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Abstract— In this paper, we introduce and investigate a new 

problem referred to as the All Hops k-shortest Paths (AHKP) 
problem. An efficient solution, the All Hops k-shortest Paths 
Extended Bellman-Ford (AHKPEB) algorithm, is proposed. 
Especially, when 1k = , AHKPEB is an optimal comparison-
based solution to the All Hops Optimal Path (AHOP) problem in 
terms of the worst-case computational complexity, i.e., it is 
impossible to find another comparison-based solution to Add-
AHOP having the worst-case computational complexity lower 
than that of AHKPEB. 
 

Index Terms— Quality of Service (QoS), Bellman-Ford 
algorithm, All Hops k-shortest Paths Problem (AHKP). 
 

I. INTRODUCTION 
ne of the challenging issues for high-speed packet 
switching networks to facilitate various applications is to 
select feasible paths that satisfy different quality-of-

service (QoS) requirements. This problem is known as QoS 
routing. However, it has been proved that multiple additively 
constrained QoS routing is NP-complete [1]. Many proposed 
source routing algorithms tackle this problem by transforming 
it into the shortest path selection problem or the k-shortest 
paths selection problem, which are P-complete, with an 
integrated cost function that maps the multi-constraints of 
each link into a single cost. However, since the solutions are 
computed by finding the shortest path, one of their common 
problems is that they cannot minimize the number of hops of 
their solutions. As a result, the network resource is wasted. 
Given a set of constraints 1 2( , ,..., )Mα α α  and a network that is 
modeled as a directed graph ( , )G N E , where N  is the set of 
all nodes and E  is the set of all links, assume each link 
connected from node u  to v , denoted by , ( , )u ve u v E= ∈ , is 
associated with M  randomly distributed additive parameters: 

( , ) 0iw u v ≥ , 1, 2,...,i M= , and define 1 1{ ( ) ,rP W p α≤  

2 2( )W p α≤ ,..., ( )MW p Mα≤ | ( ) ,C p u= ( ) }H p n=  as the 
probability that a path p  is a feasible path with ( )C p u= , 
and its hop count, ( )H p n= , where ( )C p  is the cost of p , 
which is a function of the weights of the links on p , and 
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( )iW p =
,

( , )
u v

ie p
w u v

∈∑ . The probability of the shortest path 

to be a feasible path may not be the largest in all paths. 
Therefore, computing a feasible path among all hops shortest 
paths, instead of only the shortest path, can increase the 
success ratio of finding a feasible path. In this paper, we 
introduce and investigate a new problem referred to as all 
hops k-shortest paths (AHKP) problem, defined below. 
 
Definition 1: All Hops k -shortest Paths (AHKP) Problem: 
Assume a network is modeled as a directed graph ( , )G N E , 
where N  is the set of all nodes and E  is the set of all links. 
Each link connected from node u  to v , denoted by 

, ( , )u ve u v E= ∈ , is associated with an additive weight ( , )c u v . 
Given a source node s N∈  and maximal hop count H , 
H n< , find, for each hop count value h , 1 h H≤ ≤ , and a 
destination node u N∈ , the k -shortest h -hop constrained 
paths from s to u . In this paper, we will refer to the length of 
a path as the sum of its link weights. 
 
We propose an efficient solution, the All Hops k-shortest 
Paths Extended Bellman-Ford (AHKPEB) algorithm, to 
AHKP and prove that, when 1k = , AHKPEB is an optimal 
comparison-based solution to Add-AHOP in terms of the 
worst-case computational complexity, i.e., it is impossible to 
find another comparison-based solution having the worst-case 
computational complexity lower than that of AHKPEB. The 
definitions of comparison-based algorithms and Add-AHOP 
can be found in [2] and [3], respectively.  

 

II. A SOLUTION TO AHKP 
   The relaxation procedure of our proposed AHKPEB 
algorithm is shown in Fig. 1. Here, 1 ( , )hp s i , 2 ( , )hp s i ,…, 

( , )h
kp s i  represent k  h -hop paths from source s  to i  

computed by AHKPEB (we will prove later that 1 ( , )hp s i , 

2 ( , )hp s i ,…, ( , )h
kp s i  are h -hop k -shortest paths among all 

the h -hop paths from source s  to i . If, in reality, the total 
number of h -hop paths from s  to i  is less than k , we 
assume that there exist virtual h -hop paths whose costs are 
infinity). ,1

h
iD , ,2

h
iD , …, ,

h
i kD  are their costs, and ( , )c i j  is the 

weight of link ( , )e i j . Assume there exists a virtual link 
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( , )e s i  between the source node s  and any other node i , 
whose cost is infinity (in reality, it does not exist). i N∀ ∈ , 

1
1 ( , ) ( , )p s i e s i=  and 1 ( , ) ( , )gp s i e s i= , 2,3,...,g k= , (if, in 

reality, no link between the source s  and node i  exists, 
1
1 ( , ) ( , )p s i e s i= ). Set 1

,1iD  as ( , )c s i  and ,
h
i gD  ( 2,3,...,g k= ) 

as infinity. The initial values of ,1
h
iD , ,2

h
iD , …, ,

h
i kD  ( 2h ≥ ) 

are infinity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The relaxation procedure of AHKPEB 
 
We will prove later that ,1 ,2 ,...h h h

i i i kD D D≤ ≤ ≤ , i.e., 1 ( , )hp s i , 

2 ( , )hp s i ,…, ( , )h
kp s i  are sorted in increasing order of their 

lengths. The relaxation procedure of AHKPEB is illustrated 
by the example shown in Fig. 2. 
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Fig. 2. An illustration of the relaxation procedure of AHKPEB. 

 

Given two sorted path sets ( 3k = ), 1 2 3{ , , }α α α  and 

1 2 3{ , , }β β β , whose costs are {0.3,0.7,0.8} and {0.5,0.6,0.9} , 
respectively. Note that  

1 11,2,3 1,2,3
min{ min { ( )}, min { ( )}} min{ ( ), ( )}j jj j

C C C Cα β α β
= =

= .  (1) 

Let 1 1{ , }α β=1φ ; the least cost path in the two sets is the least 
cost path in 1φ . In this example, it is 1α .  Furthermore, since 
the two path sets are sorted by their costs and 1α  is the least 
cost path, the second least cost path in the two sets must be the 
least cost path between 2α  and 1β , i.e., let 

1 2( { }) { }α α= ∩ ∪2 1φ φ , the second least cost path in the two 
sets is the least cost path in 2φ . Similarly, the j th least cost 
path in the two sets is the least cost path in jφ , which can be 

proved by deduction, where 1( { }) { }j jπ ν−= ∩ ∪j j-1φ φ , 1jπ −  
is the least cost path in j-1φ  and jν  is the next path to 1jπ −  in 
the corresponding set. Moreover, 1 j v k≤ < ≤ , 

( ) ( )j vC Cπ π≤ , i.e., the paths ( jπ ) are sequentially computed 
in the increasing order of their costs. Following the relaxation 
procedure, it can be observed that the 3-shortest paths of the 
two sets are obtained in increasing order of their lengths. 
Hence, given two sorted sets of k  paths in increasing order of 
their lengths, the outputs of the relaxation procedure of 
AHKPEB are the sorted k  shortest paths of the two sets. 
Therefore, as shown in Fig. 3, if {1, 2,..., }id d∀ ∈ , 1 ( , )h

dp s i , 

2 ( , )h
dp s i , …, ( , )h

k dp s i  are sorted in increasing order of their 
costs, the k -shortest ( 1)h + -hop paths among the paths 

( , ) ( , ),h
g d dp s i e i i+  1, 2,..., ,id d=  1,2,...,g k= , are iteratively 

computed resulting in 1
1 ( , )hp s i+ , 1

2 ( , )hp s i+ ,…, 1( , )h
kp s i+ , 

where id  denotes the degree of node i  and 1i , 2i ,…, di
i  are 

its neighboring nodes. Furthermore, 1 1 1
,1 ,2 ,...h h h

i i i kD D D+ + +≤ ≤ ≤ . 
 

s

i

1i

1di
i −

di
i

1 1 2 1 1( ( , ), ( , ),..., ( , ))h h h
kp s i p s i p s i

1 2( ( , ), ( , ),..., ( , ))h h h
d d k di i i

p s i p s i p s i

1 1 2 1 1( ( , ), ( , ),..., ( , ))h h h
d d k di i i

p s i p s i p s i− − −

1 1 1
1 2( ( , ), ( , ),..., ( , ))h h h

kp s i p s i p s i+ + +

 
Fig. 3. The AHKPEB algorithm 

 
[Proposition] 1 ( , )hp s i , 2 ( , )hp s i ,…, ( , )h

kp s i  are h -hop k  
shortest paths among the all h -hop paths from source s  to 
node i  and ,1 ,2 ,...h h h

i i i kD D D≤ ≤ ≤ .  

Relax(j,i) 
1 set 1m = , 1n =  
2 for : 1l =  to k  
3  1( , )h

l lP p s i+=   /* lP  is a temporary path */ 

4  1
,
h

l i lDβ +=        /* lβ  is a temporary variable */ 

5  if 1
, , ( , )h h

i m j nD D c i j+ ≥ +  then 

6    1
, , ( , )h h

i l j nD D c i j+ = +  

7     1( , ) ( , ) ( , )h h
l np s i p s j e i j+ = +  

9   1n n= +  
10  else 
11   1

,
h
i l mD β+ =  

12   1( , )h
mlp s i P+ =  

13   1m m= +  
14    end if 
15 end for 
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Proof: When 1h = , from the definition of the initial values of 
1
,i gD  ( i s≠ ), 1 ( , )gp s i , 1,2,...,g k= , are the one hop k-

shortest paths from s  to i . Moreover, it can be observed that 
1 1 1
,1 ,2 ,...i i i kD D D≤ ≤ ≤ .   

    We assume that the proposition is correct for n m= . We 
shall prove by deduction that it is true for 1n m= + . 
    Assume when 1n m= + , if j s∃ ≠ , 1( , )m

gp s i+ , 1 g k≤ ≤ , is 
not one of the k-shortest paths in all ( 1)m + -hop paths from 
s  to i  ( 1

,
m
i gD +  is larger than the cost of any ( 1)m + -hop k-

shortest path from s  to i ). Further assume that path 
1
( , )

m
p s i

+
 is not one of 1( , )m

gp s i+ , 1,2,...,g k= , and has 

smaller length than that of 1( , )m
gp s i+  in all ( 1)m + -hop paths 

from s  to i . The predecessor node of node i  in 
1
( , )

m
p s i

+
 is 

d , the path from s  to d  in 
1
( , )

m
p s i

+
 is ( , )

m
p s d  (note that 

( , )
m

p s d  may not be one of the k-shortest m -hop paths from 
s  to d , and by the earlier assumption, ( , )m

gp s d , 
1,2,...,g k= , generated by AHKPEB are the k-shortest m -

hop paths from s  to d ), the cost of 
1
( , )

m
p s i

+
 is c , and the 

cost of ( , )
m

p s d  is 'c . Thus,  
1

,
m
i gc D +< .                                    (2) 

If ( , )
m

p s d  is one of ( , )m
gp s d , 1,2,...,g k= , or 

{1,2,..., }g k∃ ∈  such that '
,

m
d gc D= , 

1
( , )

m
p s j

+
 is resulted by 

concatenating ( , )
m

p s d  with link ( , )e j d , i.e., 
1
( , )

m
p s i

+
 is 

one of ( , ) ( , ),m
g d dp s i e i i+  1, 2,..., ,  1,2,...,id d g k= = . Since 

1
( , )

m
p s i

+
 is not one of 1( , )m

gp s i+ , 1,2,...,g k= , and 
1( , )m

gp s i+ , 1, 2,...,g k= , are the k-shortest paths of 

( , ) ( , ),m
g d dp s i e i i+  1, 2,..., ,id d=   1, 2,...,g k= , 

{1, 2,..., }g k∀ ∈ , 
1

,( , )m m
d i gc D c i d D += + ≥ ,                       (3) 

which contradicts (1). Hence, ( , )
m

p s d  is not one of 
( , )m

gp s d , i.e., {1,2,..., }g k∀ ∈ ,  
'

,
m
d gc D≥ .                                 (4) 

So, , {1, 2,..., }g u k∀ ∈ , the cost of 
1
( , )

m
p s i

+
 is  

'
,( , ) ( , )m

d gc c c j d D c j d= + ≥ + ≥ 1
,
m
i gD + ,          (5) 

which contradicts (2). So, when 1n m= + , {1, 2,..., }i N∀ ∈ , 
1( , )m

gp s i+ , 1,2,...,g k= , are the k-shortest paths in all 
( 1)m + -hop paths from s  to i . Moreover, since 

( , ) ( , ),m
g d dp s i e i i+ 1,2,...,g k= , is in increasing order of their 

lengths for any {1, 2,..., }id d∈ , 1( , )m
gp s i+ , 1, 2,...,g k= , is 

also in increasing order of their lengths, i.e., 
,1 ,2 ,...m m m

i i i kD D D≤ ≤ ≤ . 

Thus, for any node {1,2,..., }i N∈ , ( , )m
gp s i , 1,2,...,g k= , 

generated by AHKPEB must be the k-shortest paths in all 
m -hop paths from s  to i .                                                       
Computational Complexity: Since the computational 
complexity in each relaxation procedure is k , the 
computational complexity of AHKPEB is ( )O kHE , where E  
is the number of links. When 1k = , the computational 
complexity of AHKPEB is ( )O HE . 

Guerin and Orda [3] proved that 3( )O N  is a (tight) lower 
bound on the computational complexity of any comparison-
based solution to the Add-AHOP problem (a case of AHOP 
where link weights are additive). Note that 3HE N<  because 

2E N<  and H N< . Hence, AHKPEB ( 1k = ) is an optimal 
comparison-based solution to Add-AHOP. 

 

III. SIMULATIONS 
   We conduct our simulations in the network topology 
presented in [4]. To evaluate the effect of AHKPEB on 
minimizing the number of hops of feasible paths, two QoS 
algorithms based on the Dijkstra algorithm and AHKPEB 
( 1k = ) are designed, respectively, both of which are 
associated with the cost function ( , )f x y x y= + . In the 
simulation, the link weights are independent and uniformly 
distributed from 0 to 1, two QoS constraints are set to be 
equal. All data are obtained by running 1,000,000 requests. 
The algorithm that can always locate the least hops feasible 
path as long as a feasible path exists is refereed to as the 
optimal algorithm. Here, it is achieved simply by hop-by-hop 
flooding which can always locate the least hops feasible path 
as long as it exists. Hence, its average hops are the lower 
bound of the average hops of all feasible paths. As shown in 
Fig. 4, the algorithm based on AHKPEB achieves near 
optimal average hops, i.e., the hops of its solutions are 
minimized.  
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Figure 4. Average hops of the algorithms 
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   Note that AHKPEB ( 1k = ) is capable of computing all 
hops shortest path from a source to a destination. Whenever 
the algorithm based on the Dijkstra algorithm can find a 
feasible path, the one based on AHKPEB can also find one. 
The reverse is not true. As a result, the success ratio (SR) of 
the algorithm based on AHKPEB must be higher than that of 
the one based on the Dijkstra algorithm, where SR is defined 
as follow: 

       
        

Total number of success request of the algorithmSR
Total number of success request of the optimal algorithm

= . (6) 

Note that, in [4] and [5], SR is defined as 
    

   
Total number of success requestSR

Total number of request
= .                (7) 

Since there may not exist a feasible path if the given 
constraints are tight, in which case, the success ratio (7) 
cannot truly reflect algorithms’ capability in finding a feasible 
path. Therefore, we adopt (6) as the definition of the success 
ratio of an algorithm in finding a feasible path, instead of (7). 
The success ratios of two algorithms are shown in Fig. 5. It 
can be observed that the SR of the algorithm based on 
AHKPEB is always higher than that of the algorithm based on 
Dijkstra algorithm. 
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Figure 5. Success ratios in finding a feasible path of algorithms 

 

IV. CONCLUSIONS 
In this paper, we have introduced and investigated a new 

problem referred to as the all hops k-shortest paths (AHKP) 
problem. An efficient solution, the All Hops k-shortest Paths 
Extended Bellman-Ford (AHKPEB) algorithm, has been 
proposed. When 1k = , AHKPEB is an optimal comparison-
based solution to the all hops optimal path (AHOP) problem 
in terms of the worst-case computational complexity, i.e., it is 
impossible to find another comparison-based solution having 
the worst-case computational complexity lower than that of 
AHKPEB. 
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