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Performance Analysisof an ATM MUX with a New Space
Priority M echanism under ON-OFF Arrival Processes

Jongho Bang, Nirwan Ansari, and Sirin Tekinay

Abstract: We propose a new space priority mechanism, and ana-
lyze its performance in a single Constant Bit Rate (CBR) server.
Thearrival processisderived from the superposition of two types
of traffics, each in turn results from the superposition of homoge-
neous ON-OFF sources that can be approximated by means of a
two-state Markov M odulated Poisson Process (MM PP). The buffer
mechanism enablesthe Asynchronous Transfer Mode (ATM) layer
to adapt the quality of the cell transfer to the Quality of Service
(QoS) requirements and to improve the utilization of network re-
sources. Thisis achieved by “ Selective-Delaying and Pushing-In”
(SDPI) cellsaccording to theclassthey belongto. Theschemeisap-
plicable to schedule delay-tolerant non-real timetraffic and delay-
sensitivereal timetraffic. Analytical expressionsfor various perfor-
mance parameters and numerical resultsare obtained. Simulation
resultsin term of cell loss probability conform with our numerical
analysis.

Index Terms:
SDPI.

ATM, buffer management, priority mechanism,

I. INTRODUCTION

Asynchronous Transfer Mode (ATM) networks provide a
great variety of services with widely differing bandwidth and
quality of service (QoS) requirements. The major character-
istics of an ATM-based Broadband Integrated Service Digital
Network (BISDN) include: high flexibility of network access,
dynamic bandwidth allocation on demand with a fine degree
of granularity, flexible bearer capacity alocation, and indepen-
dence of the means of transmission at the physical layer. How-
ever, diverse traffic types, and hence different QoS require-
ments make traffic control of ATM networks an essential and
critical challenge. ATM provides the cell transfer for al ser-
vices, and the ATM adaptation layer (AAL), sitting on top of
the ATM layer, provides service-dependent functions to higher
layers. Much research has been concerned with the problem of
effectively adapting the quality of the ATM bearer serviceto the
diverse user QoS requirements. If all services are treated simi-
larly, dimensioning of the ATM network would have to employ
the QoS requirement for the most demanding service, thus lim-
iting efficiency. Moreover, providing a single grade of bearer
service not only limits the utilization of network resources, but
also leads to a lack of flexibility in accommodating the QoS
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requirements of future services [1]. The incorporation of two
bearer services with different levels of cell loss probability QoS
requirements has been proposed for ATM networks. The low
priority traffic, which has a less stringent cell loss probability
constraint than the high priority traffic, can be accommodated in
the network at an efficient resource utilization level.

Several special mechanisms for buffer access have been pro-
posed. They have been used to adapt the cell loss probability
of a given class of traffic to the restriction of the QoS needs of
the corresponding service. These mechanisms allow a selective
accessto the buffer depending on thetraffic class. In[2]-{6], the
authors proposed a mechanism, called Push-Out, which guaran-
tees the buffer access to a certain class of traffic if the queueis
not full, and when it isfull, the arriving cell can replace onewith
a lower priority. The selection of the lowest priority cell to be
rejected is done according to the chosen replacement algorithm.
Other proposed mechanisms have lower performance but sim-
pler buffer management, called Partial Buffer Sharing [7]-{11],
which guarantees the buffer accessto a class i cell if the buffer
occupancy is less than a threshold, say, S;. In general, these
schemes are more flexible and more protective of high priority
cells. However, this performancegain is always achieved only at
the cost of a significant performance degradation of low priority
cells.

The higher bandwidth promised by BISDN have made appli-
cationswith real-time constraintspossible, such as control, com-
mand, and interactive voice and video communications. Exces-
sive delay renders real-time traffic useless, but a certain degree
of loss can be tolerated without objectionable degradationin the
grade of service. Real-time packets are lost for several reasons.
The packet may arrive at the receiver after the end-to-end dead-
line has expired after having suffered excessive waiting times
in intermediate nodes. Also, intermediate nodes may shed load
by dropping packets as an overload control measure. It is natu-
ral to engineer communication networks that support real-time
traffic, so that delays are bounded at the expense of some loss.
However, the magnitude of this loss determines the quality of
service and, hence, it is critical to predict this loss accurately
in order to provide an acceptable grade of service. Given the
fixed length packets and First-Come First-Serve (FCFS) princi-
ple at a multiplexer, imposing a buffer size of K is essentialy
equivalent to imposing a time constraint of K d, where d is the
fixed transmission time of a packet. A broadband network has
to guarantee end-to-end delay. The network, in order to meet
the delay requirements, forces each node to bound its maximum
cell delay.

Our simple consideration suggests that the traffic can be cat-
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egorized into two basic classes: rea time traffic (RTT) and
non-real time traffic (NRTT). Our model is based on the partial
buffer sharing scheme. The buffer is partitioned by a thresh-
old, set according to the maximum cell delay of the real time
traffic. In order to compensate for the disadvantage of the par-
tial buffer sharing scheme, we can give priority to the real time
traffic over non-real time traffic selectively. We call such a pro-
posed scheme, Selective-Delay Push-In (SDPI). In this paper,
we make a thorough study of the proposed space priority mech-
anism for the case of bursty traffic. The bursty sourceis modeled
by the Markov Modulated Poisson Process (MMPP), because it
isanalytically tractable and possesses properties suitable for the
approximation of complicated non-renewal processes. The rest
of the paper is organized as follows. Section Il describes the
modeling and analysis of the space priority mechanism; Section
[l presents performance results; finally, some conclusions are
drawnin Section 1V.

Il. THE SPACE PRIORITY MECHANISM

We shall first discribe the source model, and then the SDPI
mechanism, followed by the analysis.

A. The Source Model

The MMPP has been extensively used for modeling arrival
rates of point processes because it can qualitatively model the
time-varying arrival rate, capture some of the important correla-
tions between the interarrival times, and isanalytically tractable.
The accuracy of MM PP in modeling an arrival process depends
on which statistics of the actual process are used to determineits
parameters. 2-state MM PP models[12]—{15] and 4-state MM PP
models [16] have been used to approximate the superposition of
ON-OFF sources. In[17], the superposition of ON-OFF sources
is approximated by means of a 2-state MM PP using the Average
Matching Technique. This technique providesgood accuracy as
compared to simulation results. In particular, the method weakly
depends on the number of sources.

Consider the superposition of N independent and homoge-
neous sources, each characterized by: 1) the peak bit rate, F,; 2)
the activity factor, p; 3) the mean burst length, L g. With refer-
enceto the ATM MUX, denote C as the net output capacity, and

thus M = {C / F,,J indicates the maximum number of sources

that can be accommodated in the MUX, assuming a peak band-
width assignment. The superposition of NV such sources results
in a birth-death process. The states of this process are divided
into two subsets [14]: 1) an overload (OL) region, comprising
the states AM/+1,---, N, where the cell emission rate exceeds
the capacity C; 2) an underload (UL) region, consisting of the
remaining states O, ---, M. Therefore, the two states of the
approximated MM PP can be chosen so that one of them, called
OL state, corresponding to the OL region, and the other, called
UL state, associated with the UL region. Let ; be the limiting
probability that the number of active sourcesis j. Then w; is
given by the binomial distribution.

"= (]JV )pm v,
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Fig. 1. 2-state MMPP models for traffic type 1 (real time traffic) and traffic
type 2 (non-real time traffic).

Traffic Type 2

where p is the activity factor of a source. Using the aver-
age matching procedure, the expression for the four parameters
characterizing the MM PP can be determined.

We can adopt this Average Matching Techniquefor the super-
position of independent heterogeneous ON-OFF sources, con-
sisting of the real time traffic and non-real time traffic. In our
case, the finite capacity can be shared by two kinds of traffics.
A threshold is defined to separate the two states (Low and High)
for each class of traffic. Let N be the set of the real time traf-
fic with pesk bit rate, F,(1), and N> be the set of the non-real
time traffic with pesk bit rate, F},(2). M; denotes the threshold
which distinguishes the two states (low and high load) for the
real time traffic, and similarly, M > denotes the threshold which
distinguishes the two states (low and high load) for the non-real
timetraffic.

N,C

M, = [Nle(l) +N2Fp(2)J’ (D
NoC

M = [Nleu) +N2Fp(2)J' @)

Thus, each traffic can be divided into two states. That is,

- For real time traffic
low load region (Low(1)): [0, 1, - - -, M4]
high load region (High(1)): [M1+1,-- -, N1]

- For non-real time traffic
low load region (Low(2)): [0, 1, - - -, M 5]
high load region (High(2)): [M2 + 1, - -, Ns]

Four parameters are required to represent the 2-state MM PP
source of each traffic, as shown in Fig. 1, where v, (yg1) IS
defined as the mean transition rate out of the Low load 1 (High
load 1) state, and A\ 1,1 (Ag1) isthe mean arrival rate of the Pois-
son process in the Low load 1 (High load 1) state for the real
time traffic, respectively. Similarly, vr,2(vm2) is defined as the
mean transition rate out of the Low load 2 (High load 2) state,
and A2 (A p2) isthe mean arrival rate of the Poisson processin
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Fig. 2. The threshold-based discard (TBD) scheme operation.
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the Low load 2 (High load 2) state for the non-real time traffic,
respectively.

B. The SDPI Mechanism

First, we consider the threshold-based discarding (TBD)
scheme, which is called the partial buffer sharing scheme. Pri-
ority cell discarding is a popular congestion control technique
in high-speed networksthat allows network resourcesto be used
more efficiently, thereby making it easier to satisfy QoS require-
ments of different classes of traffics. As shown in Fig. 2, the
buffer is partitioned by n thresholds, Sy, -- , S,, correspond-
ing ton priority classes, where S,, is the buffer size.

Priority class i cells can be buffered up to threshold level
S;. Once the buffer level exceeds S;, arriving class i cells are
dropped. Note that only new arrivals are dropped; class i cells
that are already in the buffer are never dropped and are eventu-
ally served. In the case that two kinds of traffics (i.e., red time
and non-real time traffic) are considered, the non-real time traf-
fic such as datais allowed to access more buffer space than the
real time traffic such as voice and video because of the delay
limitation of the real time traffic in this scheme. It is assumed
in this paper that the buffer size and the threshold are decided
according to the QoS requirement of the non-real time traffic
(i.e., cell loss probability) and the QoS requirement of the real
time traffic (i.e., maximum cell delay), respectively. Thus, real
time traffic cells are dropped from a buffer when the buffer level
exceeds the threshold, decided according to its maximum cell
delay.

Second, we modify the TBD scheme by giving priority to the
real time traffic over the non-real time traffic selectively, and
thus called selective-delay push-in (SDPI) scheme. With this
scheme, non-real time traffic cells can be delayed in favor for
real time traffic cells. Asillustrated in Fig. 3, when the buffer
level is less than the threshold, the SDPI scheme operates just
like the TBD scheme. However, when the buffer level is above
the threshold, if there exist non-real time traffic cells within the
threshold, an arriving real time traffic cell pushes out the latest
arrived non-real time traffic cell and positions itself at the end
of the buffer within the threshold. At this moment, the expelled
non-real time traffic cell buffers up right after the threshold. If
no non-real time traffic cell is within the threshold, an arriving
real time traffic cell is discarded. When the buffer is full, arriv-
ing real time or non-real timetraffic cellsarejust discarded. The
threshold is set according to the maximum cell delay of the real
time traffic to satisfy its delay requirement, just like the TBD
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Fig. 3. Selective-delay push-in scheme operation.

scheme. When the buffer level is above the threshold, if there
exist non-real time traffic cells within the threshold, an arriving
real time traffic cell is survived in the SDPI scheme, but not in
the TBD scheme.

C. The SDPI Analysis

The multiplexer is modeled as a finite capacity single server
gueue where the arrival process is MMPP, and the service is
deterministic. In our analysis, we make the similar assump-
tions as in [16], which deals with the analysis of only one traf-
fic type, that significantly reduce the computational complex-
ity involved in obtaining the stationary distributions at departure
points. 1) the probability that the MMPP goes through multi-
ple state transitions between successive departures is negligi-
ble, and 2) the state transitions occur at departure epochs, i.e.,
if a departure leaves the MMPP in state 4, the cell arrival rate
until the next departure is A;. Consider a queue using SDPI
where the MMPP consists of K states denoted by i (0 < 7 <
K-1), and the arrival rates and mean state durations are denoted
by \; and p;, respectively. The characteristics of this system
will be determined using an imbedded Markov chain approach.
Asin the ordinary M/G/1 queueing system, the service comple-
tion instants are the imbedded points of the underlying Markov
chain. Therefore, a probability vector II consists of 7 ;(n1,n2)
(0<n; <851,0 < ny <8y, where Ss isthe buffer size) which
is defined by the probability that a departing cell leaves n | real
time traffic cells and n, non-real time traffic cells in the system
while the MMPP is in state i. The total transition probability
matrix of theimbedded Markov chain, denoted by Q, isformed
with K MMPP finite states and F finite buffer states. For ex-
ample, consider the traffic shown in Fig. 1, where the real time
traffic and non-real time traffic can be aggregated resulting in a
4-state MMPP process (in this case, K=4). The K=4 states are
{(Ll,LQ), (Ll,HQ), (Hl,LQ), (Hl,HQ)}. For a buffer with S1=3
and S»=6, there are F'=22 finite buffer states corresponding to
{{nl, ’ng} | ny +ne < 6 and n < 3} Thus,

Qo,0 Qo,1 Qo,x 1
Q1,0 Q11 Q1,51

Q=1 . : : , (©)
Qr-10 Qr-1:1 Qr-1,K-1

where (); ; is a submatrix, and each element of the submatrix,
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Qj,i((n17n2)! (nllanl2)) (0 S .772 S K'l, 0 S nl,nll S Sln
0 < no,nf < .S2) correspondsto a state transition probability.
That is,

Qj,i((nl,nQ), (nllanIQ)) = P{(nll,né),] | (n17n2)7i}7

where i is the present MMPP state, j is the next MMPP state,
(n1,n2) isthe present buffer state, and (n , n),) isthe next buffer
state. The submatrix () ; ; can be obtained asfollows. Denote A ;
as the buffer state transition probability matrix of the departure
point of our system at MMPP state 7 (with arrival rate \; and
service time At). The transition probability submatrix @ ; ; can
be simply obtained by multiplying A; by the probability that
the MMPP will not change its state in At if j = 4, or by the
probability that the MMPP will change its state from j to i in
At if j # i. Define ¢;(k,[) as the transition probability that
k redl time traffic cells and [ non-real time traffic cells can be
positioned in the buffer during the service time (At) while the
MMPPisin statei. Denote ¢} (k) asthe probability of £ arrivals
of traffictype 1 (i.e., real timetraffic) and ¢? (1) asthe probability
of [ arrivals of traffic type 2 (i.e., non-real time traffic) during
the service time, respectively. Define ¢ (k,[) as the transition
probability that more than & real time traffic cells and more than
[ non-real time traffic cells are inserted to the buffer, but only &
real timetraffic cellsand only [ non-real time traffic cells can be
positioned in the buffer during the service time (At) dueto the
SDPI mechanism. Thus,
qi(k,1) = q; (k)q; (1),

where

(Al Ak
k!

(A2 A
1!

ai (k) = e(Nia,

()= e (N,
and \}, \? are the arrival rates for traffic type 1 and 2, respec-
tively, and \;=A} +A2.

Since at most one cell is served between successive imbedded
points, transitions from ny to n} < n; — 1, fromny to nh, <
ny — 1, and fromny + ny tonj + nh < ny +ny — 1 arenot
possible.

Transitions ton} +nly < Sz and n} < Si:

ai(k,1) = qf (k)q; (1) (4)

Transitions to boundaries:
1. ani+n)<Syandn) =5,

gi (k,1) = Zqz g (5)
2. anj+nh=Sandn| =5,
gi (k,1) = Zqzl

+ZZ% 7’7) ©)

n=k m=I[+1
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n+m\ Y
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The transition probability (4) denoted by ¢;(k, 1) implies that
exactly k arrivals of traffic type 1 and exactly [ arrivals of traffic
type 2 occur in any order during the servicetime. Thetransition
probability (5) impliesthat more than k arrivals of traffic type 1
and exactly [ arrivals of traffic type 2 occur in any order during
the service time. Since the present state n} = S;, even though
there are more than k arrivals of traffic type 1, only k cells can
be positioned in the buffer. According to the SDPI mechanism,
an arriving cell is dropped when the buffer is full. Thus, the
transition probability (6) consists of two terms. The first term
representsthat morethan & arrivals of traffic type 1 and exactly [
arrivals of traffic type 2 occur. The second term meansthat more
than k arrivals of traffic type 1 and more than [ arrivals of traffic
type 2 occur. The fraction in the second term represents the
probability that & out of n traffic type1 and out of m traffictype
2 are thefirst arrivals. The transition probability (7) represents
that morethan k arrivals of traffic type 1 and morethan [ arrivals
of traffictype 2 occur, just like the second term of the probability
(6).

Define the stationary probability vector IT as

II = {7‘(’0(0,0), ...,71'0(51,52 — Sl),ﬂ'l(0,0), ceey
71 (S1,82 = S1), .y T -1(0,0), ..., 71 (S1,S2 — S1)}.

Then, these stationary probabilities can be obtained as fol-
lows:

3. ani+ny,=2Sandn] < S,

qi (k1) =

> dw

n=k m=I

K-1
Z ZZm(nl,ng) =1

i=0 n1 n2

IT =T1IQ,

To derive the loss probabilities, it is necessary to determine the
probability distribution of the system length (n 1 +ns+1, includ-
ing the server) from the arrival viewpoint, which is equivalent
to the steady-state probability distribution p;(n1,n2) [18]. The
probabilities must be different from the former departure-point
probabilities ;(ny,m4), because the state space is enlarged by
the state G = S» + 1, where the “1” accounts for the server.
Asymptotically, the number of arriving ATM cells equals the
number of departing cells. Hence, the departure rate must be
equal to the effective arrival rate of ATM cellswhich are ableto
join the system.

:(0,0)
LRO00 e o5 S o)
ni+ na=G
S>—S1
+/\Zl{1— Z pi(S1+1,n9) (8)
7’L2:0
So—S1 1
- i ) 1
> pi(Sinat 51!
TLQ:O

where p;(n1,n») is the steady state probability that an arriving
cell sees n; red time traffic cells and n, non-real time traffic
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cells in the system while the MMPP is in state i (i.e., from an
arrival point of view). = is the probability that the non-real
time traffic cell is being served, when S, + 1 célls (i.e, S; red
time cells and 1 non-real time cell) are within the threshold in-
cluding the server).

In general, the arrival point queue length distribution of asin-
gle server queueisidentical to the departure point queue length
distribution, given that arrivals and departures occur singly, i.e.,
m;(n1,ne) is the state probability seen by a cell who joins the
gueueing system [19], [21]. Therefore, the following equation
holds for the state probabilitiesjust after a departure.

The following steady-state probabilities can be obtained by
combining (8) and (9)

The cell loss probabilities are then given as follows:

@) CLPfor non-real time traffic (NRTT)

132

b) CLPfor real timetraffic (RTT).

5275171
CLPRTT = Z p(m = Sl + 1,’!7,2)
n2_0
511 (12)
1
= 1
+ Z 51,712 + )51 +1
na= 0
+ OLPNRTT-

[11. PERFORMANCE RESULTS

The performance of the SDPI scheme is evaluated for two
kinds of traffics. We choose source parameters which are char-
acterized by the peak bit rate F),, the activity factor p, and
the mean burst length L. Assume that the superposition of

CLPNRTT = Z Z p(n1,n2). (1) such heterogeneous ON-OFF sources are offered to an ATM
mtne =G MUX with the net output link capacity C. The performance of
mi(ny,ng) =
( pi(ni,n2)
AL S2—S51 Sa—51 1 ’
1- —Z > pini,ns) — —{ > pi(Si+1,ma) + Y pi(Si,ma +1)S1 +1}
n1+ no=G na=0 no=0
forni; + ns < Siorn; < S;andn; + ns < So
22
)\—Zpi(nl,nz)
)\1 52751 52751 1 ’
1- —Z > pi(ni,ns) by SN pi(Si+ L)+ Y pilSime + 1)51 n 1}
it ne=G na=0 no=0
L fornlzslandn1+n2§52

( mi(ng,ne)
7Ti(0,0) + MAL

Ai mi(ny,no) for n
)\% 7Ti(0,0)+>\iAt7 !
pi(n1,ne) =
Z Z UF nlanQ
m:(0,0) + \; 7i(0,0) + N At

{nl,nz} € B;

=G,

for ni +no

\ Bgz{nl,n2|n1:

9)

for ni+ny<Siorng <Siandny +ne < Sy

=851 andny +ns < S

i(n1,n2)
0,0) + A\; At’

Z Z/\Qﬂ-l

{n1,n2} € B2

where By = {ny,na | n; +n2 < .51 0orng < Sy andny +ne < S2},
Sl and ny + Na S 52}

(10)
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Fig. 4. Cell loss probability versus mean offered load (comparison be-
tween numerical and simulation results).

Table 1. System parameters.

Cl ass Fp P LB
real timetraffic 32Kbps | 0.35 | 1400
non-real timetraffic | 128Kbps | 0.1 | 1600

the MUX is evaluated by the queueing model with the MMPP
source and the SDPI priority scheme. The constant service time
of the MUX is given by =53 bytes/C. The net link capacity is
assumed to be 150Mbps.

Some simulation results are reported to evaluate the accuracy
of the cell loss probability by using the SDPI scheme. The sim-
ulations have been performed on SUN SparcStation 60. The
source parameters used in our simulations and numerical anal-
ysis, which are the same as in [22], are tabulated in Table 1.
These source parameters are used for each user.

In Fig. 4, cell loss probabilities are plotted as functions of
the mean offered load (real time traffic and non-real time traf-
fic). Note that the simulation results are sufficiently reliable,
since the 95% confidence intervals range within 10% of the es-
timated cell loss probability. The threshold and buffer size are
assumed to be 10 and 30, respectively. Fig. 5 shows the compar-
ison between the SDPI and TBD scheme. It is intuitive to see
that SDPI achieves the performance improvement for the real
time traffic (which is more critical) at the expense of the non-
real time traffic. As we mentioned before, when the occupancy
is above the threshold, if there exist non-real time traffic cells
within the threshold, an arriving real time traffic cell is survived
in the SDPI scheme, but not in the TBD scheme. At this point,
we have the improvement for the real time traffic with the SDPI
scheme; that is, the SDPI scheme compensates for the disad-
vantage of thereal timetraffic using the TBD scheme, under the
circumstancethat the threshold is fixed dueto the maximum cell
delay of thereal time traffic.

Fig. 6 showsthe cell loss probabilities as functions of the real
time traffic offered load with a fixed total offered load at 0.9.
Note the improvement for the real time traffic using SDPI, as
compared to the TBD scheme, just like Fig. 5. Asthe real time
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Fig. 6. Cell loss probability versus mean offered load of the real time traf-
fic (comparison between TBD and SDPI schemes) (fixed total offered
load=0.9, threshold=10, buffer size=40).

traffic offered load increases, improvement for thereal timetraf-
fic using SDPI diminishes. Asthereal timetraffic increases and
non-real time traffic decreases, the possibility that the non-real
time traffic is within the threshold decreases and the possibility
that arriving real time traffic cells are dropped increases when
the buffer occupancy exceeds the threshold. In Fig. 7, the cell
loss probabilities are plotted against the offered load of the non-
real time traffic. The offered load of thereal timetraffic is fixed
at 0.3. Asthe offered load of the non-real time traffic increases,
the performance of the real time traffic using the SDPI scheme
is improving, but the performance of the non-real time traffic
is getting worsening, as compared to the TBD scheme, for the
same reason asin Fig. 6.

In Fig. 8, cell loss probabilities are plotted as functions of the
buffer size. Asthebuffer sizeincreaseswhileholding thethresh-
old fixed, cell loss probabilities for the real time traffic remain
constant, but cell loss probabilities for the non-real time traffic
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Fig. 8. Cell loss probability versus buffer size (as the mean offered load
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decrease. Thus, SDPI outperforms TBD for accommodating the
real time traffic, and SDPI may reach comparable performance
asthe TBD scheme for accommodating the non-real time traffic
by increasing the buffer size with the fixed threshold (due to the
maximum cell delay of the real time traffic). Fig. 9 shows the
effect of traffic characteristics on individual cell loss probabil-
ities. As the activity for the non-real time traffic changes, cell
loss probability for each traffic is affected. Fig. 10 shows the
cell loss probabilities versus the thresholds. Cell loss probabil-
ities for the non-real time traffic is ailmost unchanged, but cell
loss probabilities for the real time traffic decrease as the thresh-
old reaches the buffer size.

IV. CONCLUSIONS

We have studied the cell loss performance of an ATM MUX
loaded with a traffic stream from the superposition of multiple
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ON-OFF sources in the two-class environment using the pro-
posed buffer management scheme. By modeling each type of
traffic by a 2-state MM PP, we were able to derive the CLP of the
respective traffics (i.e., real timetraffic and non-real time traffic)
using the proposed SDPI space priority scheme. This scheme
is applicable to schedul e delay-tol erant non-real time traffic and
delay-sengitive real time traffic. That is, by delaying the non-
real time traffic cells and pushing in the real time traffic cells
selectively, more real time traffic can be accepted within the ac-
ceptable QoS requirement (e.g., CLP). By provisioning addi-
tional priority to the real time traffic, SDPI compensates for the
disadvantage of the threshold-based discarding (TBD) scheme
which favors the non-real time traffic at the expense of the real
time traffic, under the circumstance that the threshold is fixed
due to the maximum cell delay constraint of thereal timetraffic.
Thus, channel utilization is improved for the real time traffic.
Simulations have a so validated our numerical analysis.
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