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I. INTRODUCTION 

As more and more network facilities are connected to
the internet, preventing networks from Distributed
Denial of Service (DDoS) attacks has become a
critical issue that must be tackled by security 
administrators. Intrusion Detection Systems (IDSs)
are used to protect computer networks. However, IDS 
can generate a huge volume of alerts due to
elementary and/or false alarm alerts. Furthermore, the 
overwhelming volume of alerts makes it difficult for 
security administrators to analyze and extract the
attack knowledge, therefore hampering network attack
detection.

Alerts corrrelation was proposed to resolve the
above problem. Alerts corrrelation refers to the
combination and analysis of attack events from IDS 

for the purpose of extracting attack strategies. Alerts 
correlation can enhance the detection rate and provice
more accurate attack stategies. In [10], the correlation 
system used the hyper alert. Hyper alerts can be
correlated if the consequence of a hyper alert fulfills
the prerequisites of the second hyper alert. This alert
correlation method is largely based on the causal
relation, one of the most frequently used relations.
However, attacks are lauched in several steps, such as 
gathering related user account information, finding
applications’ vulnerabilities, and trying to build up the
unauthorized connections to the victims. All these
actions can generate alerts and they cannot be 
correlated with the causal relation. SRI International
introduced a probabilistic approach of alert 
correlation [1, 12]. MIT Lincoln Laboratory [5] used
a similar approach to perform correlation. New 
incoming alerts can be added to the existing scenarios
after the evaluation of its probability. However, this
method requires the attack scenarios to be manually
generated in advance. In [7], the alerts correlation was
extended to include attack plan recognition. But the
technique did not mention how to pre-process the raw
alert data and extract the related information from
heterogeneous alert reporting formats.

Abstract---The increasing use of Intrusion 
Detection System and a relatively high false alarm
rate can lead to a huge volume of alerts. This 
makes it very difficult for security administrators 
to analyze and detect network attacks. Our 
solution for this problem is to make the alerts
machine understandable. In this paper, we
propose a novel way to convert the raw alerts into
machine understandable uniform streams, 
correlate the streams, and extract the attack 
scenario knowledge. The modified case grammar
Principal-subordinate Consequence Tagging Case 
Grammar and the 2-Atom Alert Semantic
Network are used to generate the attack scenario 
classes. Alert mutual information is also applied to
calculate the alert semantic context window size.
Based on the alert context, the attack scenario
instances are extracted and the attack scenario 
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This work is motivated by the fact that raw alerts 
are mostly inaccessible to the host machines (most
alert reporting formats of IDS sensors are based on
structured indexing). At present, the heterogeneous
IDS sensors deployed have different alert description
formats. If we can convert these formats into a 
uniform structure, the problem of alert fusion can be 
resloved. Our assumption is that the attack scenario is 
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where the 2-

tuple , 1

1 1 2 2 3 3
{( , ), ( , ), ( , ), ...( , )}

n n
S e a e a e a e a

( , )i ie a ,i n denotes attack action is the

only action performed during the attack event .

These attack actions can be converted into the

ia

ie

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04) 
0742-1303/04 $ 20.00 IEEE 



semantic role structures. Principal-subordinate
Consequence Tagging Case Grammar (PCTCG) is
used to convert the alerts into machine-understandable
uniform PCTCG streams. Afterwards, 2-Atom Alert
Semantic Network (2-AASN) is generated from
PCTCG streams. Then correlation rules are applied to
the 2-AASN to derive the attack scenario classes for 
the security administrator, who may make further
modifications.  The attack scenario class includes all
possible attack strategies the attacker may take.
Finally, based on the alerts within the alert context
window range, the specific attack scenario instances
are generated.

The rest of the paper is organized as follows. In
section 2, we describe the attack knowledge extraction
semantic scheme. The PCTCG is proposed in section
3. Semantic network 2-AASN is introduced in section
4. Section 5 describes the alert context window size
and attack scenario instances. In section 6, we explain
the simulation results, and section 7  is the conclusion.

II. ATTACK SCENARIOS EXTRACTION

FUNCTIONAL ARCHITECTURE
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Figure 1. Attack Knowledge Extraction Semantic Scheme

Fig. 1 shows the semantic scheme of attack
knowledge extraction. It has four layers: the syntax
layer, the semantic layer, the ontology layer, and the
semantic application layer. In the syntax layer, sensors
generate the alert files. These sensors should be 
heterogeneous so that different views of the attacks
can be observed. Although IDMEF (Intrusion
Detection Message Exchange Format) was proposed 
to be a standard alert format for IDS to exchange
alerts [4]. One principle problem is its use of XML 
(syntax structure) which limits the semantic
representation.

Our proposed scheme adds the semantic layer, the
ontology layer, and the semantic application layer on
the existing alert syntax platform. The semantic layer 
consists of various semantic knowledge databases that
are coupled to the IDS sensors. Each semantic
knowledge database contains the semantic
information of all the alert messages that can be
generated by the particular sensor. The alert file and
the sensor type are the inputs to the PCTCG converter.
Using the semantic information in the corresponding
semantic knowledge database, the PCTCG converter
transfers the incoming alert messages into uniform
PCTCG stream. Note that only dissimilar alerts in the
alert log are converted into PCTCG stream. For 
example, the data set 2000 DARPA Intrusion
Detection Scenario (MIT Lincoln Laboratory) [14],
Snort was used as the IDS sensor and home net was 
set to 172.16.112.0 and 172.16.115.0. The alert log
file yeilded 9 different alerts. In the ontology layer,
we defined action-based semantic ontology. The 
semantic ontology is applied to PCTCG streams
coming from the semantic layer, and the 2-AASN
semantic networks are generated. In the semantic
application layer, the correlation rules are used to
build up the attack scenario classes from the 2-AASN. 
Based on the alert semantic context, the attack 
scenario instances are extracted, and the attack
scenario knowledge is forwarded to the security
administrator.

III. PRINCIPAL-SUBORDINATE CONSEQUENCE

TAGGING CASE GRAMMAR

In this section, we proposed using PCTCG as the
standard semantic format to represent the alert format.
Here we assumed that DDoS attacks are composed of
discrete attacker behavioral action units. Thus the
attack processes can be viewed as a behavior-action
streams. If every attack action is viewed as a verb,
formal linguistic model can be applied. We modified
the traditional case grammar theory to PCTCG, which
is used as standard semantic alert format. Case 
grammar is proposed by Fillmore [3, 6] and is widely 
used in the field of linguistics. The reasons for
adopting case grammar are: 
1) Case grammar describes the relation between a 

verb and other components. The verb is the
focus of a sentence, and its case frame structure 
specifies the slots from the sentences containing 
the types of relationship (semantic roles)
between verbal and other entities [6].

2) Case grammar can be easily represented by
semantic networks, which has abundant semantic
relations to express the alert correlations.
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3) The attack actions are much more unambiguous
than the alert logs. For example, two sensors
with heterogeneous alert formats can generate
two different types of alert record for the same
attack action. However, the action which caused
the alerts will be the same.

Table 1. Syntactic vs. Semantic.

Syntactic level Semantic levelSentences
Subject Object Agent Theme

The man moved the 
desk.

Man Desk Man Desk

The desk was moved
by the man.

Desk Man Man Desk

As shown in Table 1, subject and object roles 
change in syntactic level when the sentence changes
from active to passive form. However, the Agent
(what causes the action of the verb) and Theme (the
object in motion or being located) on the semantic
level remain the same. Unlike at the syntactic level,
case grammar theory is of deep or semantic case [3],
and it does not change under the grammatical
transformation of sentences, i.e., from passive to
active.

PCTCG is formally defined as: 

 = { , , , }nG M C F S

where nM is the set of alert messages from the

sensor , specifies the set of possible semantic
roles between the alerts, 

n C
F is the set of arguments

(case fillers), and S is the set of subordinate
keywords. As there are no universally agreed set of
semantic roles in case grammar, the choice of

depends on the specific application. In PCTCG, the
set of chosen semantic roles should reflect the
semantic logic of the attacker’s actions. Since an 
attack action may give rise to a certain consequence, it 
is important for the security experts to clearly know
what consequence the current attack may cause, and 
also predict what the next step should be. Thus we
added the consequence tagging into C to model this
feature. The consequence tagging is composed of 
three alert consequence entities: gather information,
making enable, and lauching attack.

C

Consider using the semantic roles to correlate two
different alerts. We applied the Principal-subordinate
relation to the two alerts. When one alert is in the
principal state, it can be viewed as a verb and the
other alert is replaced with its subordinate keywords
(the subordinate keywords is viewed as noun phrases).

If the subordinate keyword is in a specific case
relationship with the verb, we treat these two alerts as 
correlated. From this point of view, we added S into
PCTCG definition. The subordinate keywords are 
defined so that they can describe the alert subject 
appropriately. In PCTCG, “{}” is used for grouping
and “+” means “gathering information” or “gaining
privileges.” For example, consider the Snort alert 
message RPC sadmind UDP PING, its PCTCG 
format is:

Snort{{PRC sadmind UDP PING} ,

 {has object, possible cause, by means of, consequence tagging},

 {Sadmind RPC service, {+information, +priveledge}, ping, gather information},

 {Sadmind, ping}}

Here, has object, possible cause, by means of,
consequence tagging are the semantic roles. Sadmind
PRC service, {+information, +previledge}, ping, and
gather information fill in the slots of the above
semantic cases respectively, and Sadmind, and ping
are the subordinate keywords.

IV. ALERT SEMANTIC NETWORK

In the field of linguistics, the semantic ontology is
related to the lexical entities (such as verb, noun, etc.). 
In this paper, our goal is to find a well-defined
semantic ontology, which can be used to extract
attack scenarios. We need to focus on the following
questions that security administrators would naturally
ask about the attack actions: When did the actions
happened? Where did the actions happened? By
which means the actions happen? What results did the
actions caused? etc., Fig. 2 shows the two-level
semantic ontology of the semantic roles and the
semantic attributes of PCTCG. The first level is the
semantic roles and it includes Object, Location,
Method, (Possible) Cause, Part-Whole, and 
Consequence Tagging. The second level shows the
semantic attributes and their weights. The Object role 
is the receiving end of the action and it has has object
and be object of attributes. Since an attack action can 
be either successful or is just an attempt that failed,
the possible cause and cause semantic roles are used 
to model the above situation. The meronymy (has an
object) and holonymy (is a part of) attributes from the 
part-whole role describe the situations that one entity
contains another entity. Consequence tagging role 
indicates at which stage the attack may be located 
(gather information, making enable or launching
attacks).
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Figure 2.  Ontology of Semantic Roles and Attributes

Based on [13], 2-AASN is proposed as the
semantic correlation representation and can be 
viewed as a weighed graph. The edge of the graph
presents PCTCG semantic attribute or subordinate.
The set of nodes includes two parent nodes (two
atomic alerts), and their child nodes (case filler or 
subordinate keyword). The formal representation of 
2-AASN is based on slots. Each slot is a 2-tuple:
<semantic attributes, case filler>, or <subordinate,
subordinate keyword>, which describes the semantic
role and its case filler. The format of 2-AASN is: 

+)

+)

+)

SN (node1, node2) = {

    node 1: < subordinate, subordinate keyword>

node 2: < semantic attribute, case filler >  or

    node 1: < semantic attribute, case filler >

node 2: < subordinate,
+)

+)

+)

subordinate keyword> ,

    node2: case filler < semantic attribute, node 1: subordinate keyword > or

    node1: case filler < semantic attribute, node 2: subordinate keyword > }

Consider two Snort alerts: RPC Portmap Sadmind 
request UDP and RPC Sadmind UDP 
NETMGT_PROC_SERVICE CLIENT_DOMAIN overflow 
attempt. Their semantic attributes and case fillers are 
shown in Table 2:

Table 2. Semantic Attributes and Case Fillers. 

RPC portmap Sadmind request UDP
Semantic roles Semantic case fillers 
Has object Port
Possible cause Buffer overflow, gain privilege 
By means of Portmap GETPORT request 
Consequence tagging Vulnerabilities collection
Subordinate keywords Sadmind, port

RPC Sadmind UDP NETMGT_PROC_SERVICE CLIENT_DOMAIN

overflow attempt
Semantic roles Semantic case fillers 
Has object Buffer overflow
Possible cause Buffer overflow, gain privilege,

root
By means of NETMGT_PROC_SERVICE request,

improper bounds checking 
Consequence tagging Vulnerabilities collection 
Subordinate keywords Sadmind, NETMGT_PROC_SERVICE,

buffer overflow, root 

In order to construct the semantic 2-AASN, we first
generate the PCTCG format stream using the
semantic information from the corresponding
semantic knowledge database. The PCTCG format
stream of the above two alerts are:

Snort{{PRC Portmap Sadmind request UDP} ,

 {has object, possible cause, by means of, consequence tagging},

 {port, {buffer overflow, +priveledge},

  portmap GETPORT request, information collection},

 {

Snort

Sadmind, port}}

{{PRC Sadmind UDP NETMGT PROC SERVICE overflow attempt} ,

 {has object, possible cause, by means of, consequence tagging},

 {buffer overflow, {buffer overflow, +priveledge, root},

 {NETMGT_PROC_SERVICE, improper bounds checking}, gather information},

 {Sadmind, NETMGT_PROC_SERVICE, buffer overflow, root}}

Secondly, put alert RPC Portmap Sadmind request
UDP in principle state, and RPC Sadmind UDP 
NETMGT_PROC_SERVICE CLIENT_DOMAIN 
overflow attempt in subordinate state. When an alert 
is in the principle state, 2-AASN use its semantic
case fillers as the nodes, whereas if an alert is in 
subordinate state, 2-AASN uses its subordinate
keywords as the nodes. If there are semantic
attributes matching between case fillers and the
subordinate keywords,  2-AASN fills the slot:
{ 1 : , 2 :node case filler semantic role node keyword } or

.{ 2 : , 1 : }node case filler semantic role node keyword

The 2-AASN representation format is: 
RPC Sadmind UDP overflow attempt

RPC Portmap Sadmind request UDP

node 1 = 
node 2 = 
SN (node1, node2) = { 
    node1: < subordinate, Sadmind > ,

node 1: < subordinate, root>
    node 1: < subordinate, buffer overflow>
    node 2: < location at, port > ,
    node 2: < cause, buffer overflow > , 
    node 2: port < has object, node1: Sadmind > ,
    node 2: buffer overflow < cause, node2: root > ,
    node 2 < cause, node1: buffer overflow > }

NODE 1 NODE 2

Sadmind port
2

Has
object

Location at
    4

subordinate

NODE1 NODE2

root overflow
5

cause

Cause
5subordinate

NODE 1 NODE 2

overflow
5

cause

subordinate

Node 1: RPC Sadmind UDP NETMGT_PROC_SERVICE CLIENT_DOMAIN overflow attempt
Node 2: RPC Portmap Sadmind request UDP

(a) (b) (c)

Figure 3. An Example of 2-AASN

The format can also be represented by the semantic
weighed network graph as shown in Fig. 3. Finally,
we put the alert RPC Portmap Sadmind request UDP
in subordinate state, and the alert RPC Sadmind
UDP NETMGT_PROC_SERVICE 
CLIENT_DOMAIN
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Table 3. Correlation rules.

Correlation rules Representation Match  phrases Match process

Primary  Secondary A::filler matches “(possible) cause” to B::keyword: C(A, B).
A::filler matches “(possible) be caused by” to B::keyword: C(B, A).(Possible) Cause relation

, ( , )or
C

A B C A B Secondary  Primary B::filler matches “(possible) cause” to A::keyword: C(B, A).
B::filler matches “(possible) be caused by” to A::keyword: C(A, B).

Primary  Secondary A::filler matches “enable” to B::keyword: E(A, B)
A::filler matches “be enabled by” to B::keyword: E(B, A).Enable relation

, ( , )or
E

A B E A B Secondary  Primary B::filler matches “enable” to A::keyword: E(B, A)
B::filler matches “be enabled by” to A::keyword: E(A, B).

Primary  Secondary A::filler matches “has instrument” B::keyword: I(A, B).
A::filler matches “be means of” to B::keyword: I(B, A).Instrument relation

, ( , )or
I

A B I A B Secondary  Primary B::filler matches “has instrument” A::keyword: I(B, A).
B::filler matches “be means of” to A::keyword: I(A, B).

Primary  Secondary A::filler matches “has object” to B::keyword. O(A, B).
A::filler matches “be object of” to B::keyword. O(B, A).Object relation

, ( , )or
O

A B O A B Secondary  Primary B::filler matches “has object” to A::keyword. O(B, A).
B::filler matches “be object of” to A::keyword. O(A, B).

Primary  Secondary A::filler matches “meronymy” to B::keyword: P(A, B).
A::filler matches “meronymy” or “holonymy” to B::keyword: P(B, A).Part-whole relation

, ( , )or
P

A B P A B Secondary  Primary B::filler matches “meronymy” to A::keyword: P(B, A).
B::filler matches “meronymy” or “holonymy” to A::keyword: P(A, B).

Primary  Secondary A::filler matches “has location” to B::keyword: S(A, B).
A::filler matches “be located of” to B::keyword: S(B, A).Spatial relation

, ( , )or
S

A B S A B Secondary  Primary B::filler matches “has location” to A::keyword: S(B, A).
B::filler matches “be located of” to A::keyword: S(A, B).

overflow attempt in the principle state and perform
semantic attributes matching.

We defined the correlation rules and apply these
rules to extract the alert correlations from 2-AASN.
In order to extract the correlation from 2-AASN, we 
define the semantic attribute operation : principle

alert: <semantic attribute, case filler>  subordinate alert:

<subordinate, subordinate keyword>. Table 4 defines
the correlation operation between two semantic
attributes.

Table 4. Correlation operation.

1 2 3 4 5 6 7 8 9 10
1 1 3 4 5 6 11 8 1 1

2 2 3 4 5 6 7 12 2 2

3 3 3 5 3,6 11 12 3 3

4 4 4 4 4,5 6 11 12 4 4

5 1 5,3 5,4 5 7 12 5 5

6 2 6,3 6,4 6 11 8 6 6

7 7 11 7 11 7 11 7 7 7

8 8 8 12 8 12 12 8 8 8

9 1 2 3 4 5 6 7 8 9

10 1 2 3 4 5 6 7 8 10

means two semantic attributes can not be operated, not considered by
     the correlation rules.
1. has object, 2. be object of, 3. has location, 4. be location of
5. has instrument, 6. by means of, 7. (possible) cause,
8. be (possible) caused of, 9. meronymy, 10. Holonymy.
11. enable 12. be enabled by.

Not all the semantic attributes can be operated with
each other (Those cannot are marked by , meaning
the two semantic attributes will not be considered by

the correlation rules). On the other hand, some
semantic attributes cannot be fused, so the operation
result is their union. The operation  may generate
new semantic attributes, which can describe the
semantic roles more precisely. For example, (possible)

cause be object of = enable. The correlation rules
try to test the semantic attributes matching between
the principle alert and subordinate alert. For 
examples, suppose we have two alerts: A and B. We
denote alert A’s principle case filler and subordinate
keyword as ::A filler and ::A keyword respectively

and similarly for alert B. We then defined the
(possible) cause, enable, instrument, object, part-
whole, and spatial relations as follows. The enable
relation takes place when one entity facilitates the 
other’s attack process. The spatial relation describes
the situation where one entity is surrounded by 
another entity but is not part of that entity. The
(possible) cause, enable, instrument, and object
relations are concerned with attack action “time”
domain whereas the part-whole and spatial relations
are related to “space” domain. In general, any 
correlation rule (see Table 3) can be represented as 

, where R is the name of the
correlation rule. When extracting correlations, we
first add up the weights of the semantic attributes. If
the sum of the weights is more than the weight
threshold (set to 5 for the simulations), the semantic
attributes are operated according to Table 4.
Afterwards, the correlation rules are applied to the

A R B or R(A, B)
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operation result to acquire the correlation. The
correlation from 2-AASN is shown in Fig. 4:

NODE 1 NODE 2
 possible cause rule

Node 1: RPC Sadmind UDP NETMGT_PROC_SERVICE CLIENT_DOMAIN overflow attempt

Node 2: RPC Portmap Sadmind request UDP

Figure 4. An Example of Correlation Rule 

Because the attack scenario classes contain all 
possible attack correlation combinations above the
semantic weight threshold, they may include some
inaccurate semantic correlations. If they are not
eliminated in time, a chain of errors can occur and
give rise to inaccurate attack scenario instances. On 
the other hand, when establishing the attack scenario 
instances, the whole aggregated alert file will be
reviewed. The aggregated file is generated based on 
the same source or destination IP addresses, and the
time stamps within a certain time slot. Removing the
inaccurate correlations in advance will reduce the
computation load. Therefore, after the attack scenario 
classes are extracted, the security administrators may
make further modifications using their practical
experiences.

V. ATTACK SCENARIO INSTANCES

Since the attack scenario classes include all the 
possible combinations of attack strategies but the
attackers may only adopt a subset of the attack
strategies to lauch the attacks. The alert context of 
specific alerts have to be considered and the alert 
context window (ACW) size has to be determined.
The correlations generated within the context
window range will build up the attack scenario 
instances. In natural language processing, the context
is used to determine the pronunciation, words 
collocation and words unambiguity [8, 11]. The 
ACW size (which is the number of alerts before and
after an interested alert) is an important parameter of
the alert context. If the ACW size is too small, the 
correlated alerts would be absent. On the other hand,
if the ACW size is too large, unnecessary
computations and unrelated alerts will be added. In
natural language processing, small window size can 
identify the fixed expressions and word collocations,
which hold over short range. In [2, 9],  the context
window size was set to be 5. Here our interest lies in
the semantic correlation between the alerts. ACW
size should be much larger to cover the semantic
knowledge. The mutual information method [8] was 
applied to three alert data sets: DARPA 2000 

LLDOS 1.0, LLDoS 2.0.2, and 1999 week 2 Friday
data sets of MIT Lincoln Laboratory. Mutual
information is defined to be:

( , , ) ( , , ) ( , , )
a A c C

MI A C d p a c d I a c d

2

( , , )
( , , ) log

( ) ( )

p a c d
I a c d

p a p c

where ( , , )I a c d (a c) is the association ratio of

two alerts a and , and and are the 

probabilities of a and , and is the

probability that a occurs before or after c at the 
distance .

c ( )p a ( )p c

c ( , , )p a c d

d
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Figure 5. Mutual Information at Various ACW Size 

Fig. 5 shows as ACW increases, the degree of 
mutual information decreases. Beyond a threshold,
the association becomes very small and do not
decrease significantly, which means there are almost
no associations between them. In the simulation, we 
chose 60 as the ACW size. The alerts in the attack
scenario classes are called focus alerts. If a focus
alert and the alerts within its ACW range are used to 
construct the sub-classes of the attack scenario 
classes, they will build up the attack scenario
instances. The format of the nodes in the attack
scenario instances includes the alert message name
and 3-tuple < :>source IP, dest. IP, timestamp

+)
Node =  alert message name,

Node: < source IP, dest. IP, timestamp > }{

The scenario description is defined based on attack
sub-objectives: gather information control (try to 
break into the target), get control (get control of the
target), and launching attacks.  These sub-objectives 
are derived from the consequence tagging of PCTCG.
The scenario description structure is defined as:

+)

+)

AS (attack scenario name) = { 
objective name:

gather information: < alert message, source IP, dest. IP, timestamp >

get control: < alert message, source IP, dest. IP, timestamp > ,
launching attacks: alert message, source IP, dest. IP, timestamp  }< >
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Node1 { RPC Portmap Sadmind request UDP,
< 202.77.162.213, 172.16.115.20, 10:08:07.354091>}

Node2 { RPC Sadmind UDP Ping,
< 202.77.162.213, 172.16.115.20, 10:08:07.359636>}

Node1

 = 

 = 

{ RPC Portmap Sadmind request UDP,
< 202.77.162.213, 172.16.112.10, 10:15:10.023115>}

Node2 { RPC Sadmind UDP Ping,
< 202.77.162.213, 172.16.112.10, 10:15:10.026586>}

Node1 { RPC

 = 

Portmap Sadmind request UDP,
< 202.77.162.213, 172.16.115.50, 10:15:10.098496>}

Node2 { RPC Sadmind UDP Ping,
< 202.77.162.213, 172.16.115.50, 10:15:10.102257>}

 RPC Sadmind
 UDP Ping

Possible
cause rule

Possible
cause rule

 = Node1 { RPC Portmap Sadmind request UDP,
< 202.77.162.213, 172.16.115.20, 10:33:10.611612>
 < 202.77.162.213, 172.16.115.20, 10:33:12.642958>
 < 202.77.162.213, 172.16.115.20, 10:33:18.875888>
 < 202.77.162.213, 172.16.115.20, 10:33:20.913357>
 < 202.77.162.213, 172.16.115.20, 10:33:27.155926>
 < 202.77.162.213, 172.16.115.20,

 = 

10:33:29.205551>}

Node2 { RPC Sadmind UDP NETMGT_PROC_SERVICE overflow ,
< 202.77.162.213, 172.16.115.20, 10:33:10.621429>

 < 202.77.162.213, 172.16.115.20, 10:33:12.652687>
 < 202.77.162.213, 172.16.115.20, 10:33:18.885651>
 < 202.77.162.213, 172.16.115.20, 10:33:20.923039>
 < 202.77.162.213, 172.16.115.20, 10:33:27.165722>
 <

 = 

 202.77.162.213, 172.16.115.20, 10:33:29.223090>}

Node3 { Telnet access,
 < 202.77.162.213, 172.16.115.20, 10:33:14.728748>
 < 202.77.162.213, 172.16.115.20, 10:33:23.011892 >
 < 202.77.162.213, 172.16.115.20, 10:33:32.470221>}

Reservices rsh root Instrument
rule

TELNET access

 = 

 = 

 = 

Node1 { Telnet access,
< 172.16.115.20, 202.77.162.213, 10:50:01.819752>}

Node2 { RSERVICES rsh root,
< 172.16.115.20, 202.77.162.213, 10:50:04.146207>}

Node1 { Telnet access,

 = 

 = 

< 172.16.112.10, 202.77.162.213, 10:50:21.064056>}
Node2 { RSERVICES rsh root,

< 172.16.112.10, 202.77.162.213, 10:50:22.146207>}

Node1 { Telnet access,
< 172.16.115.50, 202

 = 
.77.162.213, 10:50:37.923074>}

Node2 { RSERVICES rsh root,
< 172.16.115.20, 202.77.162.213, 10:50:38.176538>}

Figure 8. Alert Scenarios Instances of DARPA 2000 Data set 
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< 202.77.162.213, 172.16.115.20, 10:33:18.875888> < 202.77.162.213, 172.16.115.20, 10:33:18.885651>
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     bad traffic loopback traffic
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launching  attacks

Figure 9. Alert Scenario Description of DARPA 2000 Data set
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VI. SIMULATIONS

The data sets used in our simulation are from the 
DARPA 2000 and 1999 week 2 from MIT Lincoln
Laboratory [14]. We used Snort as the IDS sensor.
Snort is a lightweight network intrusion detection 
system capable of logging every possible trace of
intrusion attempts [15]. The semantic information of 
the alert messages is stored using MySQL database. 
First, we aggregated the alerts according to the same
source IP address and target IP address, and the same
consecutive timeslot. After the aggregation, the 
DARPA 2000 alert file included 9 different alerts and 
DARPA 1999 week 2 alert file included 38 different 
alerts. Then we generated the PCTCG format streams
of the two data sets using the semantic information.
Afterwards, we built up 2-AASN of the first two
different alerts and tried to extract the correlation 
between them by applying the correlation rules. If
they had any correlation, new attack scenario are 
generated. The new incoming alert are then
correlated with the existing alerts in the attack 
scenario one by one and the whole attack scenario is
build up. The attack scenario classes of DARPA 
2000 and DARPA 1999 week 2 data sets are shown 
in Fig. 6 and 7 (The double circle in the figures 
indicates DDoS attacks  have occurred). For the 
DARPA 2000 alert file, the attack scenario instances 
and the attack descriptions are also extracted and are
shown in Fig. 8 and 9.

VII. CONCLUSION

In this paper, we proposed a novel method to 
extract the attack knowledge using Principal-
subordinate Consequence Tagging Case Grammar
and 2-Atom Alert Semantic Network.  By PCTCG,
the raw alerts are converted into machine-
understandable uniform PCTCG streams. Then the
correlation rules are applied to the 2-AASN to derive
the attack knowledge for the security administrator.
By making the raw alert data computer
understandable will resolve the problems caused by
large volume of alerts. Our future work is to use
semantic query model to allow attack reasoning and 
have inference capabilities. 
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