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Abstract. Markov modulated self-similar processes are proposed to model MPEG video sequences that can
capture the LRD (Long Range Dependency) characteristics of video ACF (Auto-Correlation Function). The basic
idea is to decompose an MPEG compressed video sequence into three parts according to different motion/content
complexity such that each part can individually be described by a self-similar process. Beta distribution is used to
characterize the marginal cumulative distribution (CDF) of the self-similar processes. To model the whole data set,
Markov chain is used to govern the transitions among these three self-similar processes. In addition to the analytical
derivation, initial simulations have demonstrated that our new model can capture the LRD of ACF and the marginal
CDF very well. Network cell loss rate using our proposed synthesized traffic is found to be comparable with that
using empirical data as the source traffic.
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1. Introduction

The trend to transmit video over networks is emerg-
ing. Traffic models are important to network design,
performance evaluation, bandwidth allocation, and bit-
rate control. To network service providers and users, it
is important to describe the video traffic accurately so
that charges can be priced based on reasonable param-
eters, and the parameters for quality of service can be
mapped into the parameters that can be used for net-
work administration. It has been observed, however,
that traditional models fall short in describing the video
traffic because video traffic is strongly autocorrelated
and bursty [1]. To accurately model video traffic, au-
tocorrelations among data should be taken into con-
sideration. A considerable amount of effort on video
modeling has been reported that include:
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• Markov Modulated Rate Process (MMRP) [2]
• Discrete Auto-Regressive Process (DAR(1)) [3]
• Fluid Models [4]
• Markov-Renewal-Modulated TES Models [5]
• Long Range Dependency (LRD) models [6] or Self-

Similar models [7]
• M/G/∞ input process models [8]
• GBAR Model [9]

The above models can be categorized into two classes:

• Short Range Dependency (SRD) models, and
• Long Range Dependency (LRD) models.

These models are used to capture two statistical factors:
marginal distribution (first-order statistics) and auto-
correlation function (second-order statistics) of traffic
arrival times. The importance of long range dependency
is among the most arguable issues in video modeling.
Some of the results support the view that LRD has
drastic impact on queuing performance [10–13], while
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Figure 1. ACF of MPEG compressed video Star Wars.

other results support the view that LRD has little im-
pact on queuing performance because of the fact that
the buffer capacity is limited in practice [14].

While the importance of long range dependency is
arguable, the impact of short term autocorrelation of
a traffic process on queuing performance with finite
buffer can be very drastic (see [5] and references in
it). Simulation results show that network queuing per-
formance with strong and weak autocorrelation traffic
may be quite different.

SRD models (such as DAR(1), MMRP, Fluid Flow,
and Regression models) can capture short-term auto-
correlation, but fail to capture long-term dependency.
LRD models, on the other hand, can capture long-term
dependency, but underestimate the short term depen-
dency.

The model proposed in [8] (a special M/G/∞ in-
put process model) is a compromise between LRD and
SRD models [8]. Simulation results were found to be
better than those of a self-similar process when the

switch buffer is relatively small. Better results than
those of DAR(1) model was found when the buffer
size is large. The results were obtained from JPEG
and MPEG-2 I sequences. As will be shown later, the
ACF of MPEG sequences is quite different from that
of JPEG sequences or that of I sequences. In our opin-
ion, it is almost impossible to accurately capture the
ACF of MPEG compressed data by a simple function
such as the exponential function, and thus this method
fails to capture the second-order statistics of MPEG se-
quences. Markov-Renewal-Modulated TES (transform
expand sample) models were used to model JPEG en-
coded motion pictures. One of the drawbacks of TES
approach is that the ACF of a TES process for lags
beyond one cannot be derived analytically. The ACF
can only be obtained by searching in the parameter
space, and thus good results can hardly be guaranteed
[8]. One of the important tasks of traffic modeling is to
obtain an analytical model so that the network perfor-
mance can be obtained analytically. TES model fails to
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Figure 2. ACF of JPEG compressed video Star Wars.

provide such an analytical model. To overcome some
shortcomings of video modeling, we propose to model
MPEG compressed video sequence by Markov modu-
lated self-similar processes, in which the original se-
quence is decomposed into several sequences that can
be modeled by self-similar processes. A Markov chain
is then used to govern the transitions among these self-
similar processes. It has been found that video traffic
possesses self-similarity, and thus it is natural to model
video traffic by self-similar processes. In addition, self-
similar processes have simple ACF forms, hence al-
lowing us to readily derive an analytical model for our
proposed approach. Our proposed model is shown to
be able to capture both the long range dependency and
marginal cumulative distribution. This paper is orga-
nized as follows. In Section 2, empirical data and ACF
are described. Concepts of SRD, LRD and self-similar
processes are presented in Section 3. Section 4 dis-
cusses the classification of data. Modeling of the clas-
sified data is discussed in Section 5. We describe how
to model the whole data set as a Markov modulated
process in Section 6. Section 7 presents a method to

synthesize video traffic. Network performance in terms
of cell loss rate based on our proposed synthesized
and empirical data as the source traffic is presented in
Section 8.

2. Empirical Data and ACF

Most of the work in video source modeling has been
largely confined to a short period of video (conference)
sequences. The scene change or drastic motion frames
are rare in these sequences. As a result, bit rates are
relatively low, and bit rate changes are rather small
compared with that of full motion movies. Here, we
use MPEG-I coded data of Star Wars1 as the empirical
data. The source contains motions ranging from low
complexity/motion scenes to those with high and very
high actions.

The data file consists of 174,136 integers, whose val-
ues are frame sizes (bits per frame). The movie length
is approximately 2 hours at 24 frames per second.
The original video was captured as 408 lines by 508
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Figure 3. ACF of the inactive part of Star Wars.

pels, and then interpolated to 240 × 352 (Luminance—
Y), and 120 × 176 (Chrominance—U and V). Every
frame was partitioned into blocks of 8 × 8 pixels.
These data blocks were transformed using DCT. After
DCT transformation, coefficients were quantized and
Huffman coded. Run length coding was further used
to reduce bit rate. Motion estimation techniques were
used to compress data volume. The frames were orga-
nized as follows: IBBPBBPBBPBB IBBPBB. . . , i.e.,
12 frames in a Group of Pictures (GOP). I frames are
those which use intra frame coding method (without
motion estimation), P frames are those which use inter
frame coding technique (with motion estimation), and
B frames can be predicted using forward and backward
prediction.

The ACF of MPEG coded Star Wars is shown in
Fig. 1, and it is quite different from the ACF of JPEG
coded movies Star Wars (see Fig. 2). The ACF of
MPEG coded data fluctuate around an envelope, re-
flecting the fact that, after the use of motion estimation

techniques, the dependency between frames is re-
duced. To capture the ACF accurately, this character-
istic should be taken into consideration in modeling
MPEG coded video sequences. We propose to use self-
similar processes with different ACFs to reflect the fluc-
tuation of ACFs. The basic idea behind this method is to
divide the sequence into three different sequences, each
modeled by a separate self-similar process. The tran-
sition among these processes is governed by a Markov
chain, whose transition matrix can be obtained from
empirical data.

3. SRD, LRD, and Self Similarity

Consider a stationary process X = {Xn : n = 1, 2, . . .}
with meanµ and varianceσ 2. The autocorrelation func-
tion and the variance of X are denoted as:

r(k) = E[(Xn − µ)(Xn+k − µ)]

σ 2
(1)
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Figure 4. ACF of the active part of Star Wars.

and

σ 2 = E[(Xn − µ)2]. (2)

X is said to be SRD if
∑K=∞

k=0 r(k) is finite; otherwise,
the process is said to be LRD [15].

Let X defined above have the following autocorre-
lation function:

r(k) ❀ k−β L(k), k → ∞ (3)

where 0 < β < 1, and L is a slowly varying function
as k → ∞, i.e., limt→∞ L(tx)/L(t) = 1 for all x > 0.
Consider the aggregated process

X (m) = {
X (m)

t

} = {
X (m)

1 , X (m)
2 , . . .

}
,

where

X (m)
t = 1

m
(Xtm−m+1 + · · · + Xtm), t ∈ P, m ∈ P,

(4)

and P is a positive integer set. X is said to be exactly
second-order self-similar [15] if

var X (m) = σ 2m−β (5)

and

r (m)(k) = r(k) (6)

for all m ∈ {1, 2, 3, . . .} and k ∈ {0, 1, 2, . . .}. Here
r (m)(k) is the autocorrelation function of X (m). In fact,
Eq. (5) is sufficient to define a self-similar process since
Eqs. (3) and (6) can be derived from Eq. (5) [15].

It is apparent that a self-similar process is a kind
of LRD process. Since empirical video traffic exhibits
self-similarity and long range dependency, it is intuitive
to use self-similar processes to model video traffic. It
is one of the most often used processes to capture LRD
of video traffic.

The Hurst parameter H = 1 − β/2 (0 < β < 1)
is used to measure the similarity of a process. It is
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Figure 5. ACF of the most active part of Star Wars.

the only parameter needed to describe a second-order
self-similar process. For a process with self-similarity,
1/2 < H < 1.

4. Classification of MPEG Data

It is apparent that ACF of MPEG compressed video
traffic cannot be approximated by a single function
r(k) = k−β because this kind of function decreases
monotonically, while ACF of a MPEG compressed
video traffic fluctuates dramatically. By comparing
JPEG compressed data and MPEG compressed data,
we may find that bit rate variation of an MPEG
compressed video sequence is larger than that of a
JPEG compressed video sequence. We therefore sug-
gest to divide the traffic data into three different parts—
inactive part, active part, and the most active part in
terms of motion/content complexity similar to the ob-
servations made in [2] (i.e., a video bit rate process has
three main components: a slowly changing component,

a more quickly changing component, and an impul-
sive component). There are many ways to decompose
video data into these three components. One may ac-
complish the decomposition in the MPEG compressed
domain, say, by using readily available motion vectors
of blocks. In our simulations, video frames are grouped
into three components of different motion/content com-
plexity based on frame size changes using the following
heuristics:

1. If f (i + 1)/ f (i) > T, i = 2, 3, . . . , then f (i + 1)

belongs to the non-inactive part; otherwise, f (i +1)

belongs to the inactive part, where T is a threshold
value.

2. Similarly, the non-inactive part can be classified into
the active and most active part.

Taking these three data sets as three different random
processes, we can then calculate their ACFs.
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Figure 6. CDF of the inactive part and the corresponding beta distribution.

5. Modeling of Classified Data

The ACF of each process is very different (as shown
in Figs. 3–5), from that of the original sequence. The
fluctuation is no longer as drastic as that of the orig-
inal sequence. We have used k−β, e−βk and e−β

√
k ,

corresponding to the ACFs of a self-similar process, a
Markov process and an M/G/∞ input process, respec-
tively, to approximate ACFs of these three processes.
It becomes evident that k−β is a better approximation
of ACFs of these classified data, and we therefore use
self-similar processes s1, s2, and s3 to model these pro-
cesses.

Using the least squares method, we obtained β =
0.3321, 0.3069, and 0.4396 for the active, inactive,
and most active part, respectively. The corresponding
Hurst parameters for these processes are H = 0.8339,
0.8465, and 0.7802.

Beta distribution [16] was used to model the
marginal distributions of these processes. The marginal
distribution of a Beta distribution process has the

following form

f (x; γ, η, µ0, µ1)

=




1

µ1 − µ0

�(γ + η)

�(γ )�(η)

(
x − µ0

µ1 − µ0

)γ−1

×
(

1 − x − µ0

µ1 − µ0

)η−1

µ0 ≤ x ≤ µ1, 0 < γ, 0 < η

0 otherwise (7)

where γ and η are shape parameters, and [µ0, µ1] is
the domain where the distribution is defined.

Beta distribution is quite versatile and can be used
to model random processes with quite different shapes
of marginal distributions. The following formulae are
used to derive the parameters of Beta distribution:

η̂ = 1 − x̄

s2
[x̄(1 − x̄) − s2] (8)

γ̂ = x̄ η̂

1 − x̄
(9)
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Figure 7. CDF of the active part and the corresponding beta distribution.

where

x̄ = 1

N

N∑
i=1

xi , (10)

s2 = N
∑N

i=1 x2
i − ( ∑N

i=1 xi
)2

N (N − 1)
, (11)

and N is the number of data in the data set. Using
the classified data sets, γ̂ = 1.6179, η̂ = 13.7810 for
the inactive process, γ̂ = 1.7977, η̂ = 12.1980 for the
active process, and γ̂ = 5.3550, η̂ = 11.4134 for the
most active process. The marginal distributions of
the empirical data and the corresponding Beta distri-
butions are shown in Figs. 6–8.

6. Modeling the MPEG Data

To model the whole data set, we need a process to
govern the transition among the processes s1, s2, and
s3 obtained above. Markov chain is often used owing
to its simplicity.

Using Markov chain as the dominating process, our
model for MPEG video traffic can be described by the
state diagram shown in Fig. 9, where state S1, S2, and
S3 correspond to the three respective self-similar pro-
cesses. At state Si , bit rates are generated by process
si . The transition probability from Si to Sj can be esti-
mated from the empirical data as follows:

pij = Nij

Ni
, (12)

where Ni is the total number of times that the system
goes through state Si , and Nij is the number of times
that the system make transition to state Sj from state
Si . For the Star Wars video, the following transition
matrix

P̂ =




0.0002 0.9998 0

0.1174 0.5232 0.3594

0.0209 0.9791 0




is obtained. This matrix is useful for the synthesis of
video traffic.
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Figure 8. CDF of the most active part and the corresponding beta distribution.

Figure 9. A Markov modulated self-similar process model for
MPEG video.

7. Video Traffic Synthesis

To synthesize video traffic using our model requires
self-similar traffic generator. Some methods are avail-

able to generate approximate self-similar traffic. Two
of the most commonly used methods are exactly self-
similar fractional Gaussian noise (FGN) [17] and
asymptotically self-similar fractional autoregressive
integrated moving-average (F-ARIMA) process [17].
F-ARIMA can be used to match any kind of ACF. It
takes a long time to generate the video traffic since
F-ARIMA is an iterative process. The F-ARIMA pro-
cess can be generated by the following algorithm
[7, 18, 19]:

1. Generate X0 from a Gaussian distribution N (0, ν0).
Set initial values N0 = 0, D0 = 1

2. For k = 1, 2, . . . , N − 1, calculate φkj, j =
1, 2, . . . , k iteratively using the following formulae

Nk = r(k) −
k−1∑
j=1

φk−1, j r(k − j) (13)

Dk = Dk−1 − N 2
k−1

/
Dk−1 (14)

φkk = Nk/Dk (15)
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Figure 10. Traffic generated by our proposed model.

φkj = φk−1, j − φkkφk−1,k− j ,

j = 1, . . . , k − 1 (16)

mk =
k∑

j=1

φkj Xkj (17)

νk = (
1 − φ2

kk

)
νk−1 (18)

Finally, each Xk is chosen from N (mk, νk). In this
way, we obtain a process X with ACF approximating
to r(k).

To generate a self-similar process approximately, the
autocorrelation function can be calculated in a recursive
way as

r(0) = 1, r(k + 1) = k + d

k + 1
r(k) (19)

where d = H − 0.5.
ACFs of F-ARIMA and FGN generated traffic are

less than k−β for small k. To compensate for the under-
estimation of ACFs of a self-similar process, Eq. (19)

used to generate F-ARIMA traffic can be enlarged for
small k. New self-similar traffic generators need to be
devised so that more exact self-similar traffic can be
generated.

Distribution of these data is Gaussian. For data to be
Beta distributed, the following mapping can be used

Yk = F−1
β (FN (Xk)), k > 0 (20)

where Xk is a self-similar Gaussian process, FN is the
cumulative probability of the normal distribution, and
F−1

β is the inverse cumulative probability function of
the Beta model.

Video traffic can be synthesized by a combination of
the three obtained self-similar processes via a Markov
process, whose transition matrix was given in the last
section (see Fig. 10 for a traffic example). In the
empirical data trace, the size of I frame is often larger
than the size of P frame and B frame, implying that a
large frame is often followed by several small frames.
It is shown in Fig. 10 that the traffic generated by our
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Figure 11. A piece of the empirical traffic trace.

model can capture this kind of characteristic. A piece
of the empirical traffic trace is shown in Fig. 11.

8. Network Cell Loss Rate

Cell Loss Rate (CLR) is an important queuing network
performance. To justify the queuing performance of
our model, our synthetic traffic was used as the source

Table 1. CLRs for different service rate and buffer size.

4000 cells/s 6000 cells/s 9000 cells/s
Buffer size
(cells) Trace Model Trace Model Trace Model

20 2.24E−2 9.95E−2 2.09E−3 2.30E−2 1.50E−4 4.25E−4

40 1.24E−2 7.43E−2 1.36E−3 1.34E−2 8.07E−5 1.34E−4

60 6.81E−3 5.44E−2 9.72E−4 9.25E−3 7.19E−6 2.28E−5

100 2.30E−3 2.72E−2 4.57E−4 2.91E−3 0 0

200 3.55E−4 4.22E−3 1.00E−5 3.40E−5 0 0

400 6.14E−5 6.40E−4 0 0 0 0

traffic to a single server queue with finite buffer. The
performance is compared to the same system using em-
pirical data as the source traffic. A single arrival pro-
cess is assumed in our simulation, and its service rate is
assumed to be constant. To simplify the simulation pro-
cess, the time is sliced. Every slice is used to transmit
one cell (48 bytes of payload per cell). We also assume
that cells in a frame must arrive at the switch during the
period of this frame. This corresponds to the case that



112 Liu, Ansari and Shi

no traffic shaping is applied. Cells are dropped when
the switch buffer overflows.

Based on the switch model, performance at different
service rates and buffer sizes is examined. Simulation
results using empirical data and traffic model are shown
in Table 1. The results show that the CLRs obtained
using video trace and our proposed model are very close
for both high and low service rates.

9. Conclusions

In this paper, we have proposed a Markov-Modulated
self-similar process for modeling MPEG compressed
video sequence. Compared with other methods, the
proposed model is easy to analyze, and it is able to
capture the LRD of video ACF. An analytical solution
may be obtained for this model because of its simple
ACF form. Queuing performance for small and large
buffers under different traffic intensity using our pro-
posed model is compatible with that using empirical
data.
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