
Extracting Attack Knowledge Using Principal-subordinate Consequence
Tagging Case Grammar and Alerts Semantic Networks

Wei Yan, Edwin Hou, Nirwan Ansari
Advanced Networking Laboratory

Department of Electrical and Computer Engineering
New Jersey Institute of Technology

Newark, NJ 07102
Email: {wy3, hou, nirwan.ansari}@njit.edu

I. INTRODUCTION

As more and more network facilities are connected to
the internet, preventing networks from Distributed
Denial of Service (DDoS) attacks has become a
critical issue that must be tackled by security
administrators. Intrusion Detection Systems (IDSs)
are used to protect computer networks. However, IDS
can generate a huge volume of alerts due to
elementary and/or false alarm alerts. Furthermore, the
overwhelming volume of alerts makes it difficult for
security administrators to analyze and extract the
attack knowledge, therefore hampering network attack
detection.

Alerts corrrelation was proposed to resolve the
above problem. Alerts corrrelation refers to the
combination and analysis of attack events from IDS

for the purpose of extracting attack strategies. Alerts
correlation can enhance the detection rate and provice
more accurate attack stategies. In [10], the correlation
system used the hyper alert. Hyper alerts can be
correlated if the consequence of a hyper alert fulfills
the prerequisites of the second hyper alert. This alert
correlation method is largely based on the causal
relation, one of the most frequently used relations.
However, attacks are lauched in several steps, such as
gathering related user account information, finding
applications’ vulnerabilities, and trying to build up the
unauthorized connections to the victims. All these
actions can generate alerts and they cannot be
correlated with the causal relation. SRI International
introduced a probabilistic approach of alert
correlation [1, 12]. MIT Lincoln Laboratory [5] used
a similar approach to perform correlation. New
incoming alerts can be added to the existing scenarios
after the evaluation of its probability. However, this
method requires the attack scenarios to be manually
generated in advance. In [7], the alerts correlation was
extended to include attack plan recognition. But the
technique did not mention how to pre-process the raw
alert data and extract the related information from
heterogeneous alert reporting formats.

Abstract---The increasing use of Intrusion
Detection System and a relatively high false alarm
rate can lead to a huge volume of alerts. This
makes it very difficult for security administrators
to analyze and detect network attacks. Our
solution for this problem is to make the alerts
machine understandable. In this paper, we
propose a novel way to convert the raw alerts into
machine understandable uniform streams,
correlate the streams, and extract the attack
scenario knowledge. The modified case grammar
Principal-subordinate Consequence Tagging Case
Grammar and the 2-Atom Alert Semantic
Network are used to generate the attack scenario
classes. Alert mutual information is also applied to
calculate the alert semantic context window size.
Based on the alert context, the attack scenario
instances are extracted and the attack scenario
descriptions are forwarded to the security
administrator.

This work is motivated by the fact that raw alerts
are mostly inaccessible to the host machines (most
alert reporting formats of IDS sensors are based on
structured indexing). At present, the heterogeneous
IDS sensors deployed have different alert description
formats. If we can convert these formats into a
uniform structure, the problem of alert fusion can be
resloved. Our assumption is that the attack scenario is
a sequence of atomic events and attack actions,

where the 2-

tuple , 1

1 1 2 2 3 3
{(,), (,), (,), ...(,)}

n n
S e a e a e a e a

(,)i ie a ,i n denotes attack action is the

only action performed during the attack event .

These attack actions can be converted into the

ia

ie

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

semantic role structures. Principal-subordinate
Consequence Tagging Case Grammar (PCTCG) is
used to convert the alerts into machine-understandable
uniform PCTCG streams. Afterwards, 2-Atom Alert
Semantic Network (2-AASN) is generated from
PCTCG streams. Then correlation rules are applied to
the 2-AASN to derive the attack scenario classes for
the security administrator, who may make further
modifications. The attack scenario class includes all
possible attack strategies the attacker may take.
Finally, based on the alerts within the alert context
window range, the specific attack scenario instances
are generated.

The rest of the paper is organized as follows. In
section 2, we describe the attack knowledge extraction
semantic scheme. The PCTCG is proposed in section
3. Semantic network 2-AASN is introduced in section
4. Section 5 describes the alert context window size
and attack scenario instances. In section 6, we explain
the simulation results, and section 7 is the conclusion.

II. ATTACK SCENARIOS EXTRACTION

FUNCTIONAL ARCHITECTURE

IDS SensorIDS Sensor

raw data / raw logs

IDS Sensor

PCTCG
convertor

PCTCG alert stream

semantic knowledge
 database

security
administrator

ontologysemantic
network

correlation
rules

Alert context
window

attack scenario
instances

Attack scenario
classes

syntax layer

semantic layer

ontology layer

Semantic application layer

Figure 1. Attack Knowledge Extraction Semantic Scheme

Fig. 1 shows the semantic scheme of attack
knowledge extraction. It has four layers: the syntax
layer, the semantic layer, the ontology layer, and the
semantic application layer. In the syntax layer, sensors
generate the alert files. These sensors should be
heterogeneous so that different views of the attacks
can be observed. Although IDMEF (Intrusion
Detection Message Exchange Format) was proposed
to be a standard alert format for IDS to exchange
alerts [4]. One principle problem is its use of XML
(syntax structure) which limits the semantic
representation.

Our proposed scheme adds the semantic layer, the
ontology layer, and the semantic application layer on
the existing alert syntax platform. The semantic layer
consists of various semantic knowledge databases that
are coupled to the IDS sensors. Each semantic
knowledge database contains the semantic
information of all the alert messages that can be
generated by the particular sensor. The alert file and
the sensor type are the inputs to the PCTCG converter.
Using the semantic information in the corresponding
semantic knowledge database, the PCTCG converter
transfers the incoming alert messages into uniform
PCTCG stream. Note that only dissimilar alerts in the
alert log are converted into PCTCG stream. For
example, the data set 2000 DARPA Intrusion
Detection Scenario (MIT Lincoln Laboratory) [14],
Snort was used as the IDS sensor and home net was
set to 172.16.112.0 and 172.16.115.0. The alert log
file yeilded 9 different alerts. In the ontology layer,
we defined action-based semantic ontology. The
semantic ontology is applied to PCTCG streams
coming from the semantic layer, and the 2-AASN
semantic networks are generated. In the semantic
application layer, the correlation rules are used to
build up the attack scenario classes from the 2-AASN.
Based on the alert semantic context, the attack
scenario instances are extracted, and the attack
scenario knowledge is forwarded to the security
administrator.

III. PRINCIPAL-SUBORDINATE CONSEQUENCE

TAGGING CASE GRAMMAR

In this section, we proposed using PCTCG as the
standard semantic format to represent the alert format.
Here we assumed that DDoS attacks are composed of
discrete attacker behavioral action units. Thus the
attack processes can be viewed as a behavior-action
streams. If every attack action is viewed as a verb,
formal linguistic model can be applied. We modified
the traditional case grammar theory to PCTCG, which
is used as standard semantic alert format. Case
grammar is proposed by Fillmore [3, 6] and is widely
used in the field of linguistics. The reasons for
adopting case grammar are:
1) Case grammar describes the relation between a

verb and other components. The verb is the
focus of a sentence, and its case frame structure
specifies the slots from the sentences containing
the types of relationship (semantic roles)
between verbal and other entities [6].

2) Case grammar can be easily represented by
semantic networks, which has abundant semantic
relations to express the alert correlations.

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

3) The attack actions are much more unambiguous
than the alert logs. For example, two sensors
with heterogeneous alert formats can generate
two different types of alert record for the same
attack action. However, the action which caused
the alerts will be the same.

Table 1. Syntactic vs. Semantic.

Syntactic level Semantic levelSentences
Subject Object Agent Theme

The man moved the
desk.

Man Desk Man Desk

The desk was moved
by the man.

Desk Man Man Desk

As shown in Table 1, subject and object roles
change in syntactic level when the sentence changes
from active to passive form. However, the Agent
(what causes the action of the verb) and Theme (the
object in motion or being located) on the semantic
level remain the same. Unlike at the syntactic level,
case grammar theory is of deep or semantic case [3],
and it does not change under the grammatical
transformation of sentences, i.e., from passive to
active.

PCTCG is formally defined as:

 = { , , , }nG M C F S

where nM is the set of alert messages from the

sensor , specifies the set of possible semantic
roles between the alerts,

n C
F is the set of arguments

(case fillers), and S is the set of subordinate
keywords. As there are no universally agreed set of
semantic roles in case grammar, the choice of

depends on the specific application. In PCTCG, the
set of chosen semantic roles should reflect the
semantic logic of the attacker’s actions. Since an
attack action may give rise to a certain consequence, it
is important for the security experts to clearly know
what consequence the current attack may cause, and
also predict what the next step should be. Thus we
added the consequence tagging into C to model this
feature. The consequence tagging is composed of
three alert consequence entities: gather information,
making enable, and lauching attack.

C

Consider using the semantic roles to correlate two
different alerts. We applied the Principal-subordinate
relation to the two alerts. When one alert is in the
principal state, it can be viewed as a verb and the
other alert is replaced with its subordinate keywords
(the subordinate keywords is viewed as noun phrases).

If the subordinate keyword is in a specific case
relationship with the verb, we treat these two alerts as
correlated. From this point of view, we added S into
PCTCG definition. The subordinate keywords are
defined so that they can describe the alert subject
appropriately. In PCTCG, “{}” is used for grouping
and “+” means “gathering information” or “gaining
privileges.” For example, consider the Snort alert
message RPC sadmind UDP PING, its PCTCG
format is:

Snort{{PRC sadmind UDP PING} ,

 {has object, possible cause, by means of, consequence tagging},

 {Sadmind RPC service, {+information, +priveledge}, ping, gather information},

 {Sadmind, ping}}

Here, has object, possible cause, by means of,
consequence tagging are the semantic roles. Sadmind
PRC service, {+information, +previledge}, ping, and
gather information fill in the slots of the above
semantic cases respectively, and Sadmind, and ping
are the subordinate keywords.

IV. ALERT SEMANTIC NETWORK

In the field of linguistics, the semantic ontology is
related to the lexical entities (such as verb, noun, etc.).
In this paper, our goal is to find a well-defined
semantic ontology, which can be used to extract
attack scenarios. We need to focus on the following
questions that security administrators would naturally
ask about the attack actions: When did the actions
happened? Where did the actions happened? By
which means the actions happen? What results did the
actions caused? etc., Fig. 2 shows the two-level
semantic ontology of the semantic roles and the
semantic attributes of PCTCG. The first level is the
semantic roles and it includes Object, Location,
Method, (Possible) Cause, Part-Whole, and
Consequence Tagging. The second level shows the
semantic attributes and their weights. The Object role
is the receiving end of the action and it has has object
and be object of attributes. Since an attack action can
be either successful or is just an attempt that failed,
the possible cause and cause semantic roles are used
to model the above situation. The meronymy (has an
object) and holonymy (is a part of) attributes from the
part-whole role describe the situations that one entity
contains another entity. Consequence tagging role
indicates at which stage the attack may be located
(gather information, making enable or launching
attacks).

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

Semantic
Relationship

Method
(Possible)

Cause
Location Part-wholeObject

Consequence
Tagging

Has Object
weight = 2

Be Object of
weight = 2

Has Location
weight = 4

Be Location of
weight = 4

Has
Instrument
weight = 4

By Means of
weight = 4

(Possible)
Cause

weight =3/5

Be (Possible)
Caused by

weight = 3/5

Meronymy
weight = 3

Holonymy
weight = 3

Making
Enable

Launching
Attack

Gather
information

Figure 2. Ontology of Semantic Roles and Attributes

Based on [13], 2-AASN is proposed as the
semantic correlation representation and can be
viewed as a weighed graph. The edge of the graph
presents PCTCG semantic attribute or subordinate.
The set of nodes includes two parent nodes (two
atomic alerts), and their child nodes (case filler or
subordinate keyword). The formal representation of
2-AASN is based on slots. Each slot is a 2-tuple:
<semantic attributes, case filler>, or <subordinate,
subordinate keyword>, which describes the semantic
role and its case filler. The format of 2-AASN is:

+)

+)

+)

SN (node1, node2) = {

 node 1: < subordinate, subordinate keyword>

node 2: < semantic attribute, case filler > or

 node 1: < semantic attribute, case filler >

node 2: < subordinate,
+)

+)

+)

subordinate keyword> ,

 node2: case filler < semantic attribute, node 1: subordinate keyword > or

 node1: case filler < semantic attribute, node 2: subordinate keyword > }

Consider two Snort alerts: RPC Portmap Sadmind
request UDP and RPC Sadmind UDP
NETMGT_PROC_SERVICE CLIENT_DOMAIN overflow
attempt. Their semantic attributes and case fillers are
shown in Table 2:

Table 2. Semantic Attributes and Case Fillers.

RPC portmap Sadmind request UDP
Semantic roles Semantic case fillers
Has object Port
Possible cause Buffer overflow, gain privilege
By means of Portmap GETPORT request
Consequence tagging Vulnerabilities collection
Subordinate keywords Sadmind, port

RPC Sadmind UDP NETMGT_PROC_SERVICE CLIENT_DOMAIN

overflow attempt
Semantic roles Semantic case fillers
Has object Buffer overflow
Possible cause Buffer overflow, gain privilege,

root
By means of NETMGT_PROC_SERVICE request,

improper bounds checking
Consequence tagging Vulnerabilities collection
Subordinate keywords Sadmind, NETMGT_PROC_SERVICE,

buffer overflow, root

In order to construct the semantic 2-AASN, we first
generate the PCTCG format stream using the
semantic information from the corresponding
semantic knowledge database. The PCTCG format
stream of the above two alerts are:

Snort{{PRC Portmap Sadmind request UDP} ,

 {has object, possible cause, by means of, consequence tagging},

 {port, {buffer overflow, +priveledge},

 portmap GETPORT request, information collection},

 {

Snort

Sadmind, port}}

{{PRC Sadmind UDP NETMGT PROC SERVICE overflow attempt} ,

 {has object, possible cause, by means of, consequence tagging},

 {buffer overflow, {buffer overflow, +priveledge, root},

 {NETMGT_PROC_SERVICE, improper bounds checking}, gather information},

 {Sadmind, NETMGT_PROC_SERVICE, buffer overflow, root}}

Secondly, put alert RPC Portmap Sadmind request
UDP in principle state, and RPC Sadmind UDP
NETMGT_PROC_SERVICE CLIENT_DOMAIN
overflow attempt in subordinate state. When an alert
is in the principle state, 2-AASN use its semantic
case fillers as the nodes, whereas if an alert is in
subordinate state, 2-AASN uses its subordinate
keywords as the nodes. If there are semantic
attributes matching between case fillers and the
subordinate keywords, 2-AASN fills the slot:
{ 1 : , 2 :node case filler semantic role node keyword } or

.{ 2 : , 1 : }node case filler semantic role node keyword

The 2-AASN representation format is:
RPC Sadmind UDP overflow attempt

RPC Portmap Sadmind request UDP

node 1 =
node 2 =
SN (node1, node2) = {
 node1: < subordinate, Sadmind > ,

node 1: < subordinate, root>
 node 1: < subordinate, buffer overflow>
 node 2: < location at, port > ,
 node 2: < cause, buffer overflow > ,
 node 2: port < has object, node1: Sadmind > ,
 node 2: buffer overflow < cause, node2: root > ,
 node 2 < cause, node1: buffer overflow > }

NODE 1 NODE 2

Sadmind port
2

Has
object

Location at
 4

subordinate

NODE1 NODE2

root overflow
5

cause

Cause
5subordinate

NODE 1 NODE 2

overflow
5

cause

subordinate

Node 1: RPC Sadmind UDP NETMGT_PROC_SERVICE CLIENT_DOMAIN overflow attempt
Node 2: RPC Portmap Sadmind request UDP

(a) (b) (c)

Figure 3. An Example of 2-AASN

The format can also be represented by the semantic
weighed network graph as shown in Fig. 3. Finally,
we put the alert RPC Portmap Sadmind request UDP
in subordinate state, and the alert RPC Sadmind
UDP NETMGT_PROC_SERVICE
CLIENT_DOMAIN

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

Table 3. Correlation rules.

Correlation rules Representation Match phrases Match process

Primary Secondary A::filler matches “(possible) cause” to B::keyword: C(A, B).
A::filler matches “(possible) be caused by” to B::keyword: C(B, A).(Possible) Cause relation

, (,)or
C

A B C A B Secondary Primary B::filler matches “(possible) cause” to A::keyword: C(B, A).
B::filler matches “(possible) be caused by” to A::keyword: C(A, B).

Primary Secondary A::filler matches “enable” to B::keyword: E(A, B)
A::filler matches “be enabled by” to B::keyword: E(B, A).Enable relation

, (,)or
E

A B E A B Secondary Primary B::filler matches “enable” to A::keyword: E(B, A)
B::filler matches “be enabled by” to A::keyword: E(A, B).

Primary Secondary A::filler matches “has instrument” B::keyword: I(A, B).
A::filler matches “be means of” to B::keyword: I(B, A).Instrument relation

, (,)or
I

A B I A B Secondary Primary B::filler matches “has instrument” A::keyword: I(B, A).
B::filler matches “be means of” to A::keyword: I(A, B).

Primary Secondary A::filler matches “has object” to B::keyword. O(A, B).
A::filler matches “be object of” to B::keyword. O(B, A).Object relation

, (,)or
O

A B O A B Secondary Primary B::filler matches “has object” to A::keyword. O(B, A).
B::filler matches “be object of” to A::keyword. O(A, B).

Primary Secondary A::filler matches “meronymy” to B::keyword: P(A, B).
A::filler matches “meronymy” or “holonymy” to B::keyword: P(B, A).Part-whole relation

, (,)or
P

A B P A B Secondary Primary B::filler matches “meronymy” to A::keyword: P(B, A).
B::filler matches “meronymy” or “holonymy” to A::keyword: P(A, B).

Primary Secondary A::filler matches “has location” to B::keyword: S(A, B).
A::filler matches “be located of” to B::keyword: S(B, A).Spatial relation

, (,)or
S

A B S A B Secondary Primary B::filler matches “has location” to A::keyword: S(B, A).
B::filler matches “be located of” to A::keyword: S(A, B).

overflow attempt in the principle state and perform
semantic attributes matching.

We defined the correlation rules and apply these
rules to extract the alert correlations from 2-AASN.
In order to extract the correlation from 2-AASN, we
define the semantic attribute operation : principle

alert: <semantic attribute, case filler> subordinate alert:

<subordinate, subordinate keyword>. Table 4 defines
the correlation operation between two semantic
attributes.

Table 4. Correlation operation.

1 2 3 4 5 6 7 8 9 10
1 1 3 4 5 6 11 8 1 1

2 2 3 4 5 6 7 12 2 2

3 3 3 5 3,6 11 12 3 3

4 4 4 4 4,5 6 11 12 4 4

5 1 5,3 5,4 5 7 12 5 5

6 2 6,3 6,4 6 11 8 6 6

7 7 11 7 11 7 11 7 7 7

8 8 8 12 8 12 12 8 8 8

9 1 2 3 4 5 6 7 8 9

10 1 2 3 4 5 6 7 8 10

means two semantic attributes can not be operated, not considered by
 the correlation rules.
1. has object, 2. be object of, 3. has location, 4. be location of
5. has instrument, 6. by means of, 7. (possible) cause,
8. be (possible) caused of, 9. meronymy, 10. Holonymy.
11. enable 12. be enabled by.

Not all the semantic attributes can be operated with
each other (Those cannot are marked by , meaning
the two semantic attributes will not be considered by

the correlation rules). On the other hand, some
semantic attributes cannot be fused, so the operation
result is their union. The operation may generate
new semantic attributes, which can describe the
semantic roles more precisely. For example, (possible)

cause be object of = enable. The correlation rules
try to test the semantic attributes matching between
the principle alert and subordinate alert. For
examples, suppose we have two alerts: A and B. We
denote alert A’s principle case filler and subordinate
keyword as ::A filler and ::A keyword respectively

and similarly for alert B. We then defined the
(possible) cause, enable, instrument, object, part-
whole, and spatial relations as follows. The enable
relation takes place when one entity facilitates the
other’s attack process. The spatial relation describes
the situation where one entity is surrounded by
another entity but is not part of that entity. The
(possible) cause, enable, instrument, and object
relations are concerned with attack action “time”
domain whereas the part-whole and spatial relations
are related to “space” domain. In general, any
correlation rule (see Table 3) can be represented as

, where R is the name of the
correlation rule. When extracting correlations, we
first add up the weights of the semantic attributes. If
the sum of the weights is more than the weight
threshold (set to 5 for the simulations), the semantic
attributes are operated according to Table 4.
Afterwards, the correlation rules are applied to the

A R B or R(A, B)

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

operation result to acquire the correlation. The
correlation from 2-AASN is shown in Fig. 4:

NODE 1 NODE 2
 possible cause rule

Node 1: RPC Sadmind UDP NETMGT_PROC_SERVICE CLIENT_DOMAIN overflow attempt

Node 2: RPC Portmap Sadmind request UDP

Figure 4. An Example of Correlation Rule

Because the attack scenario classes contain all
possible attack correlation combinations above the
semantic weight threshold, they may include some
inaccurate semantic correlations. If they are not
eliminated in time, a chain of errors can occur and
give rise to inaccurate attack scenario instances. On
the other hand, when establishing the attack scenario
instances, the whole aggregated alert file will be
reviewed. The aggregated file is generated based on
the same source or destination IP addresses, and the
time stamps within a certain time slot. Removing the
inaccurate correlations in advance will reduce the
computation load. Therefore, after the attack scenario
classes are extracted, the security administrators may
make further modifications using their practical
experiences.

V. ATTACK SCENARIO INSTANCES

Since the attack scenario classes include all the
possible combinations of attack strategies but the
attackers may only adopt a subset of the attack
strategies to lauch the attacks. The alert context of
specific alerts have to be considered and the alert
context window (ACW) size has to be determined.
The correlations generated within the context
window range will build up the attack scenario
instances. In natural language processing, the context
is used to determine the pronunciation, words
collocation and words unambiguity [8, 11]. The
ACW size (which is the number of alerts before and
after an interested alert) is an important parameter of
the alert context. If the ACW size is too small, the
correlated alerts would be absent. On the other hand,
if the ACW size is too large, unnecessary
computations and unrelated alerts will be added. In
natural language processing, small window size can
identify the fixed expressions and word collocations,
which hold over short range. In [2, 9], the context
window size was set to be 5. Here our interest lies in
the semantic correlation between the alerts. ACW
size should be much larger to cover the semantic
knowledge. The mutual information method [8] was
applied to three alert data sets: DARPA 2000

LLDOS 1.0, LLDoS 2.0.2, and 1999 week 2 Friday
data sets of MIT Lincoln Laboratory. Mutual
information is defined to be:

(, ,) (, ,) (, ,)
a A c C

MI A C d p a c d I a c d

2

(, ,)
(, ,) log

() ()

p a c d
I a c d

p a p c

where (, ,)I a c d (a c) is the association ratio of

two alerts a and , and and are the

probabilities of a and , and is the

probability that a occurs before or after c at the
distance .

c ()p a ()p c

c (, ,)p a c d

d

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

alert semantic context window size

m
ut

ua
l i

nf
or

m
at

io
n

Mutual information vs. alert semantic context window size

DARPA 1999 week2 Friday
DARPA 2000 DDos2.0.2
DARPA 2000 DDos1.0
DARPA 1999 week2 Friday fitting
DARPA 2000 DDos2.0.2 fitting
DARPA 2000 DDos1.0 fitting

Figure 5. Mutual Information at Various ACW Size

Fig. 5 shows as ACW increases, the degree of
mutual information decreases. Beyond a threshold,
the association becomes very small and do not
decrease significantly, which means there are almost
no associations between them. In the simulation, we
chose 60 as the ACW size. The alerts in the attack
scenario classes are called focus alerts. If a focus
alert and the alerts within its ACW range are used to
construct the sub-classes of the attack scenario
classes, they will build up the attack scenario
instances. The format of the nodes in the attack
scenario instances includes the alert message name
and 3-tuple < :>source IP, dest. IP, timestamp

+)
Node = alert message name,

Node: < source IP, dest. IP, timestamp > }{

The scenario description is defined based on attack
sub-objectives: gather information control (try to
break into the target), get control (get control of the
target), and launching attacks. These sub-objectives
are derived from the consequence tagging of PCTCG.
The scenario description structure is defined as:

+)

+)

AS (attack scenario name) = {
objective name:

gather information: < alert message, source IP, dest. IP, timestamp >

get control: < alert message, source IP, dest. IP, timestamp > ,
launching attacks: alert message, source IP, dest. IP, timestamp }< >

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

NODE 6

NODE 4

Object rule

NODE5

NODE1 NODE 2 NODE 3

Node 1: RPC Portmap Sadmind request UDP
Node 2: RPC Sadmind UDP Ping
Node 3: RPC Sadmind UDP NETMGT_PROC_SERVICE CLIENT_DOMAIN

 overflow attempt
Node 4: Reservices rsh root
Node 5: Attack response directory list
Node 6: TELNET access/ TELNET login incorrect
Node 7: Netbios NT null session
Node 8: Web MISC doc/access
Node 9: Bad-traffic loopback traffic

Possible Cause rule

Possible cause rule, Instrument rule

Possible cause rule

P
ossible

cause
rule

Enable rule

Possible
cause

rule

En
ab

le
ru

le

NODE7 NODE8

M
ethod

ruleNODE9
Causal

rule

Object rule
Enable rule

Possible cause rule

Possi
ble

ca
use

rule

NODE
29

Method rule

NODE30

NODE
28

NODE
7/8

Possible Cause rule

Enable rule
M

ethod rule

E
nable rule

Possible cause
rule

NODE38

Method rule

Object rule

NODE
33

NODE
32

Object rule

Object ruleNODE31 Object rule

Method rule

NODE
34

NODE
37

Possible Cause ruleSpatial ruleNODE
35/36

Method rule

Node 7: Telnet access login
Node 8: Telent incorrect login
Node 16: ATTACK-RESPONSES Invalid URL
Node 27: WEB-FRONTPAGE shtml.dll access
Node 28: FINGER 0 query
Node 29: FINGER redirection attempt
Node 30: FINGER root query
Node 31: SNMP request tcp
Node 32: SNMP trap tcp
Node 33: SNMP AgentX/tcp request
Node 34: SCAN SOCKS Proxy attempt
Node 35: SCAN Squid Proxy attempt
Node 36: SCAN Proxy \(8080\) attempt
Node 37: FTP satan scan

NODE
16

NODE
27

 Figure 6. Alert Scenario class of DARPA 2000 Data set Figure 7. Alert Scenario class of DARPA 99 week 2 Data set

TELNET access
Object rule
Enable rule

 RPC Sadmind
 UDP Ping

RPC Portmap Sadmind
request UDP

RPC Sadmind UDP
NETMGT_PROC_SERVICE
CLIENT_DOMAIN overflow

 =

 =

 =

Node1 { RPC Portmap Sadmind request UDP,
< 202.77.162.213, 172.16.115.20, 10:08:07.354091>}

Node2 { RPC Sadmind UDP Ping,
< 202.77.162.213, 172.16.115.20, 10:08:07.359636>}

Node1

 =

 =

{ RPC Portmap Sadmind request UDP,
< 202.77.162.213, 172.16.112.10, 10:15:10.023115>}

Node2 { RPC Sadmind UDP Ping,
< 202.77.162.213, 172.16.112.10, 10:15:10.026586>}

Node1 { RPC

 =

Portmap Sadmind request UDP,
< 202.77.162.213, 172.16.115.50, 10:15:10.098496>}

Node2 { RPC Sadmind UDP Ping,
< 202.77.162.213, 172.16.115.50, 10:15:10.102257>}

 RPC Sadmind
 UDP Ping

Possible
cause rule

Possible
cause rule

 = Node1 { RPC Portmap Sadmind request UDP,
< 202.77.162.213, 172.16.115.20, 10:33:10.611612>
 < 202.77.162.213, 172.16.115.20, 10:33:12.642958>
 < 202.77.162.213, 172.16.115.20, 10:33:18.875888>
 < 202.77.162.213, 172.16.115.20, 10:33:20.913357>
 < 202.77.162.213, 172.16.115.20, 10:33:27.155926>
 < 202.77.162.213, 172.16.115.20,

 =

10:33:29.205551>}

Node2 { RPC Sadmind UDP NETMGT_PROC_SERVICE overflow ,
< 202.77.162.213, 172.16.115.20, 10:33:10.621429>

 < 202.77.162.213, 172.16.115.20, 10:33:12.652687>
 < 202.77.162.213, 172.16.115.20, 10:33:18.885651>
 < 202.77.162.213, 172.16.115.20, 10:33:20.923039>
 < 202.77.162.213, 172.16.115.20, 10:33:27.165722>
 <

 =

 202.77.162.213, 172.16.115.20, 10:33:29.223090>}

Node3 { Telnet access,
 < 202.77.162.213, 172.16.115.20, 10:33:14.728748>
 < 202.77.162.213, 172.16.115.20, 10:33:23.011892 >
 < 202.77.162.213, 172.16.115.20, 10:33:32.470221>}

Reservices rsh root Instrument
rule

TELNET access

 =

 =

 =

Node1 { Telnet access,
< 172.16.115.20, 202.77.162.213, 10:50:01.819752>}

Node2 { RSERVICES rsh root,
< 172.16.115.20, 202.77.162.213, 10:50:04.146207>}

Node1 { Telnet access,

 =

 =

< 172.16.112.10, 202.77.162.213, 10:50:21.064056>}
Node2 { RSERVICES rsh root,

< 172.16.112.10, 202.77.162.213, 10:50:22.146207>}

Node1 { Telnet access,
< 172.16.115.50, 202

 =
.77.162.213, 10:50:37.923074>}

Node2 { RSERVICES rsh root,
< 172.16.115.20, 202.77.162.213, 10:50:38.176538>}

Figure 8. Alert Scenarios Instances of DARPA 2000 Data set

AS (DARPA 2000) = {
: attack 172.16.115.20, 172.16.112.10, 172.16.115.50

 RPC Portmap Sadmind request UDP, RPenable

objective name

gather information
C Sadmind UDP Ping,

< 202.77.162.213, 172.16.115.20, 10:08:07.354091> < 202.77.162.213, 172.16.115.20, 10:08:07.359636>
< 202.77.162.213, 172.16.112.10, 10:15:10.023115> < 202.77.162.213, 172.16.112.10, 10:15:10.026586>
< 202.77.162.213, 172.16.115.50, 10:15:10.098496> < 202.77.162.213, 172.16.115.50, 10:15:10.102257>

 RPC Sadmind UDP NETM GT_PROC_SERVICE CLIENT_DOM AIN overflow Telnet access,
< 202.77.162.213, 172.16.115.20, 10:33

cause
:10.621429> < 202.77.162.213, 172.16.115.20, 10:33:14.728748>

< 202.77.162.213, 172.16.115.20, 10:33:12.652687>
< 202.77.162.213, 172.16.115.20, 10:33:18.885651>
< 202.77.162.213, 172.16.115.20, 10:33:20.923039> < 202.77.162.213, 172.16.115.20, 10:33:23.011892 >
< 202.77.162.213, 172.16.115.20, 10:33:27.165722> < 202.77.162.213, 172.16.115.20, 10:33:32.470221>}

 RPC Portmap Sadmind requ
get control

est UDP RPC Sadmind UDP NETM GT_PROC_SERVICE CLIENT_DOM AIN overflow
< 202.77.162.213, 172.16.115.20, 10:33:10.611612> < 202.77.

cause
162.213, 172.16.115.20, 10:33:10.621429>

< 202.77.162.213, 172.16.115.20, 10:33:12.642958> < 202.77.162.213, 172.16.115.20, 10:33:12.652687>
< 202.77.162.213, 172.16.115.20, 10:33:18.875888> < 202.77.162.213, 172.16.115.20, 10:33:18.885651>
< 202.77.162.213, 172.16.115.20, 10:33:20.913357> < 202.77.162.213, 172.16.115.20, 10:33:20.923039>
< 202.77.162.213, 172.16.115.20, 10:33:27.155926> < 202.77.162.213, 172.16.115.20, 10:33:27.165722>
< 202.77.162.213, 172.16.115.20, 10:33:29.205551> < 202.77.162.213, 172.16.115.20, 10:33:29.223090>

 Telnet access, instrument RSERVICES rsh root,
< 172.16.115.20, 202.77.162.213, 10:50:01.819752> < 172.16.115.20, 202.77.162.213, 10:50:04.146207>
< 172.16.112.10, 202.77.162.213, 10:50:21.064056> < 172.16.112.10, 202.77.162.213, 10:50:22.146207>
< 172.16.115.50, 202.77.162.213, 10:50:37.923074> < 172.16.115.20, 202.77.162.213, 10:50:38.176538>

 bad traffic loopback traffic
 < 202.77.162.213, 172.16.115.20, 10:33:29.223090>}

launching attacks

Figure 9. Alert Scenario Description of DARPA 2000 Data set

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

VI. SIMULATIONS

The data sets used in our simulation are from the
DARPA 2000 and 1999 week 2 from MIT Lincoln
Laboratory [14]. We used Snort as the IDS sensor.
Snort is a lightweight network intrusion detection
system capable of logging every possible trace of
intrusion attempts [15]. The semantic information of
the alert messages is stored using MySQL database.
First, we aggregated the alerts according to the same
source IP address and target IP address, and the same
consecutive timeslot. After the aggregation, the
DARPA 2000 alert file included 9 different alerts and
DARPA 1999 week 2 alert file included 38 different
alerts. Then we generated the PCTCG format streams
of the two data sets using the semantic information.
Afterwards, we built up 2-AASN of the first two
different alerts and tried to extract the correlation
between them by applying the correlation rules. If
they had any correlation, new attack scenario are
generated. The new incoming alert are then
correlated with the existing alerts in the attack
scenario one by one and the whole attack scenario is
build up. The attack scenario classes of DARPA
2000 and DARPA 1999 week 2 data sets are shown
in Fig. 6 and 7 (The double circle in the figures
indicates DDoS attacks have occurred). For the
DARPA 2000 alert file, the attack scenario instances
and the attack descriptions are also extracted and are
shown in Fig. 8 and 9.

VII. CONCLUSION

In this paper, we proposed a novel method to
extract the attack knowledge using Principal-
subordinate Consequence Tagging Case Grammar
and 2-Atom Alert Semantic Network. By PCTCG,
the raw alerts are converted into machine-
understandable uniform PCTCG streams. Then the
correlation rules are applied to the 2-AASN to derive
the attack knowledge for the security administrator.
By making the raw alert data computer
understandable will resolve the problems caused by
large volume of alerts. Our future work is to use
semantic query model to allow attack reasoning and
have inference capabilities.

REFERENCES

[1] D. Andersson, M. Fong, and A. Valdes, “Heterogeneous
Sensor Correlation: A Case Study of Live Traffic Analysis,”
Proceedings of IEEE Information Assurance Workshop
(United States Military Academy, West Point, NY, June
2002).

[2] K. Church, “Word association norms, mutual information,
and lexicography,” Computational Linguistics, Vol. 16, No. 1,
pp. 22-29, 1990.

[3] W. Cook, Case Grammar Theory, Washington, DC:
Georgetown University Press, 1989.

[4] D. Curry, and H. Debar, “Intrusion Detection Message
Exchange Format,” http://www.ietf.org/internet-drafts/draft-
ietf-idwg-idmef-xml-03.txt.

[5] O. M. Dain and R. K. Cunningham, “Building Scenarios
from a Heterogeneous Alert Stream,” Proceedings of IEEE
Workshop on Information Assurance and Security (United
States Military Academy, West Point, NY, June 2001).

[6] C. J. Fillmore, “The Case for Case Reopened.” Studies in
Syntax and Semantics, 8, 59-81, 1977.

[7] C. W. Geib, and R. P. Goldman, “Plan recognition in
intrusion detection systems,” DARPA Information
Survivability Conference, vol. 1, pp. 46-55, 2001.

[8] J. M. Lucassen and R. L. Mercer, “An information theoretic
approach to the automatic determination of phonemic
baseforms,” Proceedings of ICASSP, Vol.3, pp. 42.5.1-42.5.4,
1984.

[9] W. Martin and P. Sterkenburg, Processing of text corpus,
Lexicography: Principles and Practice, R. Hartmann, New
York, 1983, pp. 56-64.

[10] N. Peng, C. Yun, and S. R. Douglas, “Constructing Attack
Scenarios through Correlation of Intrusion Alerts,”
Proceedings of the 9th ACM Conference on Computer &
Communications Security, pp. 245-254, 2002.

[11] F. Smadja, “Retrieving collocations from text: Xtract,”
Computational Linguistics, Vol. 19, No. 1, pp.143-177, 1993.

[12] A. Valdes, and K. Skinner, “Probabilistic alert correlation,”
Workshop on Recent Advances in Intrusion Detection, pp.
54-68, 2001.

[13] L. Vanderwende, “The analysis of noun sequences using
semantic information extracted from on-line dictionaries,”
Ph.D. dissertation, Georgetown University, Washington, DC.,
1996.

[14] http://www.ll.mit.edu/IST/ideval/data/2000/LLS_DDOS_1.0.
html

[15] http://www.snort.org

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

