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Finding All Hops Shortest Paths
Gang Cheng and Nirwan Ansari, Senior Member, IEEE

Abstract—In this letter, we introduce and investigate a new
problem referred to as the All Hops Shortest Paths (AHSP)
problem. The AHSP problem involves selecting, for all hop
counts, the shortest paths from a given source to any other node
in a network. We derive a tight lower bound on the worst-case
computational complexities of the optimal comparison-based
solutions to AHSP.

Index Terms—Quality of service (QoS), routing.

I. INTRODUCTION

ONE OF THE challenging issues for high-speed packet
switching networks to accommodate various applications

with different quality-of-service (QoS) requirements is to select
feasible paths. This problem is known as QoS routing. How-
ever, it has been proved that multiple additively constrained QoS
routing is NP-complete [1]. Many proposed source routing al-
gorithms tackle this problem by transforming it into the shortest
path selection problem, which is P-complete, with an integrated
cost function that maps the multi-constraints of each link into a
single cost. Given a set of constraints and a
network that is modeled as a directed graph , where
is the set of all nodes and is the set of all links, assume each
link connected from node to , denoted by ,
is associated with randomly distributed additive parame-
ters: , and define

as the probability that a path is a feasible path with
, and its hop count, , where is the cost of
, which is a function of the weights of the links on , and

. The probability of the shortest path
to be a feasible path may not be the largest in all paths. There-
fore, computing a feasible path among all hops shortest paths,
instead of only the shortest path, can increase the success ratio
of finding a feasible path. In this letter, we introduce and in-
vestigate a new problem referred to as All Hops Shortest Paths
(AHSP) problem, defined below.

Definition 1—All Hops Shortest Paths (AHSP)
Problem: Assume a network is modeled as a directed graph

, where is the set of all nodes and is the set of
all links. Each link connected from node to , denoted by

, is associated with an additive weight
. Given a source node and maximal hop count
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Fig. 1. A 4-nodes network.

, find, for each hop count value , and
any other destination node , the shortest (i.e., the least
weight) -hop path from to if such a path does exist. In
this letter, we will refer to the length (i.e., cost) of a path as
the sum of its link weights.

Note that AHSP is different from add-AHOP [2]. For each
hop count value , add-AHOP is to select the
shortest path from a given source to a destination that has a hop
count no larger than ; while AHSP is to select the shortest path
from the source to the destination that has a hop count equal to

if such a path physically exists (it might be more appropriate
to call AHOP as All-Hops-Constrained Optimal Path problem
instead of All Hops Optimal Path problem). For example, as
shown in Fig. 1, the cost of each link in the 4-node network is
0.1. Let represents an -hop path from node

to node sequentially traversing nodes , re-
spectively. Given , since (1, 4) is the shortest path from
node 1 to node 4 with a hop count of 1, for each hop count

, the shortest path selected by add-AHOP with a
hop count no larger than from node 1 to node 4 would always
be (1, 4); while the -hop shortest paths selected by AHSP from
node 1 to node 4 are (1, 4), (1, 2, 4), and (1, 2, 3, 4), respectively,
when equals to 1, 2, and 3. Hence, solving add-AHOP does
not need to solve AHSP. On the other hand, if AHSP is solved,
add-AHOP is also solved.

AHSP seems to be more difficult than add-AHOP because
in addition to the paths selected by add-AHOP, AHSP involves
selecting paths that are not selected by add-AHOP, i.e., since
the shortest path from the source to the destination that has
a hop count no larger than must be a -hop shortest path
from the source to the destination, where is its hop count and

; the paths selected by AHSP must include the paths se-
lected by add-AHOP. However, in this letter, we prove that the
comparison-based optimal solutions for both add-AHOP and
AHSP have the same order of worst-case computational com-
plexities, where the optimal solutions are referred to as the so-
lutions possessing the minimum worst-case computational com-
plexity. Therefore, since AHSP yields more paths than AHOP,
given a QoS routing algorithm in which a solution to AHOP,
e.g., Bellman-Ford algorithm, is deployed, we can increase the
success ratio in finding a feasible path by replacing the solution
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Fig. 2. Illustration of p (s; i).

to AHOP with an optimal solution to AHSP without increasing
the computational complexity.

II. A LOWER BOUND ON THE WORST-CASE COMPUTATIONAL

COMPLEXITIES OF THE COMPARISON-BASED SOLUTIONS

Before we proceed to further analysis, we first present the
following definition [3].

Definition 2: A path-comparison-based shortest-path algo-
rithm , which accepts as input a graph and a weight func-
tion, can perform all standard operations, but the only way it
can access the edge weights is to compare the weights of two
different paths [3].

Denote as the degree of node and as its
neighboring nodes. If there does not exist a physical link from
the source node to any other node , assume there exists a
virtual link from to with a cost of infinity. Denote

as an -hop path from the source to (see Fig. 2).
Then,

1) (if, in reality, no link between
the source and node exists, ).

2) represents the shortest1 -hop path among the
paths . If, in reality, no

-hop path from to exists, we assume that there exists
a virtual -hop path whose weight is infinity.

Denote as the weight of represents the pre-
decessor node of along the path.

Theorem 1: , are the solutions to AHSP.
Proof: When , from the definition of the initial value

of is the one hop shortest path from to
.

We assume that the proposition is correct for . We want
to prove by deduction that it is true for .

Assume when such that is not
the shortest path in all -hop paths from to (
is larger than the cost of the -hop shortest path from
to ). Further assume path is the shortest path in all

-hop paths from to , the predecessor node of node
in is , the path from to in is
(note that may not be the shortest -hop path from
to , and by the earlier assumption, since a -hop path exists,

1Since the cost of a path is the length of the path, the least cost n-hop path is
the shortest n-hop path.

is the shortest path from to ), the cost of
is , and the cost of is . Thus

(1)

Since is resulted by concatenating with link
, if or ,

(2)

which contradicts (1). Hence, is not the -hop shortest
path from to , i.e.,

(3)

and

(4)

So, the cost of is

(5)

which contradicts (1), implying that is not the
-hop shortest path from to , contradicting to assumption.

So, when , is the
shortest path among all -hop path from to .

Thus, for any node , if at least one -hop
path from to physically exists, the path must be
the shortest path among all -hop paths from to , i.e.,

, are the solutions to AHSP.
By Theorem 1, we know that the -hop shortest path from

to is the shortest path of the paths that are constructed by con-
catenating the -hop shortest paths from to the neigh-
boring nodes of with the corresponding links. Next, we provide
a tight lower bound on the worst-case computational complexity
of the optimal comparison-based solution to AHSP based on
Theorem 1.

Theorem 2: The optimal comparison-based solution to
AHSP has the worst-case computational complexity of

.
Proof: First of all, we prove that the upper bound on the

worst-case computational complexities of the optimal compar-
ison-based solutions to AHSP is . Note that the

-hop least weight path from to is the least weight path
among the paths constructed by concatenating the -hop least
weight paths from to the neighboring nodes of with the cor-
responding links. Hence, in order to compute the -hop
shortest path from to , the -hop least weight paths from
to the neighboring nodes of should be computed first. More-
over, given a node , the -hop least weight path from

to can be achieved with the computational complexity of
by the definition of the comparison-based algorithm and

Theorem 1. Hence, given the -hop shortest paths from to all
other nodes, the -hop shortest paths from to all other
nodes can be computed with the computational complexity of

. Define as the computational
complexity bound on the optimal solutions (i.e., the ones with
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the minimum worst-case computational complexity) to AHSP,
where is the maximum hop. Therefore

(6)

implying that the optimal comparison-based solution to AHSP
has a computational complexity no larger than .

On the other hand, since AHSP computes all the paths
AHOP computes, the computational complexity of the optimal
comparison-based solution to AHSP must be no less than
that of the optimal comparison-based solution to add-AHOP.
It has been proved in [2] that the tight lower bound on the
computational complexity of the optimal comparison-based
solution to add-AHOP is , where is the number of
nodes. Therefore,

(7)

However, only when and
. Hence, the optimal comparison-based

solution to AHSP has the worst-case computational complexity
of .

By Theorem 2, we know that the worst-case computational
complexity of an optimal comparison-based solution to AHSP
is the same as that of an optimal comparison-based solution to
add-AHOP. Note that link weights are assumed to be additive
in AHSP in this letter. Hence, Theorem 2 may not be appli-
cable to the case that they are not additive, e.g., concave and

multiplicative (it may not be appropriate to call the problem as
AHSP anymore). However, for the case when the link weights
are concave, it can be proved that the -hop path with the largest
weight from the source to node can be computed by letting

represent the -hop path with the largest weight among
the paths (when the link
weights are concave, it has become the problem of finding all
hops paths with the largest weights). Moreover, multiplicative
link weights can be converted to additive weights by using the
logarithm function. Therefore, similar to Theorem 2, we still
can prove that is an upper bound on the worst-case
computational complexity of the optimal comparison-based so-
lutions.

III. CONCLUSION

In this letter, we have introduced and investigated a new
problem referred to as the All Hops Shortest Paths (AHSP)
problem. A tight lower bound on the worst-case computational
complexity of the optimal comparison-based solution to AHSP
has also been derived.
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