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Efficient Predictive Bandwidth Allocation for Real Time

Videos
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SUMMARY  The Quality of Service (QoS) requirements such
as delay and cell loss ratio (CLR) are very stringent for video
transmission. These constraints are difficult to meet if high net-
work utilization is desired. Dynamic bandwidth allocation in
which video traffic prediction can play an important role is thus
needed. In this paper, we suggest to predict the variation of I
frames instead of the actual size of I frames, and propose an al-
gorithm that can achieve fast convergence and small prediction
error, thus imposing QoS and attaining high network utilization.
The performance of the scheme is studied using the rene-
gotiated constant bit rate (RCBR) service model. The overall
dynamic bandwidth allocation scheme based on our fast conver-
gent algorithm is shown to be promising, and practically feasible
for efficient transmission of real time videos.
key words: Bandwidth prediction, QoS, LMS, VBR

1. Introduction

Variable Bit Rate (VBR) is one of the major services
to be supported by broadband packet switched net-
works. Video is inherently dynamic, and MPEG [1]
video coding results in VBR. If the bandwidth is allo-
cated according to the peak rate of the video traffic, no
packet loss occurs, but a substantial amount of band-
width is wasted during most of the transmission. On
the other hand, if the bandwidth is not allocated close
to the peak rate, large delays and excessive packet loss
may be experienced. So in transporting the VBR video
traffic, QoS guarantees provisioning is not trivial due
to the bursty characteristics of the VBR traffic. How-
ever, existence of correlation in the video trace gener-
ated from an MPEG encoder can be exploited for traffic
prediction, which, when combined with dynamic band-
width allocation, can provision both network efficiency
and QoS guarantees. Earlier work in this area includes
the frequency domain and time domain prediction ap-
proach.

Chong et al. [2] approached the problem in the
frequency domain. They proposed a method to dy-
namically allocate the bandwidth based on predicting
the low frequency part of the video rate input sequence.
The low frequency part of the signal represents the slow
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variation of the VBR rate and is used to determine the
allocated bandwidth.

Wang et al. [3] predicted the VBR video traffic
by transforming the video sequence into the wavelet
domain. Though it can improve the prediction perfor-
mance, the computational complexity is rather high.

An adaptive linear prediction scheme was proposed
by Adas [4]. This scheme does not require any prior
knowledge of the video statistics nor does it assume
stationary, and is thus very suitable for on-line real time
prediction. However, when there are scene changes, the
bit rate variation is so high that the prediction error
can be large. Xu and Qureshi [5] proposed a composite
MPEG traffic prediction scheme which smoothes the
predicted data based on predicting relative changes of
frame size between adjacent GOPs. Since I, P and B
possess different statistical characteristics, this method
is not effective in guaranteeing the CLR and needs re-
negotiations for every frame, a big burden to network
management.

Owing to the above drawbacks, we propose a dy-
namic bandwidth allocation algorithm based on the
predicted relative size change of I frames. The pro-
posed algorithm not only smoothes the predicted data,
reduces the renegotiation frequency, but also achieves
much smaller prediction error than that by the compos-
ite MPEG traffic prediction scheme; one problem asso-
ciated with this least mean squares (LMS) [6] algorithm
is its slow convergence. In VBR video traffic character-
ized by the frequent scene changes, the LMS algorithm
may result in an extended period of intractability, and
thus experience excessive cell loss during scene changes.
Thus, we also propose a fast convergent nonlinear adap-
tive algorithm to predict the relative size change of I
frames. This new algorithm converges faster, and hence
tracks scene changes better.

2. Characteristics of MPEG videos

An MPEG encoder that compresses a video signal at
a constant picture rate (e.g., 30 pictures/s) produces a
coded bit stream with a highly variable bit rate, thus
called VBR. Changes in the output rate of an MPEG
encoder are attributed to the following three aspects:

1. The encoding of one block to the next within a
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picture.

2. From one picture to the next within the video se-
quence being encoded.

3. From one scene to the next within the video se-
quence.

The rate fluctuation from one picture to the next
is the most troublesome for the network management.
If the frame size can be predicted more accurately, net-
work utilization can be improved and QoS can be guar-
anteed.

An MPEG video is divided into units called group
of pictures (GOP). A GOP consists of an I frame and
an arrangement of B and P frames. Video traffic is
correlated and its autocorrelation has a heavy tail, be-
cause MPEG uses intra frame techniques (exploiting
the spatial redundancy within a picture) as well as inter
frame techniques (exploiting the temporal redundancy
present in a video sequence). A highly correlated input
process with a heavy tail, if served at a fixed rate not
close to the peak rate, causes large queues, large delays
and excessive cell loss [4].

The frame size trace from the output of the MPEG
contains all statistical information about the encoded
video. The frame by frame correlation depends on
the pattern of the GOP, and in principle always looks
like Fig.1 if the same GOP pattern is used for the
whole sequence. For this example, the GOP pattern
is IBBPBBPBBPBRBI....

Figure 1 shows the autocorrelation function (ACF)
of the MPEG coded Star Wars (lag is expressed in
terms of the frame number), in which the largest posi-
tive peaks stem from I frames, the larger positive ones
from P frames, and the smallest ones from B frames. A
large I frame is followed by two small B frames, then a
middle size P frame is followed by two small B frames
again. The pattern between two I frame peaks is re-
peated with slowly decaying amplitude of the peaks.
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Fig.1 ACF of an MPEG video.

From this figure, we can see that the MPEG video
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is highly correlated. If it is not served at a rate close
to the peak rate, large queues, large delays and exces-
sive cell loss will result, but if we reserve a bandwidth
at least equal to the predicted value, we only need to
buffer the error caused by the prediction. If the error
resembles white noise or at most short memory, only
small buffers will suffice, and high utilization and small
delays can be achieved.

3. Predicting the relative size change of the I
frame size

Through the analysis of the MPEG video trace we find
that I frames often have large frame sizes, and B frames
have small frame sizes. Most of the time, when the I
frame size changes significantly, the P and B frame size
also change significantly, implying that the increase or
decrease of the I frame size often indicates the increase
or decrease of the P and B frame sizes, and therefore
we only need to predict the I frame size. Let I be the
size of the I frame of the kth GOP and I;_ be the size
of the (k — 1)th GOP, then the relative size change of I
frame sj, is defined by

sp = —I"I feot (1)

k—1

The sequence s is much smoother than the sequence
Ix.. So the linear adaptive prediction will perform better
if we predict the sequence s, instead of the sequence Iy;
the I frame size can then be retrieved by

Iy = splp 1+ I 1. (2)

A one-step linear predictor can be used to predict
the si sequence, i.e., prediction of siy; using a linear
combination of the current and previous values of sg.
The number of the current and previous values of s
used to predict sgip is called the order of the linear
predictor. The pth-order linear predictor has the fol-
lowing form:

p—1
Spt1 = Zwlsk—l =W'Sy, (3)
1=0

where p is the order of the linear predictor, and wy, for
l=0,1,...,p—1, are the prediction filter coefficients.
The prediction error is

€k = Sk — §k- (4)

The LMS predictor minimizes the mean squares
error by adaptively adjusting the coefficient vector W.
In normalized LMS algorithm [4], if we use the one-step
linear predictor, W is updated by

HerSk
A%% = Wy + . 5
err = Wit g 1 (5)

The Akaike information criterion (AIC) [7] is used
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to choose the best order not greater than 12. The AIC
criterion associates a cost function with the order of
the filter. It was found by numerous simulations that
the autocorrelation of the prediction error e is close
to that of the white noise. Thus we use one-step, 12-
order adaptive linear predictor for both our algorithm
and the composite prediction scheme [5].

The performance of our algorithm for the video
trace CD122, justified by the inverse Signal to Noise
Ratio (SNR™1) is

2
SNR-1 = 25 o040,
> s%(n)
Figure 2 shows the forecasted values appear close to
the actual values except at sharp transition, which are
most likely due to scene changes.

source value
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relative size change of | frame
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Fig.2 Actual and forecasted I frame size variation for CD122;
in this case, the lag implicitly represents the I-frame number.

source value
—— predicted value

relative size change of I,P,B frame
=)
é
1

-5 L L L L I I
20 40 60 80 100 120 140

lag

Fig. 3
CD122.

Actual and forecasted frame size variation (I,P,B) for

Figure 3 shows the actual and forecasted frame
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size variation proposed by Xu and Quresh [5], which
predicts the relative size change of every frame between
two adjacent GOPs. The sequence is defined as follows:

_ I = Fya

fr o,

(6)
where Fj, is the size of the kth frame in the MPEG
encoded video sequence, d is the length of the GOP,
and fy is the relative change of frame sizes between
adjacent GOPs. Since I, B, P frames are coded with
different compression levels, they have different statis-
tical properties. fj is more fluctuated than s, and so
the prediction error of f; shown in Fig. 3 is larger than
that of s, shown in Fig. 2.

The performance of the composite prediction
scheme for CD122 is

SNR™! = % =0.8471.

From Figs.2 and 3 and their SNR~', our proposed
scheme is more accurate than the composite prediction
scheme [5]. On the other hand, it is not possible to
allocate bandwidth based on every frame size, because
the negotiation frequency is very high, thus imposing
a big burden to the network. Hence, we should not
predict every frame size.

4. The fast algorithm

The algorithm proposed in Section 3 not only smoothes
the predicted data, reduces the renegotiation frequency,
but also achieves much smaller prediction error than
that of the composite MPEG traffic prediction scheme.
The only drawback is its slow convergence. In VBR
video traffic characterized by frequent scene changes,
the LMS algorithm may result in an extended period
of intractability, and thus may experience excessive cell
loss during scene changes; hence, we propose a fast con-
vergent nonlinear adaptive algorithm to predict the rel-
ative size changes of I frames. This new algorithm con-
verges fast, and hence, tracks scene changes better.

In the standard LMS algorithm (3) ~ (5), p is a
constant; we refer to this algorithm as the fixed step
size algorithm (FSA). Since the video traffic is bursty,
if we increase the step size p we can achieve fast con-
vergence at the cost of a large prediction error. On the
other hand, the prediction error can be made small by
decreasing the step size p at the cost of the convergence
rate. The choice of the step size reflects the trade off
between the misadjustment and the speed adaption.

Kwong and Johnston [8] proposed a variable step
size algorithm for adjusting the step size pg:

[y = Qpug, +veq, (7)

with 0 < o < 1, v > 0, and
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Pmaz i Wiy > Hmaz
Hr+1 = Hmin if M;H_l < Hmin (8)
My, otherwise.

The initial step size pg is usually taken to be a
little large, although the algorithm is not sensitive to
the choice. As can be seen from Eq. (7), the step size
is always positive and is controlled by the size of the
prediction error, and the parameters « and . Intu-
itively, a large prediction error increases the step size
to provide faster tracking. If the prediction error de-
creases, the step size will be decreased to reduce the
misadjustment. The constant pi,,4, is chosen to ensure
that the mean-square error (MSE) of the algorithm re-
mains bounded. Usually, p,,i, is chosen to be close to
the value that has been chosen for the fixed step size
algorithm. We propose to modify Eq. (7) to the follow-
ing:

Mhiq = e +Y(q1€k + q2€p_1), (9)

where ¢; + g2 = 1 to accommodate the video traffic
characteristics. Since a video frame sequence consists
of many scenes, the bit rate varies greatly among dif-
ferent scenes, while during a scene, the bit rate in the
frame sequence has a strong auto-correlation, and thus
better prediction performance is expected. Equation
(9) includes an additional error term er_1, to smooth
out the drastic change of py (i.e., a spike) during the
transition from one scene to another as shown in Fig. 4,
thus easing the buffer management. We refer to this
algorithm as the fast convergent variable step size al-
gorithm (VSA), and Kong and Johnston’s method as
KVSA in this paper. Here, e; and e;_; are the current
and previous prediction errors, respectively, and ¢; and
q2 are their respective weights. We empirically derived
from the video trace “Talk2” the parameters o = 0.98,
v =0.015, ¢ = 0.7 and g2 = 0.3, and found that these
parameters provide the best performance in all our real
video trace simulations.

in equation(7)
in equation (9)

pk+1
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Fig.4 Comparison of stepsize.
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Simulations on four 1.5-hour long empirical VBR
traffic data sets were conducted. These data sets cor-
respond to the relative size change of I frames. For
performance comparison among VSA, KVSA and FSA,

2
we use SNR™! = %;EZ; as a metric, which is the ra-

tio of the sum of squares of prediction error and sum
of squares of input data. For a fair comparison, VSA,
KVSA and FSA use the same 12-order and one-step
ahead prediction, and parameters o and y are the same
in both VSA and KVSA. The results are shown in Ta-
ble 1.

Table 1 Performance comparison of FSA, KVSA, and VSA
predictors on relative size change of I frames

(Z e?(n)

E o) is used as a metric)
S n

Sequence FSA KVSA | VSA | Improvement(%)
CD122 0.0040 | 0.0035 | 0.0032 20
Talk2 0.0078 | 0.0071 | 0.0069 12
News 0.0247 | 0.0213 | 0.0210 15
SoccerWM | 0.0512 | 0.0438 | 0.0404 21

From Table 1, VSA and KVSA incur smaller pre-
diction error than FSA in all the four tested sequences.
VSA further reduces the prediction errors as shown in
Table 1. The performance has been improved greatly
if we use VSA instead of FSA as shown in Table 1.
The percentage improvement is respect to VSA over
FSA. Figure 5 shows the convergence properties of FSA
(= 0.009) and VSA. Note that VSA converges much
faster than FSA. If we increase the step size to u = 0.3
for FSA, the convergence is faster as shown in Fig.6
(note that the MSE is expressed in dB), but the predic-
tion error is increased greatly; here the iteration repre-

62 n
sents the iteration index, in this case, §S2En; = 0.0191

for FSA, % — 0.0032 for VSA.

5. Dynamic bandwidth allocation

There are many ways to use the prediction for allocat-
ing bandwidth for the VBR video traffic. The band-
width allocation mechanism can be activated by each
prediction, or only those predictions whose results are
larger than a certain threshold. The variation reflects
the trade-off between the network utilization and the
overhead for bandwidth negotiation. The choice for
a network application depends on many factors, such
as the network service model, latency, and implemen-
tation complexity. Since the increase or decrease of 1
frames often indicates the increase or decrease of P and
B frames, we propose to allocate bandwidth based on
the predicted I frame size using VSA to improve the
QoS and network utilization.
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Fig.5 Comparison of convergence properties of FSA (u =

0.009) and VSA on CD122 trace.
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Fig.6 Comparison of MSE (dB) of VSA and FSA (p = 0.3)
on CD122 trace.

5.1 Dynamic Bandwidth Allocation Based on Pre-
dicted I Frames Using VSA

A single server FIFO queue is simulated. The assumed
network service model is RCBR [9]. Let I, be the size
of the predicted I frame of the kth GOP, R be the trans-
mission rate for the previous GOP and ¢ be a threshold,
then the dynamic bandwidth allocation algorithm can
be stated as follows:

o if |I; — R/N| < ¢, then the transmission rate re-
mains unchanged.
o if I, — R/N| >4, then R = I), x N,

where N is the number of frames needs to be transmit-
ted per second.

The negotiation frequency can be reduced signifi-
cantly because only I frames need to be checked. Since
the I frame size in a GOP is the largest most of the time,
the bandwidth allocated is very close to the largest
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one needed for transmission of frames in the GOP, and
therefore CLR can be kept small. The CLRs for dif-
ferent values of § for the sequence CD122 are shown in
Fig. 7.

Figure 8 shows the performance of the video trace
“Talk2” show using our prediction algorithm, where
6 = 1000, and the buffer size stands for the size of
the buffer needed at the switch. The prediction perfor-
mance is

SNR™! = 0.0069.

T
—#— 3=1000
—- 3=10000
—< 3=15000
—— 3=25000

I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
Buffer size

Fig.7 CLR versus buffer size for different values of §.

CLR

I I I I I I !
0 500 1000 1500 2000 2500 3000 3500
Buffer size

Fig.8 CLR versus buffer size for the Talk2 show.

5.2 Impact of Autocorrelation to Queue Size

By reserving the bandwidth at least equal to the
predicted values, only prediction errors need to be
buffered. The autocorrelation of the prediction errors of
the relative size change of I frames for video sequences
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CD122 and Talk2 are shown in Figs.9 and 10, respec-
tively. Note that they resemble white noise, a rather
uncorrelated process. Since traffic autocorrelation has
great impact on the queuing performance, we need to
understand how the queue responds to different auto-
correlations.

0.4 q

0.3 q
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20 30 40 50 60 70 80 90 100
lag

o

Fig.9 Autocorrelation of the prediction error for CD122.
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Fig.10 Autocorrelation of the prediction error for Talk2.

Li and Hwang [10] analyzed this impact in the fre-
quency domain. Consider a Markov modulated Pois-
son process. This process is described by an N state
discrete time MC transition matrix P which is diago-
nalizable, and its associated input rate vector 4. The
input rate correlation is expressed as follows:

n) :Z wl)\\lnl + Z 204 | M 1™ cos(|n|w T + 6,T).

A EQ, MNEQCTm(N)>0
(10)

where ); is the ' eigenvalue of P, 1); is associated

with both the [!" eigenvector of P and the input rate
¥, wp = arg(A;), T is the time unit, €, is the subset of
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the real eigenvalues of P, (). is the subset of complex
eigenvalues of P, and I'm(z) is the imaginary part of x.

The power spectral function of the input rate pro-
cess is defined by the discrete-time Fourier transform of
R(n): P(w) =Y0° _ R(n)e V=T which is equal
to

_ (1= A7)
Plw) = Zz: 1- 2/\llcos(wi;’) + A2 (11)

From Egs. (10) and (11), essential characteristics
of the input correlation (or its power spectrum) are
captured by the input MC eigenvalues.

Li and Hong [10] analyzed the queue response to
the input correlation or the power spectrum by an V-
state periodic chain to match the input power spec-
trum. While in state ¢, the packet arrivals are charac-
terized by a Poisson process with input rate ;. The
model discussed here is a typical two dimensional MC
in the discrete-time domain. The mean queue size is
expressed as follows:

7= o > (14)
l

c; is the I*" element of the boundary vector & [11]. The

first item in (12) is also equal to the mean queue size
of the M/D/1 model, which in our case is equivalent
to the queue response to the white noise input. The
second moment of the queue is given by

o N—1N-1

~4 ~3
7 -5+ 37 1—v+v
Elg*)= > > > el
6(1-7) ==
1 ”
). 1
Ml (.0 (15)

By examining the queue response to various input
correlation properties on the basis of the input power
spectrum in the discrete frequency domain, we conclude
that the queuing behavior is dominated by input power
in the low frequency band, and many high-frequency
components existing in the input process can be re-
placed by a constant input rate, that have little impact
on the queue response [10]. Thus, we can neglect the
high frequency power in the power spectrum. This is
true especially for multimedia traffic queuing analysis,
where the input process often contains the dominant
low frequency power as shown in Fig.11. The larger
the autocorrelation, the more input power is in the low
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Fig.11 The power spectrum of the Talk2 show.

frequency band and the longer the mean queue size is.

From the above analysis, we observe that the queu-
ing performance is mainly dominated by input streams
with high positive correlation. The higher the posi-
tive correlation in the time domain, the more the input
power is in the low frequency band, and so the mean
queue size will be longer. From the network perspec-
tive, the key point is to assign the link capacity to a
given multimedia traffic in order to provide guaranteed
quality of services. Video traffic is highly correlated,
as shown in Fig.1. The power spectrum as shown in
Fig. 11, has spikes appeared at harmonic frequencies
due to the strong autocorrelation of periodic I frames.
More input power is located in the low frequency band,
thus resulting in large queue size, and hence we can-
not guarantee the quality of service. A large queue
will introduce a long delay that cannot be tolerated for
video delivery especially for real time videos. Here, we
propose a bandwidth allocation scheme based on the
predicted I frame size (retrieved from si) in which only
prediction errors need to be buffered. From Figs. 9 and
10, we note that the prediction error resembles white
noise, or at most short memory, a rather “uncorrelated”
process resembling white noise; this has little impact on
the queuing dynamics, and thus smaller buffers, less de-
lays, and higher utilization can be achieved. Since for a
given link, all the QoS parameters, namely, delay, loss
and jitter for a stream depend on its queuing dynam-
ics. Similar results are also derived for other sequences
such as SoccerWM, News and Simpsons [12]. From the
buffering standpoint, instead of buffering highly corre-
lated input traffic directly, our proposed scheme buffers
the residuals (errors) of the prediction, a rather “uncor-
related” process resembling white noise, thus requiring
much smaller buffer space.

6. Conclusions

Our contribution discussed in this paper are four-fold:
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e We have proposed to predict the relative size
change of I frames, i.e. si. Owing to a smoother
Sk, better prediction has been achieved.

e We have proposed to adopt a variable step size
to improve the convergence of LMS for video traf-
fic prediction, first using KVSA, and later VSA.
Our simulations show that VSA not only incurs
small prediction errors but more importantly also
achieves fast convergence. This new algorithm con-
verges faster, and hence, tracks scene changes bet-
ter than FSA.

e We have justified analytically that the spectral
density of the prediction error of s, is rather un-
correlated, resembling white noise, and thus using
much smaller buffer space.

e We have proposed a dynamic bandwidth alloca-
tion algorithm based on predicted Iy (derived from
si) that has greatly reduced the renegotiation fre-
quency with a small CLR.

The proposed algorithm is therefore applicable for on-
line real time video transmission.
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