Thus there are graphs that contain neither a k-clique or k-independent set.
This implies R(k,k)> 2k/2.
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Problem 61.
Prove that there is a constant c > 0 such that for all k, r(3,k)≥ ck

lnk . Find a similar lower bound for r(4,k). (Hint:
Use a random graph argument with edge probability p appropriately chosen.)

Proof.
The stated bound for R(3,k) is trivial since n ≤ k. But to find the bound for R(4,k) we will use a probabilistic argument
that we present first for the R(3,k) case.

We shall prove a lower bound for R(3,k), by showing that for lesser n, the chance a random graph with edge
probability p has either a 3-clique or k-independent set is less than 1. Such a result (for any value of p) means there
must exist some graph that has neither. This probability is bounded above by(

n
3

)
p3 +

(
n
k

)
(1− p)(

k
2) ≤ n3

6
p3 +nk(1− p)

k2
4

If we pick p = n−1, then the first term becomes 1/6, and we need only prove that the second is less than 5/6. To do this
observe that each each of the following relations implies the one above it.

nk(1− 1
n
)

k2
4 ≤ 5

6
⇒

nk(1− 1
n
)

k2n
4n ≤ 5

6
⇒

nke−
k2
4n ≤ 5

6
⇒

k lnn+ ln
6
5

≤ k2

4n
⇒

lnn ≤ k
n
⇒

lnc+ lnk− ln lnk ≤ lnk
c

which is certainly true for c = 1
2 . For R(4,k) we get the similar expression of(

n
4

)
p(

4
2) +

(
n
k

)
(1− p)(

k
2) ≤ n4

24
p6 +nk(1− p)

k2
4

bounding the probability, and instead chose p = n−
2
3 . Following the above reasoning, it suffices to show that

lnn ≤ kn−
2
3 ⇒ k ≥ n

2
3 lnn

To do this we can let n = ( ck
lnk )

3
2 (with c = .5 works), thus improving our bound to be non-trivial.
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Problem 62.
(Van der Waerden’s conjecture) Show that if n <

√
k2

k
2 then for some coloring of the integers {1,2, . . . ,n} with

two colors, neither color contains an arithmetic progression of length k.

Proof.
Observe that for a random coloring the probability that any particular arithmetic progression is monochromatic is
2−(k−1) (once the first element is assigned a color, the remaining k−1 elements must be given the same one). If N is
the number of such arithmetic progressions, and N < 2k−1, the claim must be true since that implies an upper bound
on the probability that a random coloring makes some progression monochromatic is less than one, which means
there is some chance a random coloring makes no such progression monochromatic, which means there must be some
particular coloring that fails.

To calculate the number of progressions we count the number of possible starting positions for each possible size
for the gap between elements (i). This gap must be less than n/(k−1) as otherwise the first and last elements would
be separated by n or more places.

N ≤
n

k−1

∑
i=1

(n− i(k−1))

=
n2

k−1
− (k−1)

n
k−1

∑
i=1

i

=
n2

k−1
− (k−1)

n
k−1

n+k−1
k−1

2

=
n2

k−1
−n

n+ k−1
2(k−1)

=
n2

k−1
− n2

2(k−1)
− n

2

=
n2

2(k−1)
− n

2

<
k2k

2(k−1)
− n

2

< 2k−1

The bound given is based on using 2−k for the probability a progression is monochromatic, and bounding the
number of progressions by (n/k)n.
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Problem 63.
For m, r, n positive integers the set {1, . . . ,m} has property B(r,n) if for some collection of r subsets of size n of

{1, . . . ,m} any 2-coloring of {1, . . . ,m} results in some member of the collection being monochromatic. Find a lower
bound on r such that {1, . . . ,m} has property B(r,n).

Proof.
The chance for a random coloring that a particular set of size n is monochromatic is 2−(n−1). If we have r such sets, the
chance that there exists one of them that is monochromatic is no more than r2−(n−1). Thus if r < 2n−1, any collection
of r sets of size n has some chance of having no monochromatic elements in a random coloring, which means there
is some particular coloring for which it has no monochromatic elements. So {1, . . . ,m} cannot have property B(r,n)
unless r ≥ 2n−1.
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