
 

  
Abstract— Finding a feasible path subject to multiple 

constraints in a network is an NP-complete problem and has been 
extensively studied. Many proposed source routing algorithms 
tackle this problem by transforming it into the shortest path 
selection problem, which is P-complete, with an integrated cost 
function that maps the multi-constraints of each link into a single 
cost. However, how to select an appropriate cost function is an 
important issue that has rarely been addressed in literature. In 
this paper, we provide a theoretical framework for picking a cost 
function that can improve the performance of source routing in 
terms of complexity, convergence, and probability of finding a 
feasible path. 

 
Index Terms— Multiple additively constrained QoS routing, 

cost function, NP-complete. 
 

I. INTRODUCTION 
he tremendous growth of the global Internet has given rise 
to a variety of applications that require quality-of-service 
(QoS) beyond what is provided by the current best-effort 

IP packet delivery service.  One of the challenging issues is to 
select feasible paths that satisfy different quality-of-service 
requirements. This problem is known as QoS routing. In 
general, state distribution and routing strategy [1] are the two 
issues related to QoS routing. State distribution addresses the 
issue of exchanging the state information throughout the 
network [2]. Routing strategy is used to find a feasible path 
that meets the QoS requirements. In this paper, we focus on 
the latter task, and assume that accurate network state 
information is available to each node. A number of research 
works have also addressed inaccurate information [3, 4], 
which is, however, beyond the scope of this paper. 
  QoS constraints can be categorized into three types: concave, 
additive, and multiplicative. Since concave parameters set the 
upper limits of all the links along a path such as bandwidth, we 
can simply prune all the links and nodes that do not satisfy the 
QoS constraints. We can also convert multiplicative 
parameters into additive parameters by using the logarithm 
function. For instance, we can take - log(1- )p  as the 
replacement for loss rate p . Thus, we focus only on additive 
constraints in this paper. It has been proved that multiple 
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additively constrained QoS routing is NP-complete [5]. Hence, 
tackling this problem requires heuristics. In [6], a heuristic 
algorithm was proposed based on a linear cost function for two 
additive constraints; this is a MCP (Multiple Constrained Path 
Selection) [1] problem with two additive constraints. A binary 
search strategy for finding the appropriate value of k  in the 
linear cost function 1 2( ) ( )w p kw p+  or 1 2( ) ( )kw p w p+ , where 

( )iw p  ( 1,2)i =  are two respective weights of the path p , was 
proposed, and a hierarchical Dijkstra algorithm was introduced 
to find the path. It was shown that the worst-case complexity 
of the algorithm is (log ( log ))B m n nΟ + , where B  is the 
upper bound of the parameter k , m  is the number of links, 
and n  is the number of nodes. Similar to [6], Lagrange 
Relaxation Based Aggregated Cost (LARAC) was proposed in 
[7] for the Delay Constrained Least Cost path problem 
(DCLC). This algorithm is based on a linear cost function 
c c dλ λ= + , where c  denotes the cost, d  the delay, and λ  
an adjustable parameter. It differs from [6] on how λ  is 
defined: λ  is computed by Lagrange Relaxation instead of the 
binary search. It was shown that the computational complexity 
of this algorithm was 2 4( log )m mΟ . However, in [8], for the 
same problem (DCLC), a non-linear cost function was 
proposed after considering the shortcoming of the linear cost 
function.  
   Many proposed source routing algorithms transform the 
multiple constrained QoS routing problem into a shortest path 
selection problem with an integrated cost function that map the 
multi-constraints of each link into a single cost. However, how 
to select an appropriate cost function is rarely addressed in 
literature; hereby we will provide a theoretical framework for 
this issue. 

 

II. PROBLEM FORMULATION 
We will provide a general framework for selecting a cost 

function in which there is no limitation on the number of QoS 
constraints. Since concave constraints can be easily addressed 
by pruning, and multiplicative constraints can be generally 
converted into additive constraints, without loss of generality, 
we only consider additive constraints and formulate the 
problem as follows: 
Definition 1: Multiple Additively Constrained Path Selection 
(MACP): Assume a network is modeled as a directed graph 

( , )G N E , where N  is the set of all nodes and E  is the set of 
all links. Each link connected from node u  to v , denoted by 

, ( , )u ve u v E= ∈ , is associated with M  additive parameters: 
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( , ) 0iw u v ≥ , 1, 2,...,i M= . Given a set of constraints 

1 2( , ,..., )Mc c c  and a pair of nodes s  and t , MACP is to 
find a path p from s  to t  subject to 

( )iW p =
,

( , )
u v

i ie p
w u v c

∈
<∑ , for all 1,2,...,i M= . 

Definition 2: Any path selected by MACP is a feasible path; 
that is, any path p  from s  to t  that meets the requirement, 

( )iW p =
,

( , )
u v

i ie p
w u v c

∈
≤∑ , for all 1,2,...,i M= , is a feasible 

path. 
Notations: 

1. ( )f x : Cost function, where 1 2( , ,..., )Mx x x=x . 
2. C : The vector representation of the QoS constraints 

1 2( , ,..., )Mc c c .  
3. pW( ) : The weight vector of path p , i.e., 

1 2( ( ), ( ),..., ( ))Mp W p W p W p=W( ) , where ( )iW p =  

,
( , )

u v
ie p

w u v
∈∑ . 

4. ( )C p : The cost of path p , 

,

1 , 2 , ,( ) ( ( ), ( ),..., ( ))
u v

u v u v M u v
e p

C p f w e w e w e
∈

= ∑ , where 

( )f ⋅  is the cost function. 
 Note that ( ) ( )C p f p≠ W( )  for  

1 2, , ,
( ) ( ( , ), ( , ),..., ( , ))Me p e p e pu v u v u v

f p f w u v w u v w u v
∈ ∈ ∈

= ∑ ∑ ∑W( ) .  (1) 

 However, if ( )f x  is linear, i.e., 
1

( ) M
i ii

f xβ
=

=∑x , 

, , ,

,

,

,

1 2

1

1

1

( ) ( ( , ), ( , ),..., ( , ))

             ( ( , ))

              = ( , ))

              = ( ( , ))

u v u v u v

u v

u v

u v

Me p e p e p

M
i ii e p

M
ii e p

M
i ie p i

f p f w u v w u v w u v

w u v

w u v

w u v

β

β

β

∈ ∈ ∈

= ∈

= ∈

∈ =

=

=

∑ ∑ ∑
∑ ∑
∑ ∑
∑ ∑

W( )

 

,

1 , 2 , , = ( ( ), ( ),..., ( )) ( )
u v

u v u v M u v
e p

f w e w e w e C p
∈

=∑ .                (2) 

 

III. A FRAMEWORK FOR SELECTING THE COST FUNCTION 
  Many proposed source routing algorithms are associated with 
cost functions, which are essential for solving the problem. 
Thus, designing an appropriate cost function is a key issue in 
this kind of approaches. In this paper, by assuming the cost 
function is continuous, we present some basic features of the 
cost function and the impact of these features on the 
performance of routing algorithms.  
  Without loss of generality, the cost function for traversing a 
link from node u  to v  is desirable to have the following 
properties: 

1. (0,0,...,0) 0f = ; each variable in ( )f ⋅  corresponds 
to a QoS parameter such as delay and jitter. It is 
intuitive that the cost for traversing a link with “0” 
QoS value (e.g., the cost of traversing a link which 
does not cause any delay) should be “0”. 

2. ( ) 0 if 0i
i

f x
x

∂ > >
∂

x  and ( ) 0
i

f
x

∂ ≥
∂

x  if 0ix = , 

1,2,...,i M= ; i.e., the cost function is increasing with 
respect to each additive parameter. 

3. 
2

1 2
2

( , ,..., ) 0M

i

f x x x
x

∂ ≥
∂

; i.e., the cost function is 

concave implying that if 
,

( , )
u v

i ie p
w u v c

∈
≤∑ , 

1,2,...,i M= , then ( ) ( ) ( )C p f p f C≤ ≤W( ) . In fact, 
most source routing algorithms proposed in the 
literature possess this property. 

  Note that some other non-continuous functions proposed for 
QoS routing can also be characterized by functions which 
satisfy the above properties. For example, 

1 2 1 2( , ) max{ , }f x x x x=  equals to 1/
1 2( )lim n n n

n
x x

→∞
+  which 

satisfies the above properties. The following theorems and 
lemmas are derived by assuming that the cost function ( )f x  
satisfies Properties 1-3. 
[Theorem 1] No feasible path exists if the least cost path has 
the cost larger than ( )f C . 

Proof: By contradiction. Assume path p  satisfies the 
constraint C  and the least cost among all paths is larger than 

( )f C ; that is,  

( ) ( ),  ( ) ( )C p f p C p f> ∀ ⇒ >C C .               (3) 
Also  

2
1 2

2
( , ,..., ) 0 ( ) ( )M

i

f x x x f p C p
x

∂ ≥ ⇒ ≥
∂

W( ) .        (4) 

Thus, from (3) and (4),  
( ) ( )f p f>W( ) C .                            (5) 

However, since ( ) 0
i

f
x

∂ ≥
∂

x  and path p  satisfies the constraint 

C ,  

( ) , {1,2,..., } ( ) ( )i iW p c i M f p f≤ ∀ ∈ ⇒ ≤W( ) C ,     (6) 
which contradicts (5), and thus Theorem 1 is proved.                
  The following lemma will facilitate the proof of Theorem 2. 
[Lemma 1] Let ( ) ( )ig x f x= ie , where ie  is the i th unit 

vector in the m-dimensional space, and 
1

( )
K

i m
m

g y δ
=

=∑ , 0iy ≥ , 

1,2,...,i K= . Then: 

1

'
'

1( )

    if (0) 0
(0)[ max ( )]  

           
lim K

i m
m

K i
im

K mg y

g
gy

elseδ

δ

=

→∞ ==

 ≠= 
∑ ∞

∑  

where '
0

( ) ( )(0) | |i
i x

i

dg x fg
dx x= =

∂= =
∂ x 0

x . 

Proof: Let   

1 2
1 1

( , ,..., , ) [ ( ) ]
K K

K m i m
m m

L y y y y g yλ λ δ
= =

= − −∑ ∑ .        (7) 

Thus 
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'1 2( , , ..., , )
0 1 ( ) 0K

i j
j

dL y y y
g y

dy
λ

λ= ⇒ − =  

' ( )
1

i jg y
λ

⇒ = , 1, 2,...,j K= .                               (8) 

By letting 1 2 ... Ky y y= = = ,  

( )i mg y
K
δ= , 1,2,...,m K= .                        (9) 

Also 
'' ( ) 0ig x ≥ ⇒

2
1 2

2

( , , ..., , )K

j

L y y y

y

λ∂

∂
0≤ , 1, 2,...,j K= .     (10) 

Thus, 
1

K

m
m

y
=
∑  is maximized by (9). 

Define ( )iI x  as the inverse function of ( )ig x . So, 

1 1

max( ) ( ) ( )
K K

m i i
m m

y I KI
K K
δ δ

= =

= =∑ ∑ .                 (11) 

Since '' ( ) 0ig x ≥ , ' ( ) 0ig x ≥  and (0) 0ig = , we have 

( ) 0idI x
dx

≥  and 
2

2

( )
0id I x

dx
≤ . Hence, 

1
max( )

K

m
m

y
=
∑  increases 

with K . Thus, 

1

( )
[max( )] [ ( )] [ ]lim lim lim

K i

i i
K K Km

I
Ky KI

K
K

δ
δ δ δ→∞ →∞ →∞=

= =∑  

'
'

0

 if (0) 0( ) (0)
           

lim
ii

i
x

gI x g
x

else

δ
δ

→

 ≠= = 
 ∞

                        (12)  

[Theorem 2] A path p  is a feasible path if 

( )C p ≤ ( )min{ | }ii
i

fc
x =

∂
∂ x 0

x . 

Proof:  Since ,( ) 0,  1,2,...,m u vw e m M≥ = ,  

, ,( ( )) ( ( ))i i u v u vg w e f e≤ W , 1, 2,...,i M= .           (13) 

So, for any path p ,  

,

,( ( ))
u v

i i u v
e p

g w e
∈

≤∑ ( )C p , 1, 2,...,i M= .            (14) 

Then, for a path p  with ( )C p ≤  ( )min{ | }ii
i

fc
x =

∂
∂ x 0

x ,  

,

,( ( ))
u v

i i u v
e p

g w e
∈

≤∑
( )( ) min{ | }ii

i

fC p c
x =

∂≤
∂ x 0

x , 1, 2,...,i M= . (15) 

Consider the case that if ( ) | 0
i

f
x =

∂ ≠
∂ x 0

x  1, 2,...,i M= , by 

Lemma 1, 

,

,( )
u v

i u v
e p

w e
∈

≤∑  

( ) ( )min{ | } |

( ) ( )| |

i ii
i i

i

i i

f fc c
x x cf f

x x

= =

= =

∂ ∂
∂ ∂≤ =

∂ ∂
∂ ∂

x 0 x 0

x 0 x 0

x x

x x .   (16) 

Consider the other case that {1,2,..., }i M∃ ∈ ∋  ( ) | 0
i

f
x =

∂ =
∂ x 0

x . 

Thus,  

( )min{ | } 0ii
i

fc
x =

∂ =
∂ x 0

x ( ) 0C p⇒ = ⇒ ,( ) 0i u vw e = , ,u ve p∀ ∈ .(17) 

Thus  
 ( )iW p =  

,

,( ) 0
u v

i u v i
e p

w e c
∈

= ≤∑ , {1,2,..., }i M∀ ∈ .   (18)  

That is, path p  is a feasible path.                                               
  Note that a path p  with ( ) ( )C p f≤ C  may not be a feasible 
path. For example, consider 1 2 1 2( , )f x x x x= + , with 

(1,1)=C , and a path p  with (1.1,0)p =W( ) . It is obvious 
that ( ) ( ) ( )C p f p f= <W( ) C , but  path p  is not a feasible 
path.  
The following two definitions can be used as the stopping 
criteria in searching for feasible paths. 
Definition 3: Given a network G , with cost function f  and 
QoS constraint C , no feasible path exists from node s  to t  if 
the least cost path p  from node s  to t  has 

( ) ( , , )uC p B f G> C . ( , , )uB f G C  is known as an upper 
bound of the cost of a feasible path.  
Definition 4: Given a network G , with cost function f , and 
QoS constraint C , if any path p  from node s  to t  with 

( ) ( , , )tC p B f G≤ C  is a feasible path, ( , , )tB f G C  is known as 
the tight bound of the cost of a feasible path. 
From Definitions 3 and 4, the cost of a feasible path cannot be 
larger than ( , , )uB f G C , and that of an infeasible path is larger 
than ( , , )tB f G C . It also follows from Theorems 1 and 2 that 

( , , )uB f G ≤C ( )f C  and ( , , )tB f G ≥C ( )min{ | }ii
i

fc
x =

∂
∂ x 0

x . 

 [Theorem 3] If , ,

( , )
min{ }

( , )
i

i j u v N
j

w u v
w u v

λ
∈

= , then 
,

( )
( )

i
i j

j

W p
W p

λ ≤  for any 

path p . 

Proof: Since , ,

( , )
min{ }

( , )
i

i j u v N
j

w u v
w u v

λ
∈

= , we have         

, ( , ) ( , )i j j iw u v w u vλ ≤ .                        (19) 
Then, 

,
( , ) ( , )

,

( , ) ( , )

( , ) ( , )
( )
( ) ( , ) ( , )

i i j j
u v p u v pi

i j
j j j

u v p u v p

w u v w u v
W p
W p w u v w u v

λ
λ∈ ∈

∈ ∈

= ≥ =
∑ ∑
∑ ∑

.    (20)  

[Lemma 2] If , ,

( , )
min{ }

( , )
i

i j u v N
j

w u v
w u v

λ
∈

= , and ,
i

i j
j

c
c

λ<  for 

1 ,i j M≤ ≤ , any path p  with ( )iW p ic≤  also implies that 
( )j jW p c< . 

Proof: From Theorem 3,  

,
, ,

( ) ( )
( )

( )
i i i

i j j j
j i j i j

W p W p cW p c
W p

λ
λ λ

≤ ⇒ ≤ ≤ < .      (21)  

  Lemma 2 implies that if ,
i

i j
j

c
c

λ< , the j th constraint is met 

as long as the i th constraint is met. Thus, the j th constraint 
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can be omitted for the MACP problem; i.e., the M-constrained 
problem can be reduced to an (M-1)-constrained problem. 

[Lemma 3] Define , ,

( , )min{ }
( , )

i
i j u v N

j

w u v
w u v

λ
∈

= . ( , , )tB f G ≥C  

0'min{ | }
( )

i
xi

i

c
h x = , where ( )ih x = 1, 2, ,( , ,..., )i i M if x x xλ λ λ . 

Proof: The proof is similar to that of Theorem 2.                     

[Lemma 4] If  , ,

( , )
min{ }

( , )
i

i j u v N
j

w u v
w u v

λ
∈

= and there are N  nodes in 

the network, ( , , )tB f G ≥C min{( 1)
i

N −  ( )}
1

i
i

ch
N −

, where 

( )ih x = 1, 2, ,( , ,..., )i i M if x x xλ λ λ . 
Proof: The proof is similar to that of Theorem 2.                     
[Lemma 5] Given a cost function f  and QoS constraint C , 

an n -hop path p  satisfying ( ) min{ ( )}i
ii

cC p nh
n

≤  is a feasible 

path. 
Proof: The proof is similar to that of Theorem 2.                     

  Similar to the definition of the tight bound, min{ ( )}i
ii

cnh
n

 is 

defined as the n-hop tight bound; that is, the cost of any n-hop 
infeasible path cannot be less than this bound.  
From Theorem 2 and Lemma 5, it is known that an n-hop path 
with cost between the upper bound and n-hop tight bound may 
be an infeasible path. Intuitively, it is desirable to have the 
upper bound and tight bound close to each other to minimize 
the possibility of selecting a wrong path. Concatenate 

,  , ..., 1 2 nW W W  of links of an n-hop path into an 1n M⋅ ×  

vector ( ,  , ..., )1 2 nW W W . Thus, the area covered by the n-hop 
tight bound is  

1

( ) min{ ( )}, , 1,2,...,

( , ) ... ...
n

i
ii

i

t
cf nh i M
n

A f n d d d

=

≤ ≤ =

=

∑
∫∫ ∫

i i

1 2 n

W W C

W W W . (22) 

Similarly, the area covered by the upper bound is  
 

1

( ) ( ), , 1,2,...,

( , ) ... ...
n

i

u

f f i M

A f n d d d

=

≤ ≤ =

=

∑
∫∫ ∫

i i

1 2 n

W c W C

W W W . (23) 

Based on the above intuition, the coverage ratio defined below 
( , )( , )
( , )

t

u

A f nr f n
A f n

=                              (24) 

can be used as a figure of merit on how robust the cost 
function is in avoiding a “wrong path selection.” The larger the 
ratio, the better the cost function. 

 
Figure 1. ( ,1)tA f  for k kx y+  

For example, let 1n = , (1,1)=C , 1,2 2,1 0λ λ= = , and the cost 

function ( , ) k kf x y x y= + , 1k ≥ . In this case, ( , ) 1uA f n = , 
and Fig. 1 shows the area covered by the tight bound increases 
with k . Thus, ( , ) 1r f n =  as k → ∞ ; i.e., an infeasible will 
not be selected. 

However, note that min{ ( )}i
ii

cnh
n

 does not change with n  if 

the cost function is linear while min{ ( )}i
ii

cnh
n

 decreases with 

n  if 
2

1 2
2

( , ,... ) 0∂ >
∂

M

i

f x x x
x

, 1, 2,...,i M= . Thus, we conjecture 

that, for any nonlinear cost function, there must exist a linear 
cost function with a larger ( , )r f n  when n  is large enough. 
With (1,1)=C , 1,2λ =  2,1 0λ = , Fig. 2 and Fig. 3 show the 

coverage ratios for both 1( , ) k kf x y x y= +  and 
2( , )f x y = ( 1)( k xe − +  ( 1) 2)k ye − − /( 1)k − , 1k ≥  when 2n =  

and 3n = .  
 

 
Figure 2. Coverage Ratio for n=2. 

 
Figure 3. Coverage Ratio for n=3. 

 
  When 3n = , the linear cost function (i.e., x y+  when 

0k = ) yields the largest coverage ratio as compared to 1( , )f ⋅ ⋅  
and 2( , )f ⋅ ⋅ . Furthermore, the linear cost function possesses a 
distinguished property, ( ) ( )C p f p= W( ) , that makes the 
design of QoS routing algorithm (selection of cost function 
parameters) such as [6] straightforward and easy. Thus, the 
linear cost function is preferred for source QoS routing 
algorithms. This conclusion assumes that the cost of a path is 
the sum of the costs of all individual links comprising the path; 
it may not be feasible for algorithms in which the assumption 
does not hold. For example, a good approach proposed in [10] 
is that the cost of path p  is ( )f pW( ) , i.e., ( ) ( )C p f p= W( ) , 
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where ( )f ⋅  is the cost function. In this case, path p  can 
always be viewed as a link connecting the source and the 
destination with weight pW( ) . Hence, if there are only two 

constraints, and ( , ) k kf x y x y= + , 1k ≥ , the success ratio of 
a finding feasible path using this algorithm always increases 
with k , regardless the number of the hop count from the 
source to the destination, as shown in Fig. 1. So, in this case, 
the linear cost function is not optimal, and our conclusion is 
not applicable anymore. 
 

IV. SIMULATIONS 
   We conduct our simulations in two network topologies: one 
is the network topology presented in [6], [10], and the other is 
a 7 7×  mesh network. The cost functions adopted for 
comparisons are 1( , )f x y x y= + , 2 22( , )f x y x y= + , and 

3( , ) ( 2)x yf x y e e= + − . The QoS routing algorithms used in 
simulations are Dijkstra algorithm. In both simulations, the 
link weights are independent and uniformly distributed from 0 
to 1, two QoS constraints are set to be equal, and increase 
from 0.5 to 5.1 with an increment of 0.2. All data are obtained 
by running 1,000,000 requests. To truly reflect algorithms’ 
capability in finding a feasible path, we propose the following 
more appropriate success ratio definition as our performance 
index: 

       
        

Total number of success request of the algorithmSR
Total number of success request of the optimal algorithm

= . (26) 

The algorithm that can always locate a feasible path as long as 
it exists is refereed to as the optimal algorithm. Here, it is 
achieved simply by flooding which is rather exhaustive. The 
simulation results are shown in Figures 4 and 5. 
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Figure 4. SR in the 32-node network. 
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Figure 5. SR in the 7 7×  mesh network. 

It can be observed that, in both simulations, the QoS routing 
algorithm with the linear cost function achieves the highest 
success ratio in finding a feasible path, which conforms to our 
conjecture. 

V. CONCLUSIONS 
   Although source routing has been extensively studied in the 
past, most proposed multiple constrained routing algorithms 
are heuristic in nature. In this paper, we have provided a 
theoretical framework for selecting the cost function for 
multiple additively constrained QoS routing. By deploying our 
proposed coverage ratio as the metric for evaluating the cost 
function, it is advisable to use a linear cost function for the 
approach in which the cost of a path equals the sum of the 
costs of all individual links comprising the path. 
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