
Computing the loss differentiation parameters of the
proportional differentiation service model

J. Zeng, L. Zakrevski and N. Ansari

Abstract: The proportional differentiation service model has emerged as a refined version of
the DiffServ qualify of service (QoS) architecture. It relies on a series of parameters to enforce
proportionally differentiated QoS criteria, such as queueing delay and packet loss. From the
perspective of proportional loss differentiation, a large amount of work has been done on carrying
out loss differentiation based on given parameters. Under certain network conditions, however, the
loss differentiation cannot be met based on these hand picked parameters. While existing work
focuses on enhancing dropping mechanisms themselves to honour the loss differentiation, the
paper looks into calculating feasible differentiation parameters. By forming an optimisation
problem based on multiple class blocking thresholds, the paper introduces a simple quantitative
guideline to compute loss differentiation parameters. Derived closely related to network statuses
and packet dropping mechanisms, these parameters ease the difficulty that dropping mechanisms
may encounter when enforcing packet loss differentiation. Its finite computation time, moreover,
makes practical implementation possible. Analytical and numerical results are given to substantiate
the new approach and its merits.

1 Background

As compared to integrated service (IntServ), the differ-
entiated service (DiffServ) model defines an architecture
for implementing relative, scalable service differentiation in
the Internet. It achieves scalability by applying per-hop
behaviours (PHBs) to traffic aggregates that have been
marked using the differentiated services (DS) field in
Internet protocol (IP) headers [1].

The proportional differentiation service model was
suggested to engineer relative quality of service (QoS). This
model groups the network traffic into n classes; the service
of class i is better or at least no worse than that of class
i� 1 for 1oi � n, in terms of per-hop QoS metrics such
as queueing delay and packet loss. It defines finer QoS
differences among classes, and thus provides better differ-
entiation granularity than the original DiffServ model with
expedite forwarding (EF), assured forwarding (AF), and
best effort (BE) classes.

From the packet loss perspective [2], the proportional
differentiation model states that per-hop packet losses
should be enforced to be proportional to the corresponding
differentiation parameters chosen by network engineers,
such that li=lj ¼ si=sj, 1 � i, j � n, where li are loss
related measures, and si are loss differentiation parameters,
ordered as s14s24s34 � � �4sn40. With these para-
meters quantifying the desired proportional differentiation,
the fundamental idea of the model is to equalise the loss

measures normalised by corresponding differentiation
parameters, i.e., li=si ¼ lj=sj, 1 � i, j � n.

The proportional loss differentiation model has been
used and investigated in a number of networking scenarios
[3–10], such as active buffer management, TCP throughput
issue, and optical switching. Given loss differentiation
parameters and involved performance criteria, diverse
mechanisms have been proposed to enforce the perfor-
mance differentiation among users or classified groups.
These differentiation parameters are often chosen according
to service pricing rules or network engineers’ experiences.
The loss differentiation, however, cannot be always met
[2, 7] owing to its unawareness of network statuses, such as
traffic load, buffer backlog, etc. Accordingly, it is difficult
for network operators to know a priori if the chosen
constraints are feasible. Coupled with the delay differentia-
tion, this problem has been studied in existing differentia-
tion mechanisms; for instance, dynamic class selection [11]
where a user searches an appropriate class for its perfor-
mance criteria; the feedback control plus delay prediction
[6] that ensures the QoS algorithm to realise the desired
service differentiation.

Instead of solely enforcing loss differentiation based on
given parameters si, i ¼ 1; 2; . . . ; n, nevertheless, network
operators shall benefit from a guideline on selecting these
differentiation parameters. A set of parameters derived
from network-related information can certainly increase
the likelihood that the differentiation will eventually be
enforced. Targeting for feasible differentiation from another
angle, this paper then introduces a simple quantitative
guideline to compute loss differentiation parameters.

2 System model and the new approach

In order to support n service classes, a buffer/queue
accommodates a first-in-first-out (FIFO) module that
determines which packet shall be served next, and a
dropping module that decides when and which packets toE-mail: nirwan.ansari@njit.edu
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be dropped. Internet service providers (ISPs) are then
challenged to maintain differentiated class losses, in
conformance with the differentiation parameters. The
selection of these parameters should not be arbitrary. A
guideline to determine these loss differentiation parameters
is, therefore, called for.

In line with the shared buffer implementation in practice,
a single server queue is assumed for the discussion in the rest
of the paper. Blocking thresholds N1;N2; . . . Nn are adopted
to distinguish service priorities. When the content of the
queue reaches Ni, i ¼ 1; 2; . . . ; n, the dropping module
starts to block traffic from class i. Obviously, these blocking
thresholds function similarly to loss differentiation para-
meters; both of them intend to differentiate losses among
classes.

Assume that each class has a Poisson arrival with the
mean rate of li, i ¼ 1; 2; . . . ; n, the system service rate is m,
and the queue size is m. Accordingly, the packet service
times are exponentially distributed. Based on the blocking
policy mentioned above, the state-transition-rate diagram of
this M=M=1 system is depicted in Fig. 1. The probability
that the content of the queue reaches k is then expressed as
follows

pk ¼

rk
1;...;n � p0 0 � k � N1;

..

.

rk�Niþ1
iþ2;...;n � . . . � rNiþ1�Ni

iþ1;...;n � . . . � rN1

1;...;n � p0 Ni � k � Niþ1;

..

.

rk�Nn�1
n � rNn�1�Nn�2

n�1;n � . . . � rNiþ1�Ni
iþ1;...;n Nn�1 � k � m;

� . . . � rN2�N1

2;...;n � r
N1

1;...;n � p0

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
ð1Þ

where ri;...;n ¼ ðli þ � � � þ lnÞ=m, i ¼ 1; 2; . . . ; n� 1, and

rn ¼ ln=m. Solving for p0 from (1), we have

p0 ¼
1� rN1

1;...;n

1� r1;...;n þ rN1

1;...;n

1� rN2�N1

2;...;n

1� r2;...;n
þ � � � þ rN1

1;...;n

"

� rN2�N1

2;...;n � . . . � rNi�Ni�1
i;...;n

1� rNiþ1�Ni
iþ1;...;n

1� riþ1;...;n

þ rN1

1;...;n � r
N2�N1

2;...;n � . . . � 1� rM�Nn�1þ1
n

1� rn

#�1
ð2Þ

Subsequently, the blocking probability of each class ri,
i ¼ 1; 2; . . . ; n, can be calculated.

The above procedure shows that the blocking thresholds
lead to class blocking probabilities that are actual and
demonstrable values. These blocking thresholds, therefore,
can be used as a good reference on selecting the
differentiation parameters. To connect the blocking thresh-
olds to loss differentiation parameters, however, a certain
relationship between them is sought.

With known class blocking probabilities ri, i ¼
1; 2; . . . ; n, an optimisation problem minimising the system
blocking probability weighted by the differentiation
parameters si, i ¼ 1; 2; . . . ; n, is then formulated as
follows

min
N1;N2;...;Nn�1

ðs1r1 þ s2r2 þ � � � þ snrnÞ

subject to the constraints

1 ¼ s1 � s2 � � � � � sn40;

0 � N1 � N2 � � � � � Nn ¼ m;

s1; s2; . . . ; sn are real numbers;

N1;N2; . . . ;Nn are integers

Though a large amount of work has been done on
analysing various loss systems such as the reciprocity of
blocking probabilities [12] and retry blocking probabilities
[13], to the best of our knowledge, none has addressed the
optimisation problem discussed here. Various properties
and analyses presented in this paper are thus derived based
on the fundamental results of the queueing theory [14]. As
a result, the blocking thresholds Ni, i ¼ 1; 2; . . . ; n, and the
differentiation parameters si, i ¼ 1; 2; . . . ; n, are coupled
together.

3 Analysis results

The previously formulated optimisation problem is first
tackled for the two-class scenario. Its resulting solution is
then accordingly extended to the n-class scenario.

3.1 The two-class scenario
From (1) and (2), the blocking probabilities of class 1 and
class 2 are

r1 ¼
1� rm�N1þ1

2

1� r2
rN1

1;2

1� rN1

1;2

1� r1;2
þ rN1

1;2

1� rM�N1þ1
2

1� r2

" #�1

r2 ¼ rM�N1

2 rN1

1;2

1� rN1

1;2

1� r1;2
þ rN1

1;2

1� rM�N1þ1
2

1� r2

" #�1
Since there are only a few variables for the two-class
scenario, the optimisation problem can be simplified as
follows

min
N1;N2

ðs1r1 þ s2r2Þ

subject to the constraints

1 ¼ s1 � s240;

0 � N1 � N2 ¼ m;

s1; s2 are real numbers;

N1;N2 are integers

Since the algebraic solution is not straightforward, numer-
ical computation is proposed to solve this optimisation
problem. To reasonably reduce the number of variables
involved in the computation, the blocking threshold of
class 2 is set to be equal to the queue size m ðN2 ¼ mÞ,
and the overall system load is normalised to one (it corres-
ponds to the scenario where the server is busy, that is,
r1;2 ¼ r1 þ r2 ¼ 0:999! 1). A tractable three-dimen-

sional figure that depicts the relationship among the
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�������
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�

Fig. 1 The state-transition-rate diagram
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blocking threshold N1, the differentiation parameter s2, and
the utilisation factor r2 is thus plotted in Fig. 2. The points
where the minimum system blocking probability is achieved
are aggregated in three ladders, and each ladder is
associated with a blocking threshold value. To derive a
formula to show this relationship, two equations illustrating
the boundary curves between three ladders are expressed as
follows

Fs2;N1 ¼ 40ðr2Þ ¼ Fs2;N1 ¼ 39ðr2Þ

Fs2;N1 ¼ 39ðr2Þ ¼ Fs2;N1 ¼ 38ðr2Þ
ð3Þ

Expanding (3), we have

r1;2 �
1� r12
1� r2

þ s2r02

� �
1� r401;2
1� r1;2

þ r401;2 �
1� r12
1� r2

¼

1� r22
1� r2

þ s2r12

1� r391;2
1� r1;2

þ r391;2 �
1� r22
1� r2

r1;2 �
1� r22
1� r2

þ s2r12

� �
1� r391;2
1� r1;2

þ r391;2 �
1� r22
1� r2

¼

1� r32
1� r2

þ s2r22

1� r381;2
1� r1;2

þ r381;2 �
1� r32
1� r2

;

and obtain the following two curves

Gs2;N1 ¼ð40;39Þðr2Þ

¼ �A40ð1þ r2Þ þ A39r12
ðA40 þ B40Þ � r12 � ½A39 þ B39ð1þ r2Þ� � r1;2

;

Gs2;N1 ¼ð39;38Þðr2Þ

¼ �A39ð1þ r2 þ r22Þ þ A38r12ð1þ r2Þ
½A39 þ B39ð1� r2Þ� � r22

�½A38 þ B38ð1þ r2 þ r22Þ� � r1;2 � r12

;

where A40 ¼ ð1�r401;2Þ=ð1�r1;2Þ, B40 ¼ r401;2, i ¼ 1; 2; . . . ; n,
and r1;2 ¼ 0:99. Together, these curves form a contour of

the utilisation factor r2 and the differentiation parameter s2
as depicted in Fig. 3.

To further incorporate the information of the blocking
thresholds, or equivalently the queue size m, into the
formulation, we extend the investigation to boundary
curves among other possible ladders. In fact, with a queue

size m ¼ 80, the resulting 3-D figure consists of four
ladders, as compared to the previous three ladders in Fig. 3.
By counting the ladders in the direction of decreasing
blocking threshold N1, the curve formula between ladder j
and j�1, j ¼ 0; 1; . . . ;m�1, that is, Gs2;N2¼ðm�j;m�j�1Þðr2Þ,
is induced as

Gs2;N2 ¼ðm�j;m�j�1Þðr2Þ

¼

� Am�j þ Bm�j
Pj

k¼ 0

rk
2

� �
�
Pjþ1

k¼ 0

rk
2

þ Am�j�1 þ Bm�j�1
Pjþ1

k¼ 0

rk
2

� �
� r1;2

Pj
k¼ 0

rk
2

Am�j þ Bm�j
Pj

k¼ 0

rk
2

� �
� r jþ1

2

� Am�j�1 þ Bm�j�1
Pjþ1

k¼ 0

rk
2

� �
� r1;2 � r

j
2

¼
�Am�j

Pjþ1
k¼ 0

rk
2 þ Am�j�1 � r1;2

Pj
k¼ 0

rk
2

Am�j þ Bm�j
Pj

k¼ 0

rk
2

� �
� r jþ1

2

� Am�j�1 þ Bm�j�1
Pjþ1

k¼ 0

rk
2

� �
� r1;2 � r

j
2

ð4Þ

As stated in the following lemma, (4) has a lower bound.
When the ladder index j increases, that is, the block-
ing threshold N1 decreases, this lower bound increases.
Since the differentiation parameter s2o1, when
Gs2;N1 ¼ðm�j;m�j�1Þðr2Þ41, the resulting curve will fall out
of the contour; this is where the search for the curves in the
contour stops.

Lemma 1: The general boundary equation as shown in (4)
has a lower bound that is bigger than zero. Moreover, when
the ladder index j increases, that is, the blocking threshold
N1 decreases, this lower bound increases.

0
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Fig. 2 The relationship of the blocking threshold N1, the
differentiation parameter s2, and the utilisation factor r2, where
queue size m¼ 40
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Fig. 3 The contour of the differentiation parameter s2 and the
utilisation factor r2 from the 3-D plot in Fig. 2
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Proof: Knowing that 1oAjoAm, 0oBmoBjo1, 0or jþ1
2 o

r j
2o1, and rm

2 � rm�j
2 � ðm� jþ1Þ rm�j

2 �
P
�m�j

k¼0 m� j
þ1 � m, j ¼ 1; . . . ;m, the lower bound of (4) is obtained
as follows

Gs2;N2 ¼ðm�j;m�j�1Þðr2Þ

¼
Am�j

Pjþ1
k¼ 0

rk
2 � Am�j�1 � r1;2

Pj
k¼ 0

rk
2

� Am�j þ Bm�j
Pj

k¼ 0

rk
2

� �
� r jþ1

2

þ Am�j�1 þ Bm�j�1
Pjþ1

k¼ 0

rk
2

� �
� r1;2 � r

j
2

�
ðAm�j � Am�j�1 � r1;2Þ

Pj
k¼ 0

rk
2

� Am�j þ Bm�j
Pj

k¼ 0

rk
2

� �
� r jþ1

2

þ Am�j�1 þ Bm�j�1
Pjþ1

k¼ 0

rk
2

� �
� r1;2 � r

jþ1
2

¼

Pj
k¼ 0

rk
2

r jþ1
2 � Am�j þ Bm�j

Pj
k¼ 0

rk
2

� ��

þ Am�j�1 þ Bm�j�1
Pjþ1

k¼ 0

rk
2

� �
� r1;2

�

�

Pj
k¼ 0

rk
2

r jþ1
2 ½�ð1þ Bm � rm

2 Þ þ ðAm þ mÞ � r1;2�
40

ð5Þ

As observed in (5), when the search procedure continues,

that is, the ladder index j increases,
Pj

k¼ 0 r
k
2 increases and

r jþ1
2 decerases; subsequently, the value of this lower bound

increases with respect to j. Since the differentiation para-
meter s2o1, when Gs2;N1 ¼ðm�j;m�j�1Þðr2Þ41, the resulting
curve will fall out of the contour; it is the stopping point of
the curve search. Therefore, for any queue size m, all the
curves in the contour can be obtained from (4). Given
such a contour, the value range of the differentiation
parameter s2 can be drawn directly, based on the known
utilisation factor r2 and the appropriately chosen blocking
threshold N2.

3.2 The n-class scenario
To directly apply the previous results to the n-class
scenario is not a trivial task, owing to the dramatic increase
in the number of variables, that is, differentiation
parameters si, blocking thresholds Ni, and utilisation
factors ri. The previous analysis is thus applied recursively.
First, classes 1; 2; . . . ; n� 1, are aggregated into one
class. Applying the results for the two-class scenario to
this class aggregate and class n, the contour showing
the relationship between rn, sn, and Nn�1 consists of the

following curves

Gsn;Nn�1 ¼ðm;m�1ÞðrnÞ

¼
�Am �

P1
k¼ 0

rk
n þ Am�1 � r1; . . . ; n

P1
k¼ 0

rk
n

ðAm þ BmÞ � r1n � Am�1 þ Bm�1
P1

k¼ 0

rk
n

� �
� r1;...;n

Gsn;Nn�1 ¼ðm�1;m�2ÞðrnÞ

¼
�Am�1 �

P2
k¼ 0

rk
n þ Am�2 � r1; . . . ; n

P1
k¼ 0

rk
n

Am�1 þ Bm�1
P1

k¼ 0

rk
n

� �
� r2n

� Am�2 þ Bm�2
P2

k¼ 0

rk
n

� �
� r1;...;n � rn

..

.

Gsn;Nn�1 ¼ðm�j;m�j�1ÞðrnÞ

¼
�Am�j �

Pjþ1
k¼ 0

rk
n þ Am�j�1 � r1; . . . ; n

Pj
k¼ 0

rk
n

Am�j þ Bm�j
Pj

k¼ 0

rk
n

� �
� r jþ1

n

� Am�j�1 þ Bm�j�1
Pjþ1

k¼ 0

rk
n

� �
� r1;...;n � r j

n

where Gsn;Nn�1 ¼ðm�j;m�j�1ÞðrnÞ41. With the known rn and
a selected blocking threshold Nn�1, the value range for the
differentiation parameter sn can be drawn from the
contour.

Next, class n is excluded from the system. By aggregating
classes 1; 2; . . ., and n� 2, there are again two classes, that
is, this aggregate and class n� 1, in the system. The contour
of rn�1, sn�1, and Nn�2 is then solved as

Gsn�1 ;Nn�2 ¼ðNn�1 ;Nn�1�1Þðrn�1Þ

¼
�ANn�1 �

P1
k¼ 0

rk
n�1 þ ANn�1�1 � r1;...;ðn�1Þ

ANn�1 þ BNn�1ð Þ � r1n�1 � ANn�1�1 þ BNn�1�1
Pj

k¼ 0

rk
n�1

� �
� r1;...;ðn�1Þ

..

.

Gsn�1 ;Nn�2 ¼ðNn�1�j;Nn�1�j�1Þðrn�1Þ

¼
�ANn�1 �

Pjþ1
k¼ 0

rk
n�1 þ ANn�1�j�1 � r1;...;ðn�1Þ

Pj
k¼ 0

rk
n�1

ANn�1 þ BNn�1

Pj
k¼ 0

rk
n�1

� �
� r jþ1

n�1

� ANn�1�j�1 þ BNn�1�j�1
Pjþ1

k¼ 0

rk
n�1

� �
� r1;...;ðn�1Þ � r

j
n�1

where Gsn�1;Nn�2 ¼ðNn�1�j;Nn�1�j�1Þðrn�1Þ41. Note that in
this iteration, the queue size has been updated by the
previously chosen blocking threshold Nn�1, and the
utilisation factor after excluding that of class n becomes
r1;2;...;n�1 ! 1� rn. Again, with the known rn�1 and an

appropriate blocking threshold Nn�2 ðNn�2 � Nn�1Þ, the
value range for the differentiation parameter sn�1 can be
found in the contour.

This parameter search procedure ends when only classes
1 and 2 are left in the system. The contour used to reach the
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value range of the differentiation parameter s2 consists of
the following curves

Gs2;N1 ¼ðN2;N2�1Þðr2Þ

¼
�AN2

�
P1

k¼ 0

rk
2 þ AN2�1 � r1;2

AN2
þ BN2

ð Þ � r12 � AN2�1 þ BN2�1
P1

k¼ 0

rk
n�1

� �
� r1;2

..

.

Gs2;N1 ¼ðN2�j;N2�j�1Þðr2Þ

¼
�AN2�j �

Pjþ1
k¼ 0

rk
2 þ AN2�j�1 � r1;2

Pj
k¼ 0

rk
2

AN2�1 þ BN2�1
Pj

k¼ 0

rk
2

� �
� r jþ1

2

� AN2�j�1 þ BN2�j�1
Pjþ1

k¼ 0

rk
2

� �
� r1;2 � r

j
2

where Gs2;N1 ¼ðN2�j;N2�j�1Þðr2Þ41.
Having completed the above recursive procedure, the

differentiation parameters s2; . . . ; sn and the blocking
thresholds N1;N2; . . . ;Nn�1 can thus be solved. Note that
s1 ¼ 1 and Nn ¼ m.

4 Numerical examples

The previously stated iterations are validated by a three-
class scenario. Assume the utilisation factor for each class,
that is, ri ¼ ðli=mÞ, i ¼ 1; 2; 3, are given as r1 ¼ 0:5,
r2 ¼ 0:3, and r3 ¼ 0:19. The queue size is assumed as
m ¼ 30. First, we apply the previous two-class solution to
class 3 and the aggregate of classes 1 and 2. A contour
similar to that of Fig. 3 is then obtained to illustrate the
relationship of differentiation parameter s3, utilisation
factor r3, and blocking threshold N2 (note that N3 ¼ m).
From this contour, given r3 ¼ 0:19, one chooses N2 ¼ 28
and obtains s3 2 ½0:553564; 1�. Next, by applying the same
solution to class 1 and class 2, the contour relating
differentiation parameter s2, utilisation factor r2, and
blocking threshold N1 is obtained. Given r2 ¼ 0:3,
one chooses N1 ¼ 26 and finds s2 2 ½0:699037; 1�. The
differentiation parameters are then solved as s1 ¼ 1,
s2 2 ½0:699037; 1�, and s3 2 ½0:553564; 1�.

The algorithm is applicable to practical scenarios since
the range of the algorithm variables are all finite. The
number of classes n is limited by traffic aggregates
supported by a network; referring to the DiffServ service
model, the value of n will not go beyond 8. The queue
size m, another important parameter of the algorithm, is
normalised as packet units. Its value is restricted by the
memory space.

The computational complexity of the algorithm depends
on two major factors. One is the number of iterations N;
given the number of classes as n, the computation needs
N ¼ n� 1 iterations. The other factor is the computation
time of each iteration; it is the time required to find all
curves of the two-class scenario as explained in Section 3.1
and Fig. 3. Given the queue size m, the algorithm searches
through ladder pairs of ðm� j;m� j� 1Þ, j ¼ 0; 1; . . . ;
m� 1, that is, curves in a contour, as illustrated in (4) and
Fig. 3. Assume that the calculation time of each curve (4) is
one unit. In the worst case, each iteration takes m units of
time to search m ladder pairs and obtain all m curves. Given
the value range of both utilisation factor ri and differentia-
tion parameter si as ½0; 1�, nevertheless, the number of
curves accommodated in a contour are far less than m. As
explained in Section 3.1, for a queue size m ¼ 40, only two
curves are located in the contour (see Fig. 3); for m ¼ 80,
the resulting 3-D plot has four ladders, that is, three curves
in the contour. Therefore, the computational complexity of
obtaining n differentiation parameters is bounded by
OðnmÞ, and it can be significantly less than OðnmÞ.

From the perspective of achieving the minimum system
blocking probability, the exhaustive search that checks all
combinations of variables, such as the number of classes n,
queue size m, utilisation factor ri, differentiation parameters
si, and blocking thresholds Ni, is brought in as a reference,
to show the merits of this new approach. First, as observed
from Table 1, the minimum blocking probabilities found
by the new approach are close enough to those of the
exhaustive search, although the difference between
these two values increases with the number of classes. This
value difference is resulted from the iterations that
accumulate approximation errors. Since the number of
classes n supported by DiffServ is limited, nevertheless, this
tendency has no considerably negative effects on approx-
imating the minimum blocking probabilities. Second, the
new approach significantly shortens the search time for the
minimum probability, by reducing the search space based
on the contours. To limit the computation time of the
exhaustive search to an acceptable level, the example
described above adopts queue size m and the maximum
number of classes n as 30 and 4, respectively. The new
approach itself, nevertheless, can accommodate much
larger values and is thus potentially feasible for on-line
computation.

5 Conclusions

This paper introduces a simple approach to compute the
loss differentiation parameters for the proportional differ-
entiation service model. The quantitative guideline based on
the principles of optimisation and queueing has been
presented and validated. The intrinsic characteristics of
the approach also guarantee that the resulting system
blocking probability is minimised with respect to the chosen
blocking thresholds.

Table 1: The comparison between the exhaustive search and the new approach

Search approach 2-class scenario 3-class scenario 4-class scenario

Minimum value Exhaustive 0.0328520171 0.0328520171 0.0328520171

New 0.0329166398 0.0340719454 0.0353427972

Simulation time (s) Exhaustive 0.22 122.29 26277.72

New 0.01 0.42 8.03
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Since the differentiation parameters are selected without
considering the network or system conditions, the QoS
differentiation may not be enforced owing to the dynamical
nature of the network traffic. The computation guideline
proposed in this paper, however, incorporates the network
statuses and dropping mechanisms into the parameter
computation procedure, and thus eliminates this problem.

From the practical implementation perspective, this
parameter selection procedure can help network engineers
define feasible loss differentiation parameters, without
resorting to extra control mechanisms in curbing the service
differentiation violation. The algorithm, as explained in
Section 4, can be implemented in real time within the
framework of the DiffServ service model.
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