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Abstract: The resilient packet ring (RPR), defined under IEEE 802.17, has been proposed as a
high-speed backbone technology for metropolitan area networks. RPR is introduced to mitigate
the underutilisation and unfairness problems associated with the current technologies SONET and
Ethernet, respectively. The key performance objectives of RPR are to achieve high bandwidth
utilisation, optimum spatial reuse on the dual rings, and fairness. The RPR standard implements
three traffic classes: Class A, Class B, and Class C. The RPR MAC has one queue for each traffic
class. A potential performance limitation is associated with the head-of-line blocking. When the
MAC uses a single FIFO to buffer frames awaiting access, a packet that is traversing through
a congestion point may block transmission of other packets destined to a point before the
congestion. The use of virtual destination queues (VDQs) to avoid the head-of-line blocking is
introduced. Different bandwidth allocation policies are discussed to assign rates to VDQs. Finally,
a bandwidth allocation policy is proposed, which would achieve the maximum utilisation at a very
low complexity.

1 Introduction

Rings are the most prevalent metro technologies because
of their protection and fault tolerance properties, but the
current metropolitan ring networking technologies exhibit
several limitations. In a SONET ring, each node is granted
with the minimum fair share, but it is not possible to reclaim
the unused bandwidth; moreover, 50% of the potentially
available bandwidth is reserved for protection, thus
resulting in poor utilisation. Alternatively, Gigabit Ethernet
assures full statistical multiplexing at the expense of fairness.

Resilient packet ring (RPR) [1] shares SONET’s ability in
providing fast recovery from link and node failures in
addition to inheriting the cost and simplicity of Ethernet.
Like SONET/SDH, RPR [2] is a ring-based architecture
consisting of two optical rotating rings: one is referred to as
the inner ringlet, and the other the outer ringlet (Fig. 1).
Both rings can be used for transporting data packets. In
RPR [3, 4], packets are removed from the ring at the
destination so that different segments of the ring can be
used at the same time for different flows; as a result,
the spatial reuse feature is achieved. RPR defines three
service classes for user traffics: Class A which has
guaranteed rate and jitter, Class B with a committed
information rate (CIR) and bounded delay and jitter, and
the best effort traffic (Class C). The current RPR standard
uses a single FIFO for each class at the ingress point
(Fig. 2), and thus the head-of-line blocking is a potential
problem. Optionally, the MAC may implement virtual

destination queues (VDQs) to avoid the head-of-line
blocking. In this paper, we discuss the limitation of the
per-class queue scheme, and introduce the VDQ scheme,
which serves these VDQs by using a unique and scalable
bandwidth allocation algorithm.

2 The resilient packet ring

2.1 Flow control in RPR
The flow control in RPR is achieved by enabling a
backlogged node (Fig. 3a) to send the fairness message
according to its local measurements to the upstream nodes
to throttle ingress data rates in order to eliminate the state
of congestion and apply fairness among all the participating
nodes [5–7].

RPR adopts the ring ingress aggregated with spatial reuse
(RIAS) fairness concept [5], where the level of traffic granu-
larity at a link is defined as an ingress-aggregated (IA) flow,
i.e. the aggregate of all flows originated from the same node
but destined to different nodes. At the state of congestion,
all nodes should be able to send the same amount of data on
the congested link relative to the other nodes.

2.2 Scheduling
To ensure hardware simplicity and that the transit path is
lossless, the RPR node [5] does not include per–ingress or
per-flow queues on the transit path; instead, it supports two
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scheduling modes. In the single–queue mode (Fig. 3b), the
transit path is a single FIFO and the transit traffic has a
strict priority over the station traffic. However, in the dual-
queue mode (Fig. 3c), the transit path consists of two
queues: primary transit queue (PTQ) for Class A traffic,
and secondary transit queue (STQ) for Class B and Class C
traffic; in this mode, PTQ will be served first. When PTQ is
empty, STQ has strict priority over the station traffic when
the queue length exceeds the STQ threshold; otherwise, the
station traffic is served in the following order: Class A, then
Class B. If the station (node) has no Class A or B traffic,
then Class C traffic will be served.

2.3 Traffic shaping
Class A traffic has a guaranteed rate, and the unused Class
A bandwidth cannot be reclaimed. Class B traffic is a
committed information rate (CIR). Thus, we omit the

discussion of Class A and Class B traffic. Throughout the
rest of the paper, we consider Class C in which each node
uses the unreserved bandwidth and reclaims Class B unused
bandwidth.

The RPR node uses one queue per class for the station
traffic. To show the limitation of this architecture, we
consider the simple scheduling scenario (Fig. 4a) where all
flows are Class C traffic. When virtual destination queues
(VDQs) are not used, flow (1,2) is unnecessarily throttled and
delayed owing to the congestion that flow (1,5) is experienced
at link 4. Alternatively, with VDQs (Fig. 4b), flow (1,2) will
be able to reclaim the unused bandwidth at link 1.

The benefit of using the VDQ scheme is obvious, but the
challenge is how to manage these queues to maximise
the utilisation and maintain fairness at the ring level. This
issue will be discussed in the following Sections.

3 The VDQ scheme

To avoid the head-of-line blocking problem associated with
the per-class queue scheme, we introduce the scheme
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illustrated in Fig. 5a. Here we only consider Class C, where
each node uses per destination queue.

Now, we assume that each node is aware of the per-
source fair rates Fi at all the links. To make sure that a
station does not exceed its fair rate at each link, each VDQ
is controlled separately by its traffic shaper.

The above scheduling scheme would require a per source-
destination allocation at the ingress point. For better
understanding, we consider the general case as illustrated
in Fig. 5b.

Let rk be the estimated demand from node 1 to node k
over the period T s. Node 1 will use these demands along
with the latest received fair rate from each link i, Fi, to
adjust the rate of each VDQ shaper as follows.

Define fi as the rate allocated for every flow from node 1
to node k (k¼ i+1, i+2,y,N) that traverses node i.

The goal of the allocation policy is to maximise fi for
i¼ 1, 2, 3,y,N�1 subject to the constraintX

k ¼ iþ 1; iþ 2; :::;N
ði:e:; traversing link iÞ

rk � Fi ð1Þ

The allocation policy has to make sure that the sum of all
flows from the same ingress point, destined to different
nodes, traversing link i, do not exceed the per-source fair
rate at link i, Fi.

The MAC will set the VDQ shaper to the minimum fi

along the path from the source to the destination.

4 Bandwidth allocation policy

4.1 Round-robin allocation policy
In this Section, we consider three allocation policies. In the
first policy [8], node 1 maps the received fair rate Fi into
a counter, credit [i ], which represents the number of bytes
node 1 can transmit over link i during the next T s. The
virtual destination queues (VDQs) are served in a round
robin fashion. When the VDQ [ j ] has a packet to be sent to
destination j, the procedure illustrated in Fig. 6 [8] will be
executed to determine the bottleneck link. The procedure
returns the link number in which node 1 has no more credit
and not allowed to transmit through. Thus, all destinations
beyond the limited link are unreachable. Alternatively, if
the destination is before the limited link the packet will be
transmitted and all links traversed by the packet will have
their credit [i ] decreased by the packet size.

It is clear that this policy is very complex and not scalable
as the number of links in the ring increases. Moreover, it is
not fair owing to the fact that the packet size is not fixed.

4.2 Equal allocation policy
The second policy is the equal allocation policy. The link
fair rate is divided by the number of flows traversing that
link.

Define mi as the number of flows originated from node 1
that traverses link i. Then, the per flow fair rate is

fi ¼
Fi

mi
ð2Þ

The equal allocation (Fig. 7a) is simple and has a
computation complexity of O(N), where N is the number
of links in the ring.

Despite its simplicity, the equal allocation policy is not
fair because it treats different flows equally regardless of
their demands.

4.3 Max–min allocation policy
The third policy is the max–min allocation policy where the
flows with demands less than or equal to the per-flow fair
share will have their rate allocated first, and the leftover
bandwidth will be divided among the other flows which
need more than their fair shares.

Let the demands of all flows traversing link i ordered
according to their demands such that b1ob2ob3o � � �o
bmi where mi is the number of flows traversing link i.

The max–min allocation policy (Fig. 7b) will achieve
fairness among flows sharing the same link at the expense of
a very high computation complexity.
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To find the computation complexity of the max–min
allocation policy, we consider the worst case where node 1 is
sending traffic to all other stations. The per-link fair rate
calculation requires a sorting operation with complexity of
O(mi logmi). The total complexity can be calculated as
follows XM

i¼1
mi logðmiÞ; M ¼ N � 1 ð3Þ

The number of flows, mi, is different for each link. Hence,
the max–min allocation policy has a computational

complexity with a lower bound of O MðM�1Þ
2

� �
[9] which is

significantly complex and not scalable.

5 Simple scheduling algorithm

In this Section, we introduce a new allocation policy
referred to as the simple scheduling algorithm (SSA). At
the end of the nth measurement interval, where t¼ nT,
the algorithm first estimates the effective number of flows
traversing link i as follows

~mi ¼
AiðnÞ
fiðnÞ

ð4Þ

where AiðnÞ is the sum of flows transmitted from node 1
and traversed link i during the previous interval T, fiðnÞ is
the per-flow fair rate of the previous interval, and ~mi is the
effective number of flows traversing link i.

Now, we propose the following formula to estimate the
per-flow fair rate

fiðnþ 1Þ ¼ fiðnÞ þ
1

~mi
ðFi�AiðnÞÞ ð5Þ

The goal is to adjust fiðnÞ so that AiðnÞ matches the per-
source fair rate Fi of link i and fiðnÞ converges to the
optimal fair ratef �i . Note that one of the important features
of the SSA algorithm (Fig. 7c) is its low computation
complexity of O(N ).

Theorem: The SSA algorithm generates a sequence that
converges to the max–min fair rate.

Proof: See the Appendix.

6 Simulation results

The performance of the SSA algorithm is evaluated by
simulations, and the simulation tool we use is the OPNET
simulator. Here, we consider two scenarios. First, we
consider the scenario illustrated in Fig. 8a. The links have
the same capacity of 622Mbits, and each link has a
propagation delay of 0.1ms. All flows are UDP flows and

for i =1 to N −1

C = Fi 
L = mi

fi = C
L

if (bk < fi)

C = C − bk

L = L −1

Cfi = 
L

end if

end for
end for

 //the fair share

 // recalculate the fair share

//for all links

//the available bandwidth

//the number of flows 

for k = 1 to mi // for all flows traversing links i

//if this flows does not require more than the fair share

// eliminate this flow from the bottelnecked flows list

// decrease the number of bottelnecked flows

a

//for all links

// the fair rate

//update the number of flows

m = 1

for i = N−1 to 1
Fifi =m

if (ri > 0){m = m+1}

end for

b

//for all links

//update the total demand

A=0

end for

//the total demand

for k = N−1 to 1

A=A+rk

//the estimated numbers of flowsmk = max (1, A)
fk

// recalculate the fair ratefk= fk+     (Fk− A)1
mk

c

−

Fig. 7 Allocation policy
a The equal allocation policy
b The max–min allocation policy
c The SSA allocation policy
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start at t¼ 0, flows (1,5), (2,3), (3,5), (4,5) and (2,7) are
greedy while flows (2,4), (2,5) and (2,6) are running at a rate
equal to 10Mbits. The measurement time interval was set to
T¼ 1ms.

Using the equal allocation policy, node 2 divides link 4
per-source fair rate (F4¼ 155.5Mbits) by the number of its
flows traversing link 4 (in this case 3), thus resulting in a
per-flow fair rate of 51.67Mbits. Flows (2,6) and (2,7) are
running at a rate equal to 10Mbits. Thus, the unused
bandwidth at link 4 owing to the equal allocation policy
would be reclaimed by other sources. This continues until it
is stabilised at link 4 with a fair rate of 180Mbits and flow
(2,5) is only able to get the fair rate equal to 60Mbits. The
same is applied to link 2 where flow (2,3) is only able to get
the fair rate equal to 120Mbits.

Alternatively, using the SSA policy, flows are able to
achieve their max–min fair rates.

Figure 8b shows the comparison of the allocation policies
where the SSA policy is able to achieve the max–min
allocation at the same complexity of the equal allocation
policy.

Second, we consider the scenario illustrated in Fig. 9a.
Flows (1,3) and (2,3) are greedy and flows (2,4), (2,5), (2,6)
and (2,7) are running at a rate equal to 10Mbits. The flows,
flow (1,3) and flow (2,3), start at t¼ 0, while flow (2,4), flow
(2,5), flow (2,6) and flow (2,7) start at time 0.1, 0.2, 0.3 and
0.4 seconds, respectively.

Figure 9b shows the unfairness of the equal allocation
policy. During the first 0.1 second, when flows (1,3) and
(2,3) are active, they equally share the bandwidth of link 2,
and both achieve the throughput of 311Mbits. At the time
of 0.1second, flow (2,4) joins the RPR ring and the allocated
bandwidth for each flow on link 2 is decreased to 207.33Mbits.
Since flow (2,4) runs at the rate of 10Mbits, its throughput is
10Mbits. Therefore, an unused bandwidth at link 2 of

197.33Mbits is available for reclaiming by other sources. In
this scenario, flow (1,3) reclaims it and its throughput reaches
404.66Mbits. Similarly, when flows (2,6) and (2,7) join the
RPR ring, the throughput of flow (2,3) decreases further and
the unused bandwidth is unfairly reclaimed by flow (1,3).

The rate of flow (2,3) decreases at the start of the other
flows where the per-flow rate decreases as the number of
flows increases despite their low rate demands.

Figure 9c shows the performance of the SSA policy
where flows are able to achieve their max–min fair rates.

7 Conclusions

In this paper, we have proposed a new traffic shaping
scheme for the resilient packet ring to maximise the
utilisation and avoid the head-of-line blocking associated
with the current RPR traffic shaping scheme. The new
scheme uses per-destination queues at the ingress point.
Existing bandwidth allocation policies have been investi-
gated and shown to be either inefficient or significantly
complex.

An allocation policy, namely, simple scheduling algo-
rithm (SSA), has been proposed, and shown analytically
and through simulations to be optimal where the flows
achieve their max–min fair rates at a very low computation
complexity.
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10 Appendix: Proof of convergence

Let i be the bottlenecked link. The number of flows
traversing link i is m, where mb

i is the number of flows

bottlenecked elsewhere, and mu
i ¼ m� mb

i is the number of

flows bottlenecked at link i. Let rb
1; r

b
2; . . . ; rb

mb
i
be the flows

bottlenecked elsewhere, and r1; r2; . . . ; rmu
i
are the flows

bottlenecked at link i.
At the end of the nth measurement interval (t¼ nT ), each

node k will use its measured demands to other destinations
along with the latest received per-source fair rates from all
links and compute the following for each link.

First, the algorithm estimates the effective number of
flows traversing link i as

~m ¼
~AiðnÞ
fiðnÞ

ð6Þ

where ~AiðnÞ is the sum of flows transmitted from node k
and traversed link i during the previous interval, and fiðnÞ
is the per flow fair rate of the previous interval.

The next advertised fair rate is

fiðnþ 1Þ ¼ fiðnÞ þ
1

~m
ðFi � ~AiðnÞÞ ð7Þ

Substituting (7) into (6) yields

fiðnþ 1Þ ¼ fiðnÞ
Fi

~AiðnÞ
ð8Þ

Define aðnÞ ¼ ~AiðnÞ
Fi

as the load factor, and rewrite (8) as

fiðnþ 1Þ ¼ fiðnÞ
aðnÞ ð9Þ

According to the load factor value, two cases are
considered. First, consider the case where the load factor
a (n) is less than one. In this case, the sum of flows
traversing link i has a rate less than the link fair rate Fi.
According to (9), the per-flow fair rate fiðnÞ will increase. If
all flows are bottlenecked elsewhere ðmu

i ¼ 0Þ, the fair rate
has been achieved. Alternatively, if there are some flows
bottlenecked at link i ðmu

i 40Þ, the bottlenecked flows will
continue to increase their rates until the load factor becomes
greater than or equal to one.

Second, consider the case where the load factor aðnÞ is
greater than one. In this case, the sum of flows traversing
link i is greater than the link fair rate Fi. According to (9),
the per-flow fair rate fiðnÞ will decrease and the participat-
ing flows will decrease their rates. This will continue until
the load factor becomes less than or equal to one.

It is obvious from the above two cases that the load
factor oscillates around one and converges to one. Thus,
in the following analysis, we assume that the load factor is
close to one.

Next, we shall show that the iterative algorithm (7) will
generate a sequence of fiðnÞ that will converge to the

optimal value of the per-flow fair rate fiðnÞ ¼
Fi�
Pmb

i
j¼1 rbj

mu
i

.

Note that the iterative equation (7) is in the form of

fiðnþ 1Þ ¼ fiðnÞ þ l r2DðfiðnÞÞ
� ��1rDðfiðnÞÞ ð10Þ

That is, the per-flow fair rate is adjusted in the direction of
the gradient, where

rDðfiðnÞÞ ¼ Fi � ~AiðfiðnÞÞ ð11Þ
Here, l is a positive step size, and in our case is equal to one,

and r2DðfiðnÞÞ
� ��1

is the inverse of the Hessian.
It is well known that the Newton method (7), where the

gradient is scaled by the inverse of the Hessian, typically
converges faster than the gradient projection; see [10, pp. 201].

The Hessian r2DðfiðnÞÞ ¼ ~m is approximated by using

two points, the current point of ð~AiðnÞ; fiðnÞÞ and the origin
(0,0).

Hence, the above iterative equation converges, and the
stable value of the per-flow fair rate is detailed as follows:

First, assume that all the flows are bottlenecked at link i.
In this case, mb

i ¼ 0 and mu
i ¼ m. All flows are running at

the per-flow fair rate fiðnÞ, and the sum of flows traversing
link i is

~AiðnÞ ¼ mfiðnÞ ð12Þ

Substituting the value of ~AiðnÞ into (8) with a load factor
aðnÞ of one at the steady state yields

fiðnþ 1Þ ¼ Fi

m
ð13Þ

which is the desired value for fiðnÞ.
Finally, assume that some flows are bottlenecked

elsewhere. These flows will have their rates rb
1; r

b
2; . . . ; rb

mb
i

stabilised, and the allocated bandwidth for these flows is

B ¼
Pmb

i
j¼1r

b
j .

Since we have a load factor aðnÞ of one at the steady
state, we have Xmu

i

j¼1
rj ¼ Fi �

Xmb
i

j¼1
rb

j ð14Þ

and Xmu
i

j¼1
rj ¼ mu

i fiðnÞ ð15Þ

Substituting (15) into (14) yields

fiðnÞ ¼
Fi �

Pmb
i

j¼1
rb

j

mu
i

ð16Þ

Substituting the value of fiðnÞ into (9) yields

fiðnþ 1Þ ¼
Fi �

Pmb
i

j¼1
rb

j

mu
i

ð17Þ

which is indeed the desired value for fiðnÞ and the proof is
complete. ’

188 IEE Proc.-Commun., Vol. 153, No. 2, April 2006




