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INTRODUCTION

The rapid growth of data-intensive applications,
including multimedia, e-business, e-learning, and
Internet protocol television (IPTV), is driving
the demand for higher data-storage capacity.
Organizations want their huge amounts of data
to be stored so it can be easily accessible and
manageable. Furthermore, they require the criti-
cal data to be securely transported, stored, and
consolidated at high speeds. The storage area
network (SAN) is emerging as the data-storage
technology of choice because of its significant
performance advantages, such as better scalabili-
ty and higher availability over the traditional
storage architectures [1]. The SAN is a high-
speed and special-purpose network that inter-
connects a set of storage devices with their
servers. SAN architectures have won attention

from large enterprises such as Google, Yahoo,
and Amazon that have tremendous amounts of
data to back up and consolidate, as well as repli-
cate among different locations.

After 9/11 and the power grid failure in North
America in 2003, SANs were widely deployed as
the major data disaster recovery system infra-
structure. To avoid severe damage from
widespread power outages, earthquakes, fire,
and terrorist attack, the storage sites must be
physically separated by up to hundreds or even
thousands of miles so that only one site will be
affected in a disaster [2–4]. United States federal
regulators, such as the Office of Management
and Budget and the General Services Adminis-
tration, have adopted a similar disaster recovery
strategy to insure the continuity of operations
plan (COOP), which is applicable to all federal
agencies, airports, and financial institutions [5].
Recently, one 860-km-long testbed was set up in
Europe to demonstrate the new services over
SAN extension [6].

The existing literature covering SAN exten-
sion is mainly about long-haul overlay. The pro-
posed solutions include optical-based extension
solutions and IP-based extension solutions. The
optical-based extension solutions include extend-
ing SAN over synchronous optical network
(SONET) and over wavelength division multi-
plexing (WDM). SONET-based extension essen-
tially assigns a dedicated SONET channel with
fixed bandwidth to each SAN connection [7]. On
the other hand, WDM-based extension divides
bandwidth on a fiber into several non-overlap-
ping channels (i.e., wavelengths) and conducts
simultaneous message transmission on different
wavelengths in the core network [8]. Finally, IP-
based extension solutions encapsulate data units
of SAN traffic into standard IP frames to be
transported over core networks [9]. Several pro-
tocols, including Internet small computer system
interface (iSCSI) [10], fibre channel over TCP/IP
(FCIP) [11], and Internet fibre-channel protocol
(iFCP) [12] have been introduced to transport
the SCSI commands and responses, either by
major vendors or the IP Storage Working Group
of the Internet Engineering Task Force (IETF).

Few papers, however, address the challenges
presented by extending SANs over the access
network. The first challenge comes from the
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conventional SAN extension solution, such as
the fibre channel (FC), which uses point-to-point
dedicated “dark fiber” to connect the SAN into
the metro network. This approach lacks scalabili-
ty and is cost-prohibitive because maintaining
the storage service requires dedicated delivery
and extra manpower. The second challenge is
the bandwidth bottleneck of current access tech-
nologies. For example, DSL, cable and T1/E1
can only provide low megabit-level bandwidth,
which is far below the gigabit-level bandwidth
requirement of SANs [1]. The third challenge
comes from the buffering constraints of SAN
switches. The legacy SAN switch was historically
designed with limited amounts of buffers for
local transmission of up to 10 km. This leads to
low throughput when the SAN extends to hun-
dreds of miles. The aforementioned three-folded
challenges motivated us to develop a new
approach to extend SAN over the access net-
work to improve scalability, lower cost and
increase the speed of transmission, as well as
improve throughput.

In the rest of this article, we introduce a new
architecture, S-PON, to tackle the scalability
problems and cost challenges and we present
three different transmission techniques to solve
the bandwidth bottleneck of current SAN exten-
sion methods. A new device and a new buffer
management scheme in S-PON are discussed,
respectively. Simulation results are summarized,
and we provide an S-PON implementation exam-
ple and draw conclusions.

S-PON: ARCHITECTURE
To overcome the scalability problem and cost
challenges of dedicated FC, we propose to
extend the SAN over the passive optical network
(PON). The resulting architecture is called S-
PON. Instead of using point-to-point “dark
fiber” (Fig. 1a), S-PON employs the point-to-
multiple-point (P2MP) architecture of PON,
illustrated in Fig. 1b.

The PON infrastructure has been widely
deployed in recent years. For example, Verizon’s
FiOS service, facilitated by PON technologies,
has been deployed in 16 different states in the
U.S. and is targeted to reach 50 percent of
households by 2010 [13]. Since PON is leading
the trend to next-generation broadband access,
S-PON naturally solves the FC scalability prob-
lem by building on the growth of PON coverage.
Furthermore, the P2MP architecture of S-PON
allows SAN to share a single feeder fiber up to
20 km long in the access network with other
optical network units (ONUs), thus greatly
reducing the cost of SAN extension.

S-PON: TRANSMISSION
TECHNOLOGIES

To solve the bandwidth bottleneck of current
SAN extension techniques, we propose three dif-
ferent transmission technologies for the physical
layer: in-band transmission, out-of-band trans-
mission, and out-of-wavelength transmission.

With in-band transmission, the SAN shares
the upstream channel with other ONUs through

time division multiple access (TDMA). In this
way, the SAN is regarded as a special ONU,
sharing the 1 Gb/s bandwidth with other ONUs.
The TDMA in-band transmission technique is
illustrated in Fig. 2a.

For more critical SAN applications, S-PON
fulfills the bandwidth requirements with out-of-
band transmission technology. This is facilitated
by sub-carrier multiple access (SCMA), as shown
in Fig. 2b. The basedband carrier f0 is for LAN
traffic transmission, while two sub-carriers, f1
and f2, are used to transmit the storage data
from SAN1 and SAN2, respectively. Either SAN
can transmit gigabit-level traffic by using the
allocated sub-carrier through the proposed com-
munication infrastructure.

Out-of-wavelength techniques are employed
for the most critical storage data transmission
requiring high quality. The practical method
takes advantage of wavelength division multiple
access (WDMA). As shown in Fig. 2c, LANs are
assigned wavelength λ1 for data transmission,
and SAN1 and SAN2 are assigned two other
wavelengths, λ2 and λ3 respectively, for storage
data transmission.

The remote node is responsible for multiplex-
ing wavelengths in the upstream direction and

n Figure 1. Comparison of conventional SAN extension and S-PON.
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demultiplexing in the downstream direction.
Regular PON remote nodes, such as optical
splitters, can still be used in the TDMA and
SCMA scenarios. In the WDMA scenario, how-
ever, a modified remote node needs to be imple-
mented, which is shown in the inset of Fig. 2c.
The modified remote node separates the down-
stream LAN data and SAN data with a set of
optical filters or an arrayed-waveguide-grating
(AWG) to achieve high security and enhanced
transmission rate. For the upstream data, the
modified remote node multiplexes the LAN and
SAN data and sends them to XtenOLT.

In addition, the optical transmitters and
receivers in the FC switches and the OLT need
to be upgraded to support sub-carrier and WDM
transmission for the SCMA and WDMA scenar-
ios, respectively. In the TDMA scenario, trans-
mitters and receivers for a regular PON can still
be used.

Table 1 summarizes the pros and cons of the
three transmission techniques in term of media
access, bandwidth, security and cost.

XTENOLT: 
A NEW DEVICE IN S-PON

The conventional SAN switch node was designed
with few buffers for short-distance transmission.
The storage flow control mechanism was imple-
mented with buffers to hold the incoming FC
frames before receiving acknowledgments [1].
When transmitting over hundreds of miles, these
insufficient buffers lead to low throughput
because of the storage flow control sensitivity to
the long distance round-trip time.

To solve this problem, we propose a new
device, XtenOLT, in the S-PON architecture.
XtenOLT is an enhanced optical line terminal
(OLT) in PON with storage service provisioning.
The internal architecture of XtenOLT is illus-
trated in Fig. 3. Two buffer pools are construct-
ed for buffering the incoming FC frames from
local SANs and remote sites, respectively. The
flow control and switch module is composed of a
buffer-to-buffer (BTB) flow-control sub-module,
an end-to-end (ETE) flow-control sub-module,
and a switch interface, which are responsible for
the BTB and ETE flow control and the packet
switch [1]. An OLT module is also included,
which is responsible for OLT arbitration. The
transmission module is responsible for physical
layer transmission through the TDMA, SCMA
or WDMA sub-modules. The dynamic resource
management (DRM) module is responsible for
efficiently managing buffer pools. Lastly, the ser-
vice differentiation (SD) module is responsible
for differentiating services among the SANs.

TETRIS: A NEW
BUFFER MANAGEMENT SCHEME

Among the various functional modules in
XtenOLT, the DRM is the core module for
buffer management. Various buffer management
schemes have been proposed in the literature.
The conventional fixed scheme simply allocates a
constant number of buffers to each SAN regard-n Figure 2. Transmission technologies.
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n Table 1. Comparison of technologies for physical layer transmission in S-
PON.

Transmission techniques Media
Access Bandwidth Security Cost

In-band techniques TDMA Low Low Low

Out-of-band transmission SCMA Medium Medium Medium

Out-of-wavelength
transmission WDMA High High High
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less of the traffic. Under such a scheme, a fixed
threshold is set for each SAN and the arriving
packets are discarded if the queue length is
beyond the prescribed threshold. It has been
shown that the fixed buffering scheme leads to
poor performance [14]. Furthermore, the SAN
traffic follows a self-similar pattern with bursty
characteristics [15–17]. The fixed buffering
scheme also ignores the bursty nature of SAN
traffic by preventing the heavily loaded traffic
from accessing the free space in the shared
buffer pool, thus leading to overall inefficiency.

The linear proportional scheme is another
commonly used buffer management technique
[18]. Under such a scheme, the number of
buffers granted to each SAN is linearly propor-
tional to the request in the previous time inter-
val. Because the linear proportionality scheme
favors SANs with large buffer requirements, it
causes problems of unfairness and low utility
[19].

To overcome the problems of existing buffer
management schemes, we propose an algorithm
called Tetris, which allocates the buffers to the
SANs dynamically. The basic idea of the Tetris
algorithm is to grant each SAN the number of
buffers equivalent to the minimal request among
the SANs. In each time cycle, the Tetris algo-
rithm may take several rounds to complete until
all available buffers are successfully granted (see
Appendix 1 for details).

Figure 4 shows a simple illustration of this
algorithm. Assume there are four SANs request-
ing buffers in time interval n and their requests
are represented by four columns. In round 1, the
granted buffers to each SAN are equal to the

minimal request, which is request 2. Thereafter,
the granted buffers (i.e., request 2) are then
chopped from each request, as illustrated by the
dashed line in round 1. Request 2 is therefore
100 percent fulfilled in round 1. In round 2,
there are only three requests, requests 1, 3 and
4. Similarly, the granted buffers to each SAN are
equal to the minimal request, which is request 3.

n Figure 3. Internal architecture of XtenOLT.
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The granted buffers (i.e., request 3) are then
chopped from each request. Therefore, request 3
is fulfilled. By following the same process, round
3 fulfills request 1, and round 4 fulfills request 4.

EXPERIMENTS AND SIMULATIONS
We performed experiments to evaluate the vari-
ous physical layer transmission techniques. We
also simulated several buffer management
schemes to evaluate their performance. This sec-
tion summarizes our results.

PHYSICAL LAYER SIMULATION
Our S-PON experimental setup is shown in Fig.
5a. One wavelength is employed to carry the 2.5-
Gb/s data signal (to emulate LAN traffic) and
the 2.5-Gb/s storage signal (to emulate SAN
traffic) in the upstream direction. The storage
signal is mixed with a 10-GHz carrier before
they are used to drive the modulator to generate
the sub-carrier multiplexing signal. One pho-
todetector (PD) is employed after an erbium
doped fiber amplifier (EDFA) and a tunable
optical filter to receive both data and storage
signals. A low-pass filter is used for data signal
receiving. To receive the storage signal, a high-
pass filter, a 10-GHz mixer and an electronic
amplifier are employed.

The BER measurement results are shown in
Fig. 5b. We observe that both data and storage
signals show small power penalties after a 20-km
transmission. Figure 5c–5f show the eye dia-
grams measured for the signals. The experimen-
tal results demonstrate that by employing the
low-cost electric filters, the baseband data signal
and the modulated storage signal are correctly
detected simultaneously at the OLT side, and,
thus, the extended storage service can be provid-
ed by using the widely deployed PON access net-
work architecture.

BUFFER MANAGEMENT SIMULATIONS
We simulated our Tetris buffer management
algorithm to evaluate its performance. The
experimental S-PON connects two sites about
5000 km apart, one in New York City and one in
San Francisco. Each site consists of four SANs,
which are connected to the XtenOLT node
through the PON architecture. In the simulation,
each SAN carries its own local traffic, which are
100 Mb/s, 500 Mb/s, 1 Gb/s and 2.5 Gb/s, respec-
tively. All the traffic patterns are simulated by
using a self-similar traffic generator, with the
Hurst parameter H set to 0.8. This parameter,
with a range of 0.5-1, is a measure of the self-
similarity of a time series of traffic. The generat-
ed traffic exhibits higher self-similarity when H is
closer to the value of 1, and lower self-similarity
when H is closer to 0.5 [15]. The long-distance
link capacity is set to be 2.5 Gb/s (i.e., 320 MB/s)
and 4800 buffers are configured in XtenOLT.
We also compared the performance of the Tetris
scheme with two other buffer-management
schemes, namely, the fixed and linear propor-
tional schemes. The simulation results are shown
in Fig. 6a and Fig. 6b.

Figure 6a shows the instantaneous through-
put comparison of the three algorithms. It shows
that both the Tetris and the linear proportional

n Figure 5. The S-PON experiment: a) setup, b) bit error rate (BER) curves, c)
eye diagram for 2.5 Gb/s data signal before transmission, d) eye diagram for
2.5 Gb/s data signal after 20-km transmission, e) eye diagram for 2.5 Gb/s
storage signal before transmission, f) eye diagram for 2.5-Gb/s storage signal
after 20-km transmission.
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scheme achieve around 250 MB/s, which is 78
percent of the link capacity. Since both schemes
make full use of free buffer space, the instanta-
neous aggregated throughput of the two algo-
rithms overlap most of the time, so it is difficult
to distinguish the difference between the two in
the throughput graph (one color obscures the
other). On the other hand, the fixed scheme
achieves an average throughput of 100 MB/s,
which is 31 percent of the link capacity. The
fixed scheme achieves low throughput because it
ignores the bursty nature of SAN traffic and pre-
vents the heavily loaded traffic from accessing
the free space in the shared buffer pool. Fig. 6a
also shows that the fixed scheme may cause
severe congestion when the queue length reach-
es a certain threshold level (i.e., the throughput
of the fixed scheme in the12th and the 19th sec-
onds), which also explains why the fixed scheme
takes longer than Tetris and linear proportional
schemes to transmit the SAN traffic in Fig. 6a.

The instantaneous measurement of the overall
utility of the three algorithms in the simulation
are compared in Fig. 6b. Here, the overall utility
is defined as the request-to-grant ratio in each
time cycle, which is a measure of the degree of
customer satisfaction. (see Appendix 2 for a
detailed definition of overall utility.) Figure 6b
shows that the Tetris, fixed and linear propor-
tional schemes achieve 23 percent, 20 percent
and 5 percent average overall utility, respectively.
The linear proportional scheme has the lowest
overall utility because when heavily-loaded SANs
constantly request large numbers of buffers, the
linear proportional scheme has no way to prevent
the heavy traffic from monopolizing the buffer
pool. Consequently, the lightly loaded traffic
begins to starve, leading to low utility. The Tetris
scheme, on the other hand, always satisfies the
SAN with the minimal request, and thus prevents
the heavily loaded traffic from monopolizing the
buffer pool. In this way, the overall utility is
greatly enhanced, as shown in Fig. 6b.

In the simulation, the fixed scheme provides
higher utility than the linear proportional

scheme, because the low-traffic SAN requests
are always fully satisfied by the buffers allotted
to the SAN. On the other hand, the linear pro-
portional scheme provides better throughput
than the fixed scheme, because underutilized
buffers do not remain idle, and instead are used
to satisfy requests from other SANs. The Tetris
scheme exhibits the higher throughput of the lin-
ear proportional scheme while also exhibiting
the higher utility of the fixed scheme.

S-PON IMPLEMENTATION
The implementation of S-PON is based on the
regular PON infrastructure with minor modifica-
tions, such as the aforementioned changes in the
remote node for the WDMA scenario, extra
transceivers in the SCMA/WDMA scenario, and
the upgraded OLT device (i.e., XtenOLT). To
further demonstrate the possible practical appli-
cation of the S-PON architecture, we show an S-
PON implementation exemplified in this section.

In Fig. 7, SAN1 and SAN2 are the two pri-
mary sites in San Francisco and Dallas, respec-
tively, while SAN3 is the storage center in
Atlanta for routine backup and disaster recov-
ery. S-PON enables the provisioning of storage
service nationwide, separating the primary site
and backup center by hundreds or thousands of
miles. All three sites are deployed with NEC “S”
serial SAN products and SpectralWave GPON
products. In addition, the XtenOLT is imple-
mented in each site as an enhanced OLT with
storage provisioning capacity.

Different transmission technologies are
employed in the S-PON architecture of each
site. TDMA is utilized at SAN1 in San Francis-
co, which enables SAN1 to share the 1 Gb/s
transmission bandwidth with other LAN traffic
through its own time slots. Therefore, the remote
node and transceivers in this S-PON remain the
same as in the regular PONs. On the other hand,
the storage data of SAN2 in Dallas is modulated
by sub-carrier signals to XtenOLT, which pro-
vides SAN2 with a 2.5-Gb/s transmission rate

n Figure 6. The performance comparison of fixed, proportional and Tetris schemes.
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through its sub-band f1. To support the SCMA
transmission, a pair of transceivers that support
SCM are configured in the XtenOLT and the
FC switch of SAN2. Lastly, as the data backup
center, SAN3 in Atlanta has the highest band-
width and security requirements, and is thus
allocated one dedicated wavelength, λ2, for stor-
age data transmission, which provides SAN3
with up to a 10-Gb/s transmission rate. To fulfill
the transmission requirements under this sce-
nario, the remote node of the PON is upgraded,
as shown in Fig. 2c, to support WDMA, and
WDM transceivers are implemented in
XtenOLT and in the FC switch of SAN3.

With S-PON, businesses in San Francisco and
Dallas are able to locate their remote mirroring
sites in Atlanta, which is far away from their pri-
mary sites, to divert the risk of all sites being hit
by the same disaster. S-PON offers a high trans-
fer speed comparable to conventional long-haul
technologies, thereby enabling businesses in San
Francisco and Dallas to recover all their critical
data in a short time. In addition, S-PON can
transfer data without critical loss and hence
improves the efficiency of data consolidation.
This would help businesses consolidate their
data effectively, and make it readily available to
their subunits in real time.

CONCLUSIONS
In this article, we have proposed a new solution,
S-PON, to tackle the challenges of extending the
SAN into the long-haul network. S-PON adopts
the P2MP architecture and leverages the existing
PON infrastructure to solve the key issues of

scalability and cost. Furthermore, three trans-
mission technologies, TDMA, SCMA and
WDMA, were investigated to tackle the legacy
transmission bottleneck. We have also proposed
a new device to deliver storage service over PON
and to solve the low throughput of conventional
SAN extension. A new buffer management
scheme called Tetris is implemented in
XtenOLT. Our experiments and simulations
have shown that, in the physical layer, the pro-
posed S-PON transmission technologies success-
fully deliver SAN traffic to the long-haul at the
rate of 2.5 Gb/s; in the network layer, XtenOLT
with the Tetris buffer-management scheme dra-
matically enhances the deliverable throughput
and overall utility over a 5000-km distance.

APPENDIX 1: THE MATHEMATICAL
DERIVATIONS OF THE
TETRIS ALGORITHM

Let’s define the request Ri(n) the sum of the
queued length Qi(n) at the beginning of time
interval n and the arrived data length Li(n) at
the end of time interval n. In the linear propor-
tional scheme, the granted buffers to SANi is
calculated by

(1)

where M is the total available buffers in time
interval n+1 and k is the number of SANs con-
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nected to the switch. Since the linear proportion-
al scheme favors SANs with large buffer require-
ments, it causes the problems of unfairness and
low utility [19].

To overcome the problems of existing buffer
management schemes, the Tetris algorithm is
proposed to allocate the buffers to the SANs
more efficiently. The Tetris algorithm is
described as follows: assume there are k SANs
requesting buffers in time interval n, and their
requests Ri(n) are also defined as the sum of the
queued length Qi(n) at the beginning of time
interval n and the arrived data length Li(n) at
the end of time interval n. In round 1, grant
Gi(n+1) to each SAN is equal to the minimal
request of k SANs, say R1

min. Without loss of
generality, we assume SANi has the minimal
requirements in round i, and thus,

G1(n+1) = G2(n+1) = … = Gk(n+1) 
= min{Qi(n)+Li(n), 

i = 1, 2, …, k} =  R1
min (2)

After round 1, there are k – 1 requests left
with the value of Qi(n+1) + Li(n) – R1

min, i = 1,
2, …, k – 1. Assume the minimal value of the
left request is R2

min, we then have the grants in
round 2 as,

(3)

As long as the available buffer M is larger
than k × min{Qi + Li(n), i = 1, 2, … k, Tetris
continues to allocate buffer until the last request
is granted, i.e.,

(4)

A critical condition for deploying the Tetris
algorithm is to ensure that M > k × min{Qi(n) +
Li(n), i = 1, 2, … k} always holds. However, it is
possible that the available buffers are not larger
than k × min{Qi(n) + Li(n), i = 1, 2, … k} after
several rounds. In this case, the leftover available
buffers will be distributed to each SAN following
a certain remainder distribution policy (RDP).

APPENDIX 2: THE DEFINITION OF
OVERALL UTILITY

The utility of SANi in time interval n is defined
as

(5)

where Gi(n) is the granted buffer, and Ri(n) is
the sum of the queued length Qi(n) at the begin-
ning of time interval n and the arrived data
length Li(n) at the end of time interval n.
ui(n+1) essentially represents how much of the
ratio of the requests are granted in each time
interval. Assuming that there are k SANs, the
overall utility in the time interval n is defined as

(6)
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