
Finding a least hop(s) path subject to multiple additive constraints

Gang Cheng, Nirwan Ansari*

Authors are with the Advanced Networking Laboratory, ECE Department, NJIT, Newark, NJ 07012, USA

Received 1 November 2004; revised 9 May 2005; accepted 10 May 2005

Available online 13 June 2005

Abstract

In this paper, for the purpose of saving network resources, we first introduce and investigate a new problem referred to as the least hop(s)

multiple additively constrained path (LHMACP) selection, which is NP-complete. Then, we propose the k-shortest paths Extended Bellman-

Ford (k-EB) algorithm, which is capable of computing All Hops k-shortest Paths (AHKP) between a source and a destination. Through

extensive analysis and simulations, we show that the heuristic algorithm, based on k-EB, is highly effective in finding a least hop path subject

to multiple additive constraints with very low computational complexity; it achieves near 100% success ratio in finding a feasible path while

minimizing its average hop count.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Multiple additively constrained QoS routing; Cost function; NP-complete; Least hop(s)
1. Introduction

The tremendous growth of the global Internet has given

rise to a variety of applications that require quality-of-

service (QoS) beyond what is provided by the current best-

effort IP packet delivery service. One of the challenging

issues is to select feasible paths that satisfy different quality-

of-service (QoS) requirements. This problem is known as

QoS routing. QoS requirements are diverse, subject to

demands of different applications. Bandwidth, delay, delay

jitter, and loss ratio are the commonly required QoS metrics.

These requirements can be classified into three types [1]:

concave, additive, and multiplicative. Since the concave

type can be easily pruned by selecting the bottleneck, and

the multiplicative type can be converted into the additive

constraints by the logarithmic operation, the constraints

considered in this paper are additive, unless otherwise

mentioned. In general, state distribution and routing strategy

are the two issues related to QoS routing. State distribution

addresses the issue of exchanging the state information

throughout the network [2]. Routing strategy is used to find

a feasible path meeting the QoS requirements. According to
0140-3664/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2005.05.009

* Corresponding author. Tel./fax: C1 973 596 3670.

E-mail address: ansari@njit.edu (N. Ansari).
how the state information is aintained and how the search is

carried out, routing strategy can be further ivided into three

categories [1]: source routing, distributed routing, and

hierarchical routing. In this paper, we focus on source

routing, and assume that accurate network state information

is available to each node. A number of research works have

also addressed inaccurate information [3–6], which is,

however, beyond the scope of this paper.

Since multiple additively constrained QoS routing has

been proved to be NP-complete [7], tackling this problem

requires heuristics. The limited path heuristic proposed by

Yuan [8] maintains a limited number of candidate paths, say

x, at each hop. The computational complexity is O(x2 nm)

for the Extended Bellman-Ford algorithm for two con-

straints, where m and n are the number of links and nodes,

respectively. For the purpose of improving the response

time and reducing the computation load on a network,

precomputation-based methods [9] have been proposed.

Korkmaz and Krunz [10] provided a heuristic with the

computational complexity compatible to that of the Dijkstra

algorithm in finding the least cost path subject to multiple

constraints. An algorithm [11], called A*Prune, is capable

of locating multiple shortest feasible paths from the

maintained heap in which all candidate paths are stored.

The computational complexity of A*Prune is O(Qn(MC
hClog Q)), where Q, M, and h are the number of paths in

the heap, the number of constraints, and the maximum

number of hops of computed paths, respectively. For the case
Computer Communications 29 (2006) 392–401
www.elsevier.com/locate/comcom

http://www.elsevier.com/locate/comcom

G. Cheng, N. Ansari / Computer Communications 29 (2006) 392–401 393
that only inaccurate link state information is available to

nodes, approximate solutions [12] have been provided for

the Most Probable Bandwidth Delay Constrained Path (MP-

BDCP) selection problem by decomposing it into two

sub-problems: the Most Probable Delay Constrained Path

(MP-DCP) and the Most Probable Bandwidth Constrained

Path (MP-BCP). In [13], a heuristic algorithm was proposed

based on a linear cost function for two additive constraints;

this is an MCP (Multiple Constrained Path Selection)

problem with two additive constraints. A binary search

strategy for finding the appropriate value of b in the linear

cost function w1(p)Cbw2(p) or bw1(p)Cw2(p), where wi(p)

(iZ1,2) are the two respective weights of the path p, was

proposed, and a hierarchical Dijkstra algorithm was

introduced to find the path. It was shown that the worst-

case complexity of the algorithm is O(log B(mCn log n)),

where B is the upper bound of the parameter b. The authors

in [14] simplified the multiple constrained QoS routing

problem into the shortest path selection problem, in which

the Weighted Fair Queuing (WFQ) service discipline is

assumed. Hence, this routing algorithm cannot be applied to

networks where other service disciplines are employed.

Similar to [13], LAgrange Relaxation based Aggregated

Cost (LARAC) was proposed in [15] for the Delay

Constrained Least Cost path problem (DCLC). This

algorithm is based on a linear cost function clZcCld,

where c denotes the cost, d the delay, and l an adjustable

parameter. It differs from [13] on how l is defined: l is

computed by Lagrange Relaxation instead of the binary

search. It was shown that the computational complexity of

this algorithm is O(m2log4m). However, in [16], for the

same problem (DCLC), a non-linear cost function was

proposed. Many researchers have posed the QoS routing

problem as the k-shortest path problem [17,18]. The authors

in [19] proposed an algorithm, called TAMCRA, for MCP

by using a non-linear cost function and a k-shortest path

algorithm. The computational complexity of TAMCRA is

O(kn log (kn)Ck3mM), where k is the number of shortest

paths. To solve the delay-cost-constrained routing problem,

Chen and Nahrstedt [20] proposed an algorithm, which

maps each constraint from a positive real number to a

positive integer. By doing so, the mapping offers a ‘coarser

resolution’ of the original problem, and the positive integer

is used as an index in the algorithm. The computational

complexity is reduced to pseudo-polynomial time, and the

performance of the algorithm can be improved by adjusting

a parameter, but with a larger overhead. It was shown that

only in specially constructed graphs with link weights

carefully chosen, NP-complete behavior of QoS routing

emerges [21]. Hence, the authors believed that the worst-

case behavior (NP-complete) is very unlikely to occur in

practical networks and QoS routing is feasible in practice.

Many (3-approximation algorithms (the solution has a

cost within a factor of (1C3) of the optimal one) subject to

DCLC have been proposed in the literature. Lorenz and

Orda [22] presented several 3-approximation solutions for
both the DCLC and the multicast tree, in which the one

subject to DCLC possesses the best-known computational

complexity of O(nm log n(log n)Cmn/3). Hassin [23]

presented two 3-approximations algorithms for the

Restricted Shortest Path problem (RSP) with complexities

of O((mn/3)log log U and O(jEjn2log(n/3)/3), respectively,

where U is the upper bound of the cost of the path

computed.

It can be observed from the above review that existing

solutions suffer either high computational complexities or

low success ratio in finding a feasible path. In this paper,

based on a novel solution to All Hops k-shortest Paths

selection (AHKP), we propose a high performance routing

algorithm for finding the Least Hop(s) Multiple Additive

Constrained Path (LHMACP). By extensive simulations, we

show that our proposed algorithm not only achieves near

100% success ratio in finding a feasible path, but also

essentially minimizes the average number of hops of the

computed feasible paths. As a result, network resources can

be saved with our proposed routing algorithm.

The rest of the paper is organized as follows. The

problem is formulated in Section 2. The k-shortest paths

Extended Bellman-Ford (k-EB) algorithm, which is capable

of computing all hops k-shortest paths between a source and

a destination, is proposed in Section 3. Based on k-EB, we

present a high performance heuristic algorithm which

achieves a high success ratio in finding the least hop(s)

multiple additively constrained paths in Section 4. In

Section 5, simulation results are presented. Finally,

concluding remarks are given in Section 6.
2. Problem formulation

Since we only consider additive constraints in this paper,

without loss of generality, the problem is formulated as

follows:

Definition 1. Least Hop(s) Multiple Additively Constrained

Path Selection (LHMACP): Assume a network is modeled

as a directed graph G(N,E), where N is the set of all nodes

and E is the set of all links. Each link connected from node u

to v, denoted by eu,vZ(u,v)2E, is associated with M

additive parameters: wi(u,v)R0, iZ1,2,.,M. Given a set of

constraints (c1,c2,.,cM) and a pair of nodes s and t,

LHMACP is to find a least hop(s) path p from s to t subject

to WiðpÞZ
P

eu;v2p wiðu; vÞ!ci, for all iZ1,2,.,M.

Definition 2. Any path p from s to t that meets the

requirement, WiðpÞZ
P

eu;v2p wiðu; vÞ!ci, for all iZ
1,2,.,M, is a feasible path.

We denote p1Cp2 as the concatenation of two paths p1

and p2, and c(p) as the cost of path p. Note that, given two

paths, p1 and p2, and their costs, if the cost of a path p is

defined as c(p)Zf(W1(p), W2(p),.,Wm(p)), where f($) is a

cost function, the computational complexity of computing

the cost of p1Cp2; cðp1Cp2ÞZ f ðW1ðp1ÞCW1ðp2Þ;

a

b

d

G. Cheng, N. Ansari / Computer Communications 29 (2006) 392–401394
W2ðp1ÞCW2ðp2Þ;.;WMðp1ÞCWMðp2ÞÞ, is O(M), while it

is 0(1) (c(p1Cp2)Zc(p1)Cc(p2)) if the cost of a path is

defined as the sum of its link costs. Hence, we adopt the

latter definition of the cost of a path for the sake of the

computational complexity. The least cost path is also

referred to as the shortest path in this paper.
s
c

Fig. 2. Node d has three neighboring nodes, a, b, and c.
3. k-Shortest paths extended bellman-ford algorithm

In this section, we will propose the k-shortest paths

Extended Bellman-Ford algorithm (k-EB), which is capable

of computing all hops k-shortest paths between a source and

a destination. AHKP was first introduced in [24]. For

completeness, its definition is provided below.

Definition 3. All Hops k-shortest Paths (AHKP) Problem:

For a given source node s2N and maximal hop count H,

H(n, find, for each hop count value h, 1%h%H, and a

destination node u2N, the k least cost h-hop paths from s

to u.

Given a network shown as Fig. 1, kZ1 and HZ3, by the

above definition, we can compute the all hops shortest paths

from the node 1 to node 4 as (1, 4), (1, 2, 4), and (1, 2, 3, 4),

respectively, when h equals to 1, 2, and 3, where

(a1,a2,.,ah) represent a (hK1)-hop path from a1 to ah

that sequentially traverses nodes a1,a2,.,ah. Intuitively,

given any path, the predecessor node of the destination must

be one of its neighboring node(s). Hence, for any hop count

value h, 2%h%H, the k least cost h-hop paths from s to a

node must be in the set of the paths constructed by

concatenating the k least cost (hK1)-hop paths from s to its

neighboring nodes and the corresponding links. For

instance, as shown in Fig. 2, assume the neighboring

nodes of node d are nodes a, b, and c; the 3 least cost h-hop

paths from s to d, ph
1ðs; dÞ; ph

2ðs; dÞ, and ph
3ðs; dÞ, must be

included in the set of paths { fphK1
g ðs; uÞCeðd; uÞ; uZ

a; b; c and gZ1; 2; 3g; phK1
g ðs; uÞCeðd; uÞ, and where

ph
gðs; iÞ represents the gth least cost h-hop path from s to i.
1

2

3

4

0.1 0.1

0.1

0.1

0.1

Fig. 1. A 4-nodes network.
As shown in Fig. 3, denote di as the degree of node i, and

ni
1; ni

2;.; ni
di

, as its neighboring nodes, and assume there

exists a virtual link êðs; iÞ between the source node s and

node i, whose cost is infinity. We can compute the k least

cost h-hop paths from sto i, ph
1ðs; iÞ; ph

2ðs; iÞ;.; ph
kðs; iÞ, as

follows:

1. ci2Np1
1ðs; iÞZeðs; iÞ and p1

gðs; iÞZ êðs; iÞ; gZ2;

3;.; k, (if, in reality, no link between the source s and

node i exists, p1
1ðs; iÞZ êðs; iÞ).

2. ph
i ðs; iÞ; ph

2;.; ph
kðs; iÞ represent the k shortest h-hop

paths among the paths phK1
g ðs; ni

dÞCeðni
d; iÞ;

1%d%di; 1%g%k. If, in reality, the total number

of h-hop paths from s to i is less than k, we assume that

there exist virtual h-hop paths whose costs are infinity.

Next, we theoretically prove that ph
1ðs; iÞ; ph

2ðs; iÞ;.;

ph
kðs; iÞ, are the h-hop k shortest paths among the all h-hop

paths from source s to node i. Denote Dh
i;g as the cost of

ph
gðs; iÞ.

[Proposition.] ph
1ðs; iÞ; ph

2ðs; iÞ;.; ph
kðs; iÞ, are the h-hop

k shortest paths among all the h-hop paths from source s to

node i.

Proof. When hZ1, from the definition of the initial values

of D1
i;gðissÞp1

gðs; iÞ; gZ1; 2;.; k, are the one hop k-

shortest paths from s to i.

We assume that the proposition is correct for hZm. We

shall prove by deduction that it is true for hZmC1.

Assume when hZmC1, if diss such that

pmC1
g ðs; iÞ; 1%g%k, is not one of the k-shortest paths in
Fig. 3. Illustration of the neighboring nodes of node i.

Fig. 4. The demonstration of the FA algorithm.

G. Cheng, N. Ansari / Computer Communications 29 (2006) 392–401 395
all (mC1)-hop paths from s to i (DmC1
i;g is larger than the cost

of any (mC1)-hop k-shortest path from s to i). Further

assume that path p̂mC1ðs; iÞ is not one of pmC1
g ðs; iÞ; gZ

1; 2;.; k, and has a length smaller than that of pmC1
g ðs; iÞ.

The predecessor node of node i in p̂mC1ðs; iÞ is j, the path

from s to j in p̂mC1ðs; iÞ is p̂mðs; jÞ (note that p̂mðs; jÞ may not

be one of the k-shortest m-hop paths from s to j, and by the

earlier assumption, pm
g ðs; jÞ; gZ1; 2;.; k, are the k-shortest

m-hop paths from s to j), the cost of p̂mC1ðs; iÞ is c, and the

cost of p̂mðs; jÞ is c 0. Thus,

c!DmC1
i;g (1)

If p̂mðs; jÞ is one of pm
g ðs; jÞ, gZ1, gZ1,2,.,k, or

dg2{1,2,.,k} such that c0ZDm
j;g; p̂mC1ðs; iÞ is resulted

by concatenating p̂mðs; iÞ with link e(i,j), i.e. p̂mC1ðs; iÞ is

one of pm
g ðs; n

i
dÞCeðni

d; iÞ; dZ1; 2;.; di; gZ1; 2;.; k.

Since p̂mC1ðs; iÞ is not one of pmC1
g ðs; iÞ, gZ1,2,.,k, and

pmC1
g ðs; iÞ, gZ1,2,.,k, are the k-shortest paths of pm

g ðs; n
i
dÞC

eðni
d; iÞ; dZ1,2,.,di, gZ1,2,.,k, cg2{1,2,.,k},

c Z Dm
j Ccði; jÞRDmC1

i;g (2)

which contradicts (1), where Dm
j and c(i,j)are the costs of

p̂mðs; jÞ and e(i,j), respectively. Hence, p̂mðs; jÞ is not one of

pm
g ðs; jÞ, i.e. cg2{1,2,.,k},

c0RDm
j;g (3)

So, cg,u2{1,2,.,k}, the cost of p̂mC1ðs; iÞ is

c Z c0 Ccði; jÞRDm
j;g Ccði; jÞRDmC1

i;g (4)

which contradicts (1). Thus, when hZmC1,

ci2{1,2,.,N}, pmC1
g ðs; iÞ, gZ1,2,.,k, are the k-shortest

paths in all (mC1)-hop paths from s to i.

Therefore, for any node i2{1,2,.,N}, ph
gðs; iÞ, gZ

1,2,.,k, must be the k-shortest paths in all h-hop paths from

s to i. &

For the purpose of avoiding loops, we adopt a simple

method: associating paths with indicators. For example, we

associate a path traversing nodes s, 1, 5, and 7 with an

integer array of size n, in which the 1st, 5th, and 7th array

elements are set to 1, and the rest 0. Hence, we can easily

find out if node i is in the path by only checking the

corresponding element 0s value in the array. By this method,

we can prevent loops without increasing the worst-case

computational complexity. It should be noted that the

adoption of this method also does not increase the worst-

case memory complexity, which will be proved later.

In order to reduce the computational complexity, we

introduce an algorithm, Fast Algorithm (FA), to select ph
1ðs

; iÞ; ph
2ðs; iÞ;.; ph

kðs; iÞ from the paths phK1
g ðs; ni

dÞCeðni
d; iÞ

; 1%d%di;1%g%k. We first illustrate how FA works by

a simple example. As shown in Fig. 4, there are two sorted

path sets (kZ3), {a1,a2a3} and {b1,b2,b3}, whose costs are

{0.4,0.8,0.9}and {0.3,0.7,0.9}, respectively. Note that

minf min
jZ1;2;3

fcðajÞg; min
jZ1;2;3

fcðbjÞgg Z minfcða1Þ; cðb1Þg (5)
Let f1Z{a1,b1}; the least cost path in the two sets is

the least cost path in f1. In this example, it is b1.

Furthermore, since the two path sets are sorted by their

costs and b1 is the least cost path, the second least cost

path in the two sets must be the least cost path between a1

and b2, i.e. let 42Z ð41h f �b1gÞg fb2g, and the second

least cost path in the two sets is the least cost path in f2.

Similarly, the jth least cost path in the two sets is the least

cost path in fj, which can be proved by deduction, where

4j Z ð4j�1h fpjK1gÞg fnjg, pjK1 is the least cost path in

fjK1, and nj is the next path to pjK1 in the corresponding

set. Moreover, 1%j(v%k, c(pj)%c(pv), i.e. the paths (pj)

are sequentially computed in increasing order of their

costs. As shown in Fig. 4, the output paths sequentially

computed by FA are b1, a1, and b2 with the corresponding

costs of 0.3, 0.4, and 0.7, respectively, which are in

increasing order.

Denote Ph
i as the set fph

gðs; iÞ;1%g%kg. The following FA

procedure is used to compute the k least cost (hC1)-hop

paths from the source node s to node i:

Set PhC1
i ZF and PZ fph

1ðs; n
i
dÞCeðni

d; iÞ; dZ1; 2; :::;

dig, where F is the empty set. Sort the paths in P by their

costs by the Heapsort Algorithm [25]. Since the number of

paths in P is di, the computational complexity of this step is

O(dilog diCdi)(the computational complexity of using the

Heapsort algorithm is O(dilog di)).

Denote u as the number of paths in PhC1
i . Initialize uZ1.

Assume the least cost path of P is pu Zph
vðs; n

i
dÞCeðni

d; iÞ,

for some d2{1,2,.,di} and v2{1,2,.,k}. Remove pu

from P. Check if node iis included in ph
vðs; n

i
dÞ with its

associated indicator array. If so, go to Step 5. Otherwise,

place it at the tail of PhC1
i , i.e. phC1

u ðs; iÞZpu. Copy the

indicator array associated with ph
vðs; n

i
dÞ to that of phC1

u ðs; iÞ

and set the value of its ith element to 1.

Algorithm k-EB(G, s, t)

1 for all i from 1 to N

2 set p1
1(i) = c(s, i)

3 end for

4 for h = 1 to H

5 for all i from 1 to N

6 run FA algorithm with input of i and h

7 end for

8 end for

Fig. 5. The pseudo-code of the k-EB algorithm.

G. Cheng, N. Ansari / Computer Communications 29 (2006) 392–401396
If u is equal to k, the k least cost (hC1)-hop paths from

the source node s to node i are obtained; Stop. Otherwise,

uZuC1.

Insert ph
vC1ðs; n

i
dÞCeðni

d; iÞ into P by the binary search

[25]. Since there are currently diK1diK1 elements in P, the

computational complexity of this step is O(log(diK1)C1).

Then, go to Step 3.

P is sorted in Step 1 in order to reduce the computational

complexity of Step 5. Otherwise, the computational

complexity of Step 5 is O(di), which is resulted from

finding the least cost path in P. Using the FA procedure, our

proposed k-EB algorithm can be illustrated by the pseudo

code shown in Fig. 5.
3.1. Computational complexity

Note that Step 5 is executed kK1 times in FA. Hence, the

computational complexity of using FA to compute the k

shortest (hC1)-hop (1%h%HK1) paths from the source

node s to node i is

Oðdilog di C ðk K1Þlogðdi K1ÞCk K1 CdiÞ

Z Oðdilogdi C ðk K1Þlogðdi K1ÞÞ (6)

Accordingly, the computational complexity of using FA

to compute the k shortest (hC1)-hop paths from the source

node s to all other nodes is the sum of those of computing

the k shortest (hC1)-hop paths from the source node s to

every single node, which is

O
Xn

iZ1

ðdilog di C ðk K1Þlogðdi K1Þ

 !
(7)

Moreover, it can be observed from the pseudo code of

k-EB that there are H loops to compute all hops k shortest

paths from the source node s to all other nodes, i.e. the

computational complexity of k-EB is

O H
Xn

iZ1

ðdilogdi C ðk K1Þlogðdi K1ÞÞ

 ! !

%O n
Xn

iZ1

ðdilogdi C ðk K1Þlogðdi K1ÞÞ

 ! !
(8)
If there exists a bound D on the maximum node degree,

i.e. ci2N, di%D, the worst-case computational complexity

of k-EB is bounded by

O n
Xn

iZ1

ðdilogdi C ðk K1Þlogðdi K1ÞÞ

 ! !

%Oðnm log D Cnk log DÞ%Oðnm log n Cnk log nÞ

(9)

Note that this computational complexity bound of k-EB

is very loose, but it is rather low already and almost does not

increase with k when k(m; it could be much less in reality.
3.2. Memory complexity

The memory complexity of our proposed algorithm can

be divided into two parts: the memory used to record the

computed paths (for the purpose of reconstructing them

after computing) and the one consumed during the

computing procedure (FA). Denote pre(i,h,g) as the

predecessor node of i on ph
gðs; iÞ, and count(i,h,g) as the

number satisfying that ph
gðs; iÞZphK1

countði;h;gÞðs; preði; h; gÞÞC
eði; preði; h; gÞÞ, i.e. count(i,h,g) is the number such that

ph
gðs; iÞ is constructed by concatenating the count(i,h,g)th

shortest (hK1)-hop path from s to pre(i,h,g) and the link e(i,

pre(i,h,g)). Hence, for any given node i, hop count h, and

1%g%k, define

† n0Zi and g0Zg.

† njZpre(njK1,hKjC1gjK1) and gjZcount(njK1, hKjC
1,gjK1), j%h.

It can be observed that ph
gðs; iÞZ ðs; nhK1; nhK2;.; n1; iÞ,

i.e. all paths can be backward reconstructed as long as for

any node i, hop count h, and 1%g%k, pre(i,h,g) and

count(i,h,g) are available, where (s,nhK1,nhK2,.,n1,i)

represents a path sequentially consisting of nodes s,nhK

1,nhK2,.,n1,i. Hence, for a single node, the memory cost to

record all k shortest h-hop paths is O(k). Since there are H

hops and n nodes, the first part of the memory cost is O(kHn)

%O(kn2). As mentioned before, we use indicator arrays (of

size n) to avoid loops, which contribute to the memory cost

of the second part. The total memory cost used for indicator

arrays is O(kn2) for all n nodes and the k shortest h-hop

paths. Observe that the indicators for the h-hop paths are

only used when we compute the (hC1)-hop paths. We can

erase the indicators associated with the h-hop paths when all

the (hC1)-hop paths are computed. Hence, the part of

the memory cost resulting from the indicators is O(kn2).

Combining memory costs mentioned above together, the

memory complexity of our proposed algorithm as O(kn2). It

can be observed that the introduction of the indicators to

avoid loops does not increase the worst-case memory

complexity of our proposed algorithm.

G. Cheng, N. Ansari / Computer Communications 29 (2006) 392–401 397
4. Proposed routing algorithm

In this section, based on k-EB, a high performance QoS

routing algorithm, which can not only achieve a high

success ratio in finding a feasible path but also can minimize

the hops of the solutions, is proposed. The basic idea behind

is that k-EB is capable of iteratively finding all hops k-

shortest paths, i.e. k-EB computes the 1-hops k-shortest

paths in the first iteration, the 2-hops k-shortest paths in the

second iteration, and so on. If there are multiple feasible

paths available, the one with the least number of hops is

computed first. For example, given a network shown in

Fig. 6, assume both paths (1-2-5) and (1-3-4-5) are feasible

paths. Since path (1-2-5) has less hops than path (1-3-4-5),

path (1-2-5) will be generated before path (1-3-4-5), and

thus the least hops feasible path is obtained first.

Now, we introduce Theorem 1 which is used to design

our proposed routing algorithm.

[Theorem 1.] Given a cost function x($) such that for

any 1% i%M; ðv2xðx1; x2; :::; xMÞÞ=ðvxiÞZ0 and ðvxðx1;

x2; :::; xMÞÞ=ðvxiÞR0, no feasible path exists if the least cost

path has the cost larger than x(c1,c2,.,cM).

Proof. By contradiction. Assume path p̂ satisfies the

constraint (c1,c2,.,cM) and the least cost among all paths

is larger than or equal to x(c1,c2,.,cM); that is,

cðpÞRxðc1; c2;.; cMÞ;cp0cðp̂ÞRxðc1; c2;.; cMÞ (10)

Also, since x($) is linear,

xðw1ðp̂Þ;w2ðp̂Þ;.;wMðp̂ÞÞ Z cðp̂Þ (11)

Thus,

xðw1ðp̂Þ;w2ðp̂Þ;.;wMðp̂ÞÞRxðc1; c2;.; cMÞ (12)

However, since ðvxðx1; x2; :::; xMÞÞ=ðvxiÞR0 and path p̂

satisfies the constraint (c1,c2,.,cM),

wiðp̂Þ!ci;ci2f1; 2;.;Mg;

0xðw1ðp̂Þ;w2ðp̂Þ;.;wMðp̂ÞÞ!xðc1; c2;.; cMÞ (13)

which contradicts (12), and thus Theorem 1 is proved.&

Similarly, we can prove that a path can be a feasible path

if and only if its cost is less than x(c1,c2,.,cM). We divide
3

2

51

4

Fig. 6. A network consisting of 5 nodes.
our routing algorithm into two parts: forward k-EB and

backward k-EB. We search for a feasible path from the

source to the destination using the forward k-EB, and

reverse the search by the backward k-EB. Therefore, the

computational complexity of our proposed routing algor-

ithm is just twice that of k-EB. The cost functions used in

both searches should be different in order to avoid repeating

the same path while speeding up the search. We adopt the

following simple but effective cost function for the forward

k-EB:

f ðx1; x2;.; xMÞ Z
XM
iZ1

xi

ci

(14)

Assume the shortest path p found by the forward k-EB is

not a feasible path and di2{1,2,.,M} such that wi(p)>ci.

By Theorem 1, the second search (backward k-EB) is

executed only when the cost of p is less than f(c1,c2,.,cM).

Since we already know that the least cost path p of the first

search (forward EB) is not a feasible path, the cost function

should be adjusted for the second search such that

† If a feasible path does exist, p should not be the least cost

path computed by the second search;

† If p is the least cost path of the second search, f 0ðw1ðp̂Þ

;w2ðp̂Þ; :::;wMðp̂ÞÞR f 0ðc1; c2;.; cMÞ so that Theorem 1

can be invoked, where f($) is the cost function for the

backward k-EB.

Based on Eq. (14), the cost function for the backward

k-EB is defined as:

f 0ðx1; x2;.; xMÞ

Z
XM

jZ1;jsi

xj

cj

C
f ðc1; c2;.; cMÞKcðpÞ

wiðpÞKci

C
1

ci

� �
xi

Z
XM
jZ1

xj

cj

C
f ðc1; c2;.; cMÞKcðpÞ

wiðpÞKci

� �
xi (15)

Fig. 7 shows the pseudo-code of our proposed QoS

routing algorithm, referred to as Bk-EB (Bi-directional k-

shortest path Extended Bellman-Ford). The key properties

that distinguish Bk-EB from previously proposed algor-

ithms are:

† Intuitively, the more links (hops) on a path, the more

network resources are consumed. Hence, minimizing the

length or hops of a feasible path is preferred. Based on

k-EB, our algorithm can essentially minimize the hops of

the feasible path.

† Assume the link weights are randomly distributed, and

define Pr{W1(p)%c1, W2(p)%c2,.,WM(p)%cMjc(p)Z
a, H(p)Zn} as the probability that a path p is a feasible

path with c(p)Za, and its hop count, H(p)Zn. The

probability of the shortest path to be a feasible path may

Algorithm Bk-EB(G, s, t, c)

1 if k-EB(G, s, t, LeastCost) = SUCCESS

2 return SUCCESS

3 else

4 if LeastCost > f(c1, c2, …, cM)

5 return No Feasible Path Exists // no feasible path exists

6 else

7 Compute New Cost Function f1(.)

8 if k-EB(G, s, t, LeastCost) = SUCCESS

9 return SUCCESS

10 else

11 if LeastCost > f1(c1, c2, …, cM)

12 return No Feasible Path Exists

13 end if

14 end if

15 end if

16 end if

17 return FAIL // fail to find a feasible path

Fig. 7. The pseudo-code of the Bk-EB algorithm.

G. Cheng, N. Ansari / Computer Communications 29 (2006) 392–401398
not be the largest in all possible paths. Note that, instead

of computing only the shortest path, k-EB finds all hops

k shortest paths from a source to a destination that

increases the probability of finding a feasible path. In

order to reduce the runtime, we stop the search whenever

a feasible path is found.
5. Simulations

We evaluate the performance of our proposed routing

algorithm (Bk-EB) by comparing it with the Binary Search

Algorithm (BSA) [13], H_MCOP [10], and TAMCRA [19].

Note that H_MCOP was originally designed to solve the

multiple constrained optimal path selection problem. It can

also be used to solve the LHMACP problem by setting the

cost of each link to 1. For comparison purposes, we adopt

two performance indices, Success Ratio (SR) and Average

Hop Ratio (AHR), where SR is defined below:

SR Z
Total number of success requests of the algorithm

Total number of success requests of the optimal algorithm

(16)

The algorithm that can always locate a feasible path as

long as it exists is refereed to as the optimal algorithm. Here,

it is achieved simply by flooding which is rather exhaustive.

We do not simply adopt the average hop of computed feasible

paths as one performance index because it may introduce

unfairness in comparison. For example, given a network as

shown in Fig. 6 and a set of constraints, we conduct two

searches (from node 1 to node 5) with two routing algorithms,

a and b (the link QoS metrics are different in the two

searches). In the first search, both algorithms locate a 2-hop
feasible path (1-2-5), while in the second search, the

algorithm a fails to find a feasible path, but algorithm b

does (path 1-3-4-5). Obviously, algorithm b performs better

than a in the simulation. However, if the average hop of the

computed feasible path is adopted as the only performance

index (the average hop of the feasible path computed by

algorithm a in the two searches is 2, while it is 2.5 for

algorithm b), it turns out that algorithm a outperforms b.

Note that the optimal algorithm is achieved by hop-by-hop

flooding, and it can always locate the least hop feasible path

as long as a feasible path exists. Therefore, its average hop is

the lower bound of all feasible paths. Furthermore, given any

feasible path p, there must exist a corresponding optimal one

(the least hop feasible path, which could be p) that has the

same source and destination as p. Hence, instead of using the

average hop of computed feasible paths as a performance

index, we adopt the Average Hop Ratio (AHR), where AHR

is defined as the ratio between the average number of hops of

the computed feasible paths and that of the corresponding

optimal ones, i.e.

AHR Z
Average hop of the computed paths of the algorithm

Average hop of corresponding optimal paths

(17)

In addition to the 32-node network [20], two larger

networks with 50 and 100 nodes, respectively, generated by

using the Doar0s model [26] are used to conduct the

simulations for comparison purposes. We only set kZ1,2

for Bk-EB in our simulations because the success ratio of Bk-

EB already approaches 100% for kZ2. In all simulations, the

link weights are independent and uniformly distributed from

0 to 1, and all data are obtained by running 100,000 requests.

We adopt two constraints in the simulations, and set them

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

Constraint

SR BSA (B=1000)
Bk-EB (k=1)
Bk-EB (k=2)
TAMCRA (k=2)
H-MCOP

Fig. 8. SR in the 32-node network.

1 2 3 4 5 6

0.97

0.975

0.98

0.985

0.99

0.995

1

Constraint

SR

BSA (B=1000)
Bk-EB (k=1)
Bk-EB (k=2)
TAMCRA (k=2)
H-MCOP

Fig. 10. SR in the 100-node network.

G. Cheng, N. Ansari / Computer Communications 29 (2006) 392–401 399
equal to each other. The constraints are increased from 0.5 to

6 with a step size of 0.2.

Figs. 8–10 illustrate the SR of different algorithms, in

which the x-axis represents the value of constraints (two

constraints are set equal to each other). Note that the success

ratio of Bk-EB (kZ2) in finding a feasible path is very close

to 100% in all simulations. In fact, when a feasible path

exists, Bk-EB (kZ2) fails at most twice in every 100,000

requests in the 32-node network. Therefore, to the best of

our knowledge, our proposed algorithm achieves so far the

best success ratio in finding a feasible path with a

computational complexity of only about 4 times that of

the standard Bellman-Ford algorithm.

Intuitively, the larger the network, the harder it is to find

a feasible path. Thus, the performance of an algorithm may

degrade quickly with the network size. However, by

deploying k-EB, our algorithm can essentially overcome

this problem, i.e. our algorithm is scalable. As shown in

Figs. 8–10, the success ratios of BSA, H_MCOP, and
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

Constraint

SR

BSA (B=1000)
Bk-EB (k=1)
Bk-EB (k=2)
TAMCRA (k=2)
H-MCOP

Fig. 9. SR in the 50-node network.
TAMCRA decrease much sharper than that of our algorithm

as the network size increases; our is still close to 1.

Fig. 11 demonstrates the AHRs of different algorithms in

the 100-node network. It can be observed that our proposed

algorithm, Bk-EB, achieves near optimal average hop, i.e.

our algorithm can minimize the hops of the feasible path

found. Note that although H_MCOP achieves relatively low

AHR (compared to TAMCRA and BSA), its success ratio in

finding a feasible path is not satisfactory.

One might think the computational complexity of Bk-EB

is higher than those of [13,10,19] because the Dijkstra-like

algorithms are deployed in [13,10,19] (the algorithms used

in [13,10,19] are based on the standard Dijkstra algorithm

and Reference [27], a k-shortest paths algorithm based on

the Dijkstra algorithm, respectively). First of all, when B/
N and kTAMCRA/N, the computational complexities of

[13,10,19] can also approach infinity, where kTAMCRA is the

number of shortest paths of TAMCRA. Second, since the

computational complexity of TAMCRA is proportional to
BSA (B=1000)
Bk-EB (k=1)
Bk-EB (k=2)
TAMCRA (k=2)
H-MCOP

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.05

1.1

1.15

1.2

1.25

Constraint

A
ve

ra
ge

 H
op

 R
at

io
 (

A
H

R
)

Fig. 11. AHRs of algorithms in the 100-node network.

1 2 3 4 5 6

1.5

2

2.5

3

3.5

4

4.5

5

Constraint

A
ve

ra
ge

 H
op

s

Bk-EB (k=1)
Bk-EB (k=2)
Optimal

Fig. 12. Average hops of the computed feasible paths in the 100-node

network.

G. Cheng, N. Ansari / Computer Communications 29 (2006) 392–401400
k3, it is higher than that of Bk-EB when k is large enough.

Third, since we have already set BZ1000 in our

simulations, we believe that the upper bound (BZN) on

the success ratio of the Binary Search algorithm in finding a

feasible path is close to our simulation results, i.e. no matter

how large B is, it is unlikely that the success ratio of the

Binary Search algorithm can be higher than that of Bk-EB.

Fourth, as shown in Fig. 12, the average hop of the feasible

paths computed by Bk-EB are far less than the number of

nodes (n) or the maximum hop count H. Note that Bk-EB

stops searching as soon as it finds a feasible path. When a

feasible path exists, the average computational complexity

of Bk-EB is thus bounded by

O ~H
Xn

iZ1

ðdilogdi C ðk K1Þlogðdi K1ÞÞ

 ! !

%Oð ~Hðm log n Ck log nÞÞ (18)

where ~H is the average hop of feasible paths. Hence, the

actual runtime of Bk-EB could be very low. Finally, it is

generally believed that the standard Bellman-Ford algor-

ithm has better performance than the Disjktra algorithm in

sparse networks, into which most communication networks

can be classified [9]. Hence, even when k is small, our

proposed algorithm may achieve better performance than

[13,10,19] in terms of the success ratio in finding a feasible

path, the average hop count of feasible paths, and the

computational complexity.
6. Conclusions

We have proposed an efficient algorithm (Bk-EB), which

can achieve a very high success ratio in finding a feasible

path for the least hop(s) multiple additively constrained

routing. Extensive simulations show that Bk-EB is a high
performance routing algorithm in terms of both the success

ratio in finding a feasible path and the average hop of

solutions. With a slight modification, our algorithm can also

be employed for solving many other problems, such as the

DCLC problem. Moreover, the success ratio of our

proposed algorithm may be further improved by, similar

to [10], using a non-linear cost function, i.e. the cost of a

path is the function of its weights, which, however, will

increase the computational complexity.
Acknowledgements

This work has been supported in part by the National

Science Foundation under Grant 0435250, and the New

Jersey Commission on Science and Technology via the New

Jersey Center for Wireless Networking and Internet

Security.
References

[1] S. Chen, K. Nahsted, An overview of quality of service routing for

next-generation high-speed network: problems and solutions, IEEE

Network 12 (6) (1998) 64–79.

[2] A. Shaikh, J. Rexford, K.G. Shin, Evaluating the impact of stale link

state on quality-of-service routing, IEEE/ACM Trans. Network. 9 (2)

(2001) 162–176.

[3] R. Guerin, A. Orda, QoS based routing in networks with inaccurate

information: theory and algorithms, Proc INFOCOM097 (1997)

75–83.

[4] J. Wang, W. Wang, J. Chen, S. Chen, A randomized QoS routing

algorithm on networks with inaccurate link-state information, Proc

WCC-ICCT 2000 2 (2000) 1617–1622.

[5] D.H. Lorenz, A. Orda, QoS routing in networks with uncertain

parameters, IEEE/ACM Trans. Network. 6 (6) (1998) 768–778.

[6] S. Chen, K. Nahrstedt, Distributed QoS routing with imprecise state

information. Proceedings of Seventh International Conference on

Computer Communications and Networks, 1998, pp. 614–621.

[7] Z. Wang, J. Crowcroft, Quality of Service routing for supporting

multimedia applications, IEEE J Selected Areas Commun 14 (7)

(1996) 1228–1234.

[8] X. Yuan, Heuristic algorithm for multiconstrained quality-of-service

routing, IEEE/ACM Trans. Network. 10 (2) (2002) 244–256.

[9] A. Orda, A. Sprintson, Precomputation schemes for QoS routing,

IEEE/ACM Trans. Network. 11 (4) (2003) 578–591.

[10] T. Korkmaz, M. Krunz, Routing multimedia traffic with QoS

guarantees, IEEE Trans. Multimedia 5 (3) (2003) 429–443.

[11] G. Liu, K.G. Ramakrishnan, A*Prune: an algorithm for finding K

shortest paths subject to multiple constraints, Proc. IEEE INFOCOM

2001 2 (2001) 743–749.

[12] T. Korkmaz, M. Krunz, Bandwidth-delay constrained path selection

under inaccurate state information, IEEE/ACM Trans. Network. 11

(3) (2003) 384–398.

[13] T. Korkmaz, M. Krunz, S. Tragoudas, An efficient algorithm for

finding a path subject to two additive constraints, Proc. ACM

SIGMETRICS 0 2000 (2000) 318–327.

[14] C. Pomavalzi, G. Chakraborty, N. Shiratori, QoS based routing

algorithm in integrated services packet networks, Proc. IEEE Conf.

Network Protocols (1997) 167–174.

G. Cheng, N. Ansari / Computer Communications 29 (2006) 392–401 401
[15] A. Juttner, B. Szyiatovszki, I. Mecs, Z. Rajko, Lagrange releaxation

based method for the QoS routing problem, Proc. IEEE INFOCOM

2001 2 (2001) 859–868.

[16] L. Guo, I. Matta, Search space reduction in QoS routing, Proceedings

of 19th IEEE International Conference on Distributed Computing

Systems, pp. 142–149, 1999.

[17] L. Gang, K.G. Ramakrishnan, A prune: an algorithm for finding k

shortest paths subject to multiple constraints, Proc. IEEE INFOCOM

2001 2 (2001) 743–749.

[18] D. Eppstein, Finding the k shortest path, Proceedings of 35th

Annual Symposium on Foundations of Computer Science, pp.

154–165, 1994.

[19] H. De Neve, P. Van Mieghem, A multiple quality of service routing

algorithm for PNNI, Proc. IEEE ATM Workshop (1998) 324–328.

[20] S. Chen, K. Nahrsted, On finding multi-constrained path, Proc. IEEE

ICC098 2 (1998) 874–899.
[21] F.A. Kuipers, P. Van Mieghem, The impact of correlated link weights

on QoS routing, Proc. IEEE INFOCOM 2 (2003) 1425–1434.

[22] D.H. Lorenz, A. Orda, Efficient QoS partition and routing of unicast

and multicast, Proc. 8th Int. Workshop Quality Service (2001) 75–83.

[23] R. Hassin, Approximation schemes for the restricted shortest path

problem, Math. Opert. Res. 2 (2) (1992) 36–42.

[24] G. Cheng, N. Ansari, Finding all hops k-shortest paths, Proc. IEEE

PACRIM003 1 (2003) 474–477.

[25] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algor-

ithms, MIT Press, Cambridge, MA, 1990.

[26] M.B. Doar, A better model for generating test networks, Proc.

GLOBECOM096 (1996) 86–93.

[27] E.I. Chong, S. Maddila, S. Morley, On finding single-source single

destination k shortest paths, Proceedings of the Seventh International

Conference on Computing and Information (ICCI 095), pp. 40–47,

1995.6, pp. 86–93, 1996.

	Finding a least hop(s) path subject to multiple additive constraints
	Introduction
	Problem formulation
	k-Shortest paths extended bellman-ford algorithm
	Computational complexity
	Memory complexity

	Proposed routing algorithm
	Simulations
	Conclusions
	Acknowledgements
	References

