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Passband Control of Lightly Damped
Systems With Mode Separation
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Abstract—This paper deals with the regulation and stabilization
of lightly damped systems under plant uncertainty. A controller
consisting of a neural-network-based mode separator together
with a modular passband tuning regulator is proposed. The mode
separator generates the in-phase components of the plant utilized
by the passband tuning regulator to maintain closed-loop stability
and asymptotic regulation. This combined controller is robust
and requires minimal plant information to operate. A synthesis
procedure is outlined in this paper to summarize the design steps
in a systematic manner. Finally, the application of the passband
controller to the stabilization of a magnetic leadscrew is con-
sidered. Resonance is shown to be completely eliminated. The
stabilization time of the transient response is also significantly
reduced, confirming the feasibility of the controller.

Index Terms—Lightly damped systems, mode separation,
neural network, passband control, regulation, stabilization, tuning
regulator, vibration control.

I. INTRODUCTION

MOST LIGHTLY damped structures are characterized by
the presence of many elastic modes scattered over a

wide frequency range. The dynamics of such structures may
also be poorly known due to the difficulties in accounting for
various damping effects and coupling gains. Depending on the
applications, it may be desirable to suppress or sustain the
oscillations. For example, the vibration suppression of flexible
structures or lightly damped systems falls into the first cate-
gory, whereas sensors, including the vibrating-beam accelerom-
eters, require sustained oscillations to operate. Cancellation
control such as command shaping ([3], [7], and [26]) and feed-
back Posicast [12] has been effective in reducing command-
induced oscillations. However, such method does not suppress
disturbance-induced vibrations or provide sustained oscilla-
tions. A number of learning controllers have been proposed
for tracking periodic signals. In [19], an iterative feedforward-
feedback learning controller is proposed for precision motion
control of a permanent-magnet linear motor. In [20], single-
neuron-based proportional-integral (PI) control is applied to
vibration suppression. In [22] and [24], neural network is
proposed for harmonic detection and damping of torsional
vibrations. The use of fuzzy neural sliding-mode control for
motion control is discussed in [21]. In [16], real-time imple-
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Fig. 1. Modular-plant structure.

mentation of neural-network controller is addressed. Observer-
based vibration control has been proposed in [9] and [18].
Finally, the methods based on robust servomechanism and PI
types of vibration control are given in [4], [14], and [27].
The conventional approach toward the stabilization and reg-
ulation of flexible structures typically consists of two steps:
1) modeling and 2) controller synthesis where, e.g., Kalman,
filter-based stabilizers are designed. Whereas such methodol-
ogy may be effective in dealing with lumped-parameter sys-
tems, the application to the control of flexible structures is
generally inefficient, owing to the uncertain plant dynamics
and the excessively high control bandwidth requirements. Con-
troller design can be made more effective by recognizing that
most lightly damped structures have energy content in a number
of separate passbands, which are band limited. Each band can
be considered to be a separate plant, and a modular structure
can be obtained, as shown in Fig. 1, where the plant consists of
N passband modules with outputs Yi(s).

However, the measured outputs Z(s) are usually a linear
combination of the passband outputs due to internal coupling
and sensor placement. It is therefore necessary to extract the
passband components from the measured output prior to carry-
ing out feedback control. The band-limited nature of passbands
suggests the use of the Hilbert transform which is known in
the communication-system community for the key role it plays
in the bandwidth conservation in single-sideband modulation.
Because each oscillating mode can be treated as a separate
narrowband modulation frequency centered around a carrier
frequency, the Hilbert transform can then be used to obtain
an equivalent model in the baseband for each of the individual
modes of the plant (subsections of the controller).

In [2], a nonlinear tuning regulator (NTR) is devised to sta-
bilize and regulate the elastic modes. Approximate knowledge
of the resonant frequencies is required to operate the NTR.
The bandpass nature of the resonant sections suggests the use
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of Hilbert transform [10] to translate the energy bands down
to the baseband, where bandwidth-conservative control-system
design can be carried out for each resonant section. The control
action for each section is naturally decoupled from each other
in the steady state due to the given frequency separation. Such
decoupling gives rise to the modularity in the control system.

II. PLAN STRUCTURE

The plant is assumed to be linear with the ith passband
described by the following transfer function:

Gi(s) =
His

s2 + 2ζiωis + ω2
i

, i = 1, 2, . . . , N (1)

where Hi is the high-frequency gain, and ζi and ωi are the
damping factor and the natural frequency of the ith mode,
respectively. The individual passband outputs Yi(s) can be
expressed as

Yi(s) =Gi(s)U(s) (2)

Y (s) = [Y1(s), Y2(s), . . . , YN (s)]′ (3)

Z(s) =CY (s) (4)

where C ∈ �N×N , and Z(s) is the Laplace transform of the
measured output z(t) ∈ �N . In lightly damped systems, the
natural frequency or, equivalently, the ringing frequency ωd

i =
ωi

√
1 − ζ2

i or resonant frequency ωr
i = ωi

√
1 − 2ζ2

i may be
readily measured by either a frequency sweep or a white-noise
excitation test. The quantities ζi and Hi are, however, usually
uncertain, and they cannot be determined accurately. For the
remainder of this paper, it is assumed that the lightly damped
system is driven by a single actuator. The generalization to
multi-input configuration can be made by using a similar
approach. Because the open-loop system is lightly damped,
the section outputs yi(t), i = 1, 2, . . . , N are therefore also
narrowband given by

yi(t)= Ai(t) sin
(
ωd

i t+ θi(t)
)

(5)

= yc
i (t) cos ωd

i t−ys
i (t) sin ωd

i t, i= 1, 2, . . . , N (6)

where yc
i (t) and ys

i (t) ∈ � are the baseband in-phase
and quadrature components of yi(t), respectively. Let
amp(yi(t)) =

√
(yc

i )2 + (yc
i )2 be defined as the amplitude

of yi(t), and let yref
i be defined as the reference signal.

amp(yi(t)) can be obtained from yi(t) by standard demodu-
lation techniques.

Let the regulation error be defined as

ei(t) = amp (yi(t)) − yref
i , i = 1, 2, . . . , N. (7)

The control objectives [6] can then be expressed as follows.

1) Stabilization. amp(yi(∞)) = 0, where i = 1, 2, . . . , N ;
2) Regulation. ei(∞) = 0, where i = 1, 2, . . . , N ;
3) Robustness. Properties 1) and 2) hold under small

parametric perturbation in ζi, ωi, and Hi, where i =
1, 2, . . . , N .

Condition 2) mentioned earlier also implies 1) by setting
yref

i to zero. In addition, it is desired to achieve the control
objectives with minimal plant information. In this case, it is
assumed that the number of lightly damped modes is known
or can be measured.

III. LOW-FREQUENCY EQUIVALENT MODEL

In this section, the low-frequency equivalence of yi(t) and
the plant impulse response are derived via the Hilbert transform,
following the approach of [10]. Denote H(•) as the Hilbert
transform so that

�
y i (t) = H [yi(t)] (8)

and define the pre-envelop of yi(t) as

yi(t) = yi(t) + j
�
y i (t) ∈ C. (9)

Then, it is observed that [10]

yi(t) = Re [yi(t)]

= Re
[(

yi(t)e
−jωd

i t
)

ejωd
i t

]
= Re

[
ỹi(t)ejωd

i t
]
. (10)

The quantity ỹi(t) = yi(t)e−jωd
i t ∈ C is known as the com-

plex envelop of yi(t). ỹi(t) is a low-pass signal with bandwidth
Ωi, and it can be expressed as

ỹi(t) = yc
i (t) + jys

i (t) (11)

where yc
i (t) and ys

i (t) ∈ � are the low-frequency in-phase and
quadrature components of yi(t), respectively, as in (6). The
section impulse-response matrix Gi(t) = L−1Gi(s) can also
be decomposed into its low-frequency in-phase and quadrature
pair Gc

i (t) and Gs
i (t) in a similar manner [10]

Gi(t) = 2Gc
i (t) cos ωd

i t − 2Gs
i (t) sin ωd

i t. (12)

It is obvious that Gc
i (t) and Gs

i (t) are stable iff Gi(t) is
stable. The section output yi(t) can now be expressed as

yi(t) = Gi(t) ∗ u(t) = Re
[
Gi(t) ∗ u(t)

]
(13)

where Gi(t) = Gi(t) + jĜi(t), Ĝi(t) = H[Gi(t)], and “∗” de-
notes convolution.

On letting

ỹi(t) = G̃i(t) ∗ ũ(t) = (Gc
i (t) + jGs

i (t)) ∗ (uc(t) + jus(t))

and observing that yi(t) = Re[ỹi(t)ejωd
i t], it follows that

yi(t) = yc
i (t) cos ωd

i t − ys
i (t) sin ωd

i t (14)

where

yc
i (t) =Gc

i (t) ∗ uc
i (t) − Gs

i (t) ∗ us
i (t)

ys
i (t) =Gs

i (t) ∗ uc
i (t) + Gc

i (t) ∗ us
i (t)
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uc
i (t) and us

i (t) are the low-frequency components of u(t)
aligned in the ith passband. The baseband equivalent model of
the ith section is now obtained as

Y b
i (s) = Gb

i (s)U
b
i (s) (15)

where

Gb
i (s) =

[
Gc

i (s) −Gs
i (s)

Gs
i (s) Gc

i (s)

]
(16)

and Y b
i = [Y c

i Y s
i ]′, and U b

i = [U c
i Us

i ]′. The plant output y(t)
is given as

y(t) =




yc
1(t) cos ωd

1t − ys
1(t) sin ωd

1t
yc
2(t) cos ωd

2t − ys
2(t) sin ωd

2t
...

yc
N (t) cos ωd

N t − ys
N (t) sin ωd

N t




z(t) =Cy(t). (17)

Furthermore, because the impulse response of Gi(t) is given by

Hi

ωd
i

e−ζiωit
[
−ζiωi sinωd

i t + ωd
i cos ωd

i t
]

(18)

Gb
i (s) is then calculated as

Gb
i (s) =

Hi

2ωd
i (s + ζiωi)

[
ωd

i ζiωi

−ζiωi ωd
i

]
. (19)

Hence, Gb
i (s) has a lightly damped pole at −ζiωi. The stabi-

lization of the plant requires the shift of all N poles further into
the left-half plane. For lightly damped structures, ζi ≈ 0, and
therefore, the transfer dynamics with respect to the controller
becomes

Hi

2(s + ζiωi)
, i = 1, 2, . . . , N. (20)

Now, because (20) is first order, a proportional control can
readily stabilize the plant. A bandwidth-conservative controller
can now be synthesized for each of the N resonant sections
based on the low-frequency equivalent models (20) provided
that the yi(t) components can be extracted.

IV. NEURAL MODE SEPARATOR (NMS)

The plant output z(t) = Cy(t) is a mixture of the modes
yi(t), where i = 1, 2, . . . , N . Therefore, the proper separation
of the yi’s must first be achieved before individual mode regu-
lation can take place. It is possible that the mode separation can
be carried out by utilizing bandpass filters which unavoidably
increase the complexity of the loop dynamics. Furthermore,
the use of dynamical filtering also requires the approximate
knowledge of the mode frequencies: ωr

1, ω
r
2, . . . , ω

r
N . For plants

with varying operating conditions and, hence, frequencies, it is
of general interest to replace the fixed bandpass filters by an
intelligent front end such as neural network. The NMS used in
this paper belongs to the class of recurrent neural network, i.e.,

Fig. 2. NMS.

the outputs of the net are fed back to the input stage via a set
of dynamic adaptive weights. NMS is a quasi-orthogonalization
device. The objective is to blindly recover the modes from the
mixture of modes. The term “blind” is used to signify the fact
that the only information used to recover the modes is contained
in the plant output z(t). A general N -input–N -output NMS is
shown in Fig. 2.

The following adaptation rules may be used to update the
weights:

w+
ij = w−

ij − µα(ŷi)β(ŷj), i �= j; i, j ∈ [1, N ]. (21)

The parameter µ represents the learning rate, and α(·) and
β(·) are odd locally smooth functions. The origin of this scheme
for a two-input–two-output system dates back to the ’80s in the
area of interference cancellation [1]. A justification of the mode
separation for the case of elementary signals may be found in
[17]. In this work, the elementary signals take on the form of
resonant modes, and the statistical independence condition can
be relaxed to the orthogonality between the modes

〈yi(t), yj(t)〉 = lim
T→∞

1
2T

T∫
−T

yi(t)yj(t) dt = mijδij (22)

where δij is the Kronecker delta, and mij is a nonzero weight.
Given that

ŷ(t) = (I − W )−1z(t) = (I − W )−1Cy(t)

C = [cij ] = [ c1 c2 · · · cN ]

where

ci =




ci1

ci2
...

ciN


 , i = 1, 2, . . . , N (23)

W =




1 w12 w13 · · · w1N

1 w23 · · · w2N
... · · ·

...
wN1 wN2 wN3 · · · 1


 . (24)
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In addition, let

(I − W )−1 =




ψ1

ψ2
...

ψN




where ψi represents the ith row of (I − W )−1, where i =
1, 2, . . . , N

〈ŷi(t), ŷj(t)〉 = ψiC diag (〈yi(t), yi(t)〉 , i = 1, . . . , N) C ′ψ′
j

= ψi

(
N∑

l=1

clc
′
l 〈yl(t), yl(t)〉

)
ψ′

j

= ψi

(
N∑

l=1

clc
′
lmll

)
ψ′

j . (25)

The objective of the weight adaptation is to minimize
〈ŷi(t), ŷj(t)〉, which attains a minimum if ψicj = 0, i �= j,
and i, j = 1, 2, . . . , N or, equivalently, if (I − W )−1C = PN

where PN is a general permutation/scaling matrix. As the
sections are structurally identical, PN may be equated to the
identity matrix IN with no loss of generality. The degree of
separation is thus determined by the value of 〈ŷi(t), ŷj(t)〉; the
smaller this inner product, the higher is the degree of separation.
Convergence characteristics and mode separation are illustrated
in the numerical example given in Section VI. For the case
of N = 2

〈
ŷ2
1

〉
=

(c11 + w12c21)
〈
y2
1

〉
+ (c12 + w12c22)

〈
y2
2

〉
(1 − w12w21)2

〈
ŷ2
2

〉
=

(c21 + w21c11)
〈
y2
1

〉
+ (c22 + w21c12)

〈
y2
2

〉
(1 − w12w21)2

(26)

with 〈y1, y2〉 = 0. The output power of the NMS is minimized
if either

(w12, w21)→
(
−c12

c22
,−c21

c11

)
or (w12, w21)→

(
−c11

c21
,−c22

c12

)

or equivalently

(I − W )−1C →
[

m11 0
0 m22

]
or

[
m22 0
0 m11

]
.

In the first case, ŷ1 and ŷ2 are directly proportional to y1 and
y2, respectively, whereas in the second case, ŷ1 and ŷ2 are
directly proportional to y2 and y1, respectively. Now, because
(∂〈ŷ2

1〉/∂w12) ∝ ŷ1ŷ2 and (∂〈ŷ2
2〉/∂w21) ∝ ŷ1ŷ2, the follow-

ing gradient-based updating rule may be used:

w+
ij = w−

ij − µŷiŷj , i �= j; i, j ∈ [1, 2] (27)

so that the adaptation ceases when ŷi → yi and ŷj → yj , as
the output power of the NMS becomes zero. This way, the
NMS can be viewed as a quasi-orthogonalization device. The
adaptation rule (21) is a more robust realization [17], and it

is also the procedure used in this paper. Because the blind-
source-separation problem, which has been widely studied and
a variety of solutions have been proposed in the past decade,
is not the main focus of this paper, readers are referred to [8],
[11], [13], and [23] for further analyses and properties of the
problem and solutions.

V. CONTROLLER STRUCTURE

The overall control objectives are the following: 1) closed-
loop stability and 2) asymptotic regulation of the amplitude
of each resonant mode of the flexible structure. Furthermore,
it is desired to conserve control bandwidth so as to minimize
implementation costs.

Because the dynamics of a flexible structure can be decom-
posed into N resonant subsystems whose energy is mainly
distributed in the passband, the frequency-translation technique
based on the Hilbert transform is first applied to the nominal
plant to obtain a low-frequency equivalent model. Analysis
and design are then carried out in the baseband to obtain the
necessary bandwidth-conservative tuning regulator.

The neural-network front end is a single-layer recurrent
net which separates the plant output back into the N fre-
quency components (modes). The separated modes are then
fed to the N structurally identical tuning-regulator modules.
The tuning gains and the learning rate are derived by the
online-tuning method. A set of N NTRs is synthesized to pro-
vide bandwidth conservative modular control of the N lightly
damped sections. Each module has four components described
as follows.

1) Demodulator: The conversion of ŷi(t) into amp(yi(t))
may be achieved in various ways, e.g., envelop detec-
tion, synchronous demodulation, etc. For simplicity of
description, envelope detection is chosen in this paper.
The operation can be expressed as (4/π)(|ŷi(t)|).

2) Multiplier: The function of the multiplier is to translate
the controller output back to the original passband.

3) Tuning gain εi: The magnitude of this gain element is de-
termined by online tuning to obtain satisfactory transient
response. The polarity of εi is positive if the separated
mode ŷi is in phase with yi(t). Otherwise, it is taken to
be negative.

4) PI controller: The stabilization and regulation of ŷi(t)
are effected by a PI controller having the form of K(1 +
(KI/s)).

5) From (20), the equivalent baseband-characteristic equa-
tion for each mode is given by

s2 + (εiHi/2 + ζiωi)s + HiKI/2 = 0. (28)

It is noted that the knowledge of the high-frequency gain Hi

will be sufficient in choosing proper εi and KI , so that the
closed-loop poles are always in the left-half plane. With integral
control in place, the asymptotic regulation and disturbance
rejection for constant exogenous signals can be achieved [6].
For sinusoidal/periodic-disturbance rejection, the servocom-
pensator approach may be applied [4].
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Fig. 3. Learning controller.

A block diagram showing the closed-loop control of a lightly
damped structure is given in Fig. 3.

The following algorithm provides a systematic way of syn-
thesizing the learning controller.

1) Determine the number of modes N (which is equal to the
number of control modules).

2) Determine sensor location so that all N modes are ob-
servable.

3) Synthesize the NMS according to (3).
4) Synthesize the N NTR modules.
5) Adjust the learning rate µ so that satisfactory convergence

is obtained.
6) Tune the system by adjusting εi online so that desirable

transient characteristics are obtained. Reduce the magni-
tude of the integral gain if overshoot is excessive.

It is noted that for plant undergoing significant variations,
retuning of µ and εi may be necessary to achieve better transient
characteristics.

VI. NUMERICAL EXAMPLE

The aforementioned synthesis algorithm is now applied to
the control of a lightly damped flexible structure with reso-
nant frequencies at 300 and 400 rad/s. The nominal plant is
described by the following equation:

ẋ =




0 1 0 0
−3002 0 0 0

0 0 0 1
0 0 −4002 0


x +




0
1
0
1


 u

y =
[

0 1 0 2
0 2 0 1

]
x.

The learning controller is tuned for the nominal plant, which
subsequently is subjected to both (positive damping) stable
and (negative damping) unstable perturbations. The controller
parameters are as follows: µ = 0.000001, ε1 = ε2 = −15, and
KI = 4.

These parameters are obtained by online tuning without the
explicit knowledge of the plant. The input noise is applied
for the first 2.5 s, whereas the NMS operates from 0 to 5 s.

Fig. 4. Amplitude response of y1, y2, and weight adaptation.

Fig. 5. Mode separation on y1 and y2.

The NTR operates continuously from 0 to 10 s, i.e., the entire
simulation horizon.

The control profile is

yref
1 = yref

2 = 10, t ∈ [0, 7.5]

= 5, t ∈ [7.5, 9]

= 0, t ∈ [9, 10].

The response of amp(ŷi) is given in Fig. 4, along with the
weight-convergence characteristics where it is observed that
the convergence took place in about 1 s. The initial transient
can be further modified by adjusting the controller gains. The
asymptotic tracking of the control profile is observed. Fig. 5
shows the actual-mode response (upper trace) before and (lower
trace) after weight convergence. The closeness of the mode
frequencies is evident.
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Fig. 6. Experimental setup of the magnetic leadscrew.

VII. APPLICATION TO A HIGH-PRECISION

MAGNETIC LEADSCREW SYSTEM

A magnetic leadscrew is a transmission device [5], [15],
[25] by which rotary motion is converted into linear. A typical
mechanical leadscrew transmission exhibits nonlinearities such
as friction, backlash, and hysteresis, which limit the system per-
formance significantly. The magnetic leadscrew in this example
belongs to the class of contactless drives which overcome the
aforementioned limitations of contact-type drives. The opera-
tion is based on leadscrew/nut coupling, but unlike mechanical
leadscrews, the threads of the nut and the leadscrew are aligned
magnetically and do not come in contact (see [15] for details
of the modeling analysis). Thus, “hard” nonlinearities are sub-
stantially reduced, resulting in high precision and resolution.
However, due to their contactless nature, magnetic leadscrews
exhibit very low damping. The friction between transmitting
parts is virtually eliminated, resulting in a lightly damped sys-
tem which exhibits more vibration than conventional (contact-
type) drives. This is an undesirable property inherent to these
drives due to their contactless nature, and therefore, active-
control schemes must be applied to suppress the vibrations. The
experimental setup of the system is shown in Fig. 6.

The system consists of a nut and a leadscrew which are
magnetically coupled to each other. The nut is mounted on
a slide at the bottom and travels in the axial, i.e., the z-
direction. The system uses lead zirconate–lead titanate (LZT-5)
actuators to control the nut vibration. The controller is im-
plemented on a PC-DSP development platform, which has a
TMS320C31 floating point DSP. Two separate piezoelectric
stacks with suitable proof mass are mounted on either side of
the nut. One stack (piezoelectric transducer 1) is used to inject
test disturbance, whereas the other (piezoelectric transducer 2)
is used to produce the control motion. A low-G accelerometer
and a capacitive sensor are mounted on the nut as shown to
measure the axial (z-direction) acceleration and displacement
of the nut, respectively. The capacitive sensor has a range of
±25 µms which corresponds to the half rotation of the nut. The
magnetic nut has an open-loop response, as shown in Fig. 7.

The conventional control of this system requires high-order
high-sampling rate implementation. The design process is fur-
ther complicated by the fact that the transfer function is load
dependent, with uncertainty of the resonant frequencies. In

Fig. 7. Open-loop response of the plant.

the next section, the method of passband control is outlined.
This method exploits the properties of resonant structures to
produce a robust low order controller. The test procedure of
the magnetic-leadscrew/nut-stabilization experiment consists
of the following steps: First, the axial (z-direction) resonant
modes are identified and characterized with respect to two load-
ing conditions (1.1-and 2-kg load). Second, the NMS passband
control is applied to stabilize these modes under two conditions:
self-resonance and forced oscillation. For self-resonance, the
nut is allowed to go into undamped oscillation (driven by
background noise). The control objective here is to increase
the damping, so that “ringing” is minimized. In the case of
forced oscillation, a sinewave tuned to the resonant frequency
is injected into the disturbance PZT, so that an oscillation is
observed at the sensors. The goal is to reduce the transmission
gain of the axial dynamics at the resonant frequencies. The test
results for resonance suppression and transient improvements
using the passband controller are now presented.

A. Resonance Suppression

The magnetic nut is subjected to considerable background
noise and ground vibration, resulting in a pronounced “ring-
ing effect” whenever additional mass is placed on top of the
nut. The ringing is undesirable, considering the positioning
demands on the drive. It is, however, observed that it has
a single frequency of resonance and can therefore act as a
candidate for external disturbance. The performance of the
controller is evaluated in the presence of this self-resonance.
From simulations, it was determined that µ = 10−11 was the
most suitable value for an appreciable rate of learning and is
the value for all tests conducted for both self-resonance as well
as external disturbance.
1) m = 1.1-kg Load: A mass of 1.1 kg is added, and the

effect of control is observed. Fig. 8 shows the (left) transient
response of the nut, where the top graph is recorded with
no control and the bottom graph shows the effects of the
NMS-based control. Steady-state error is reduced from 0.91- to
0.026-µm root mean square (RMS). The fast Fourier transform
(FFT) of the nut response also confirms that the self-resonance
component is completely eliminated.
2) m = 2-kg Load: A second test run is conducted with an

overall additional mass of 2 kg. The time response is shown
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Fig. 8. Self-resonance cancellation: (top) no control and (bottom) with
control.

Fig. 9. Resonance suppression: (top) no control and (bottom) with control.

in Fig. 9 (top left: no control; bottom left: with control). The
steady-state error is reduced from 0.40- to 0.023-µm RMS.
Again, the FFT of the nut response confirms that the self-
resonance component is eliminated.

B. Transient Improvement

This test is conducted to examine the improvement on
transient response. An impulse input is applied by using a
pendulum which makes an impact on the nut with the same
impact force each time. Results are shown in Fig. 10.

It is observed that the time required for stabilization is sig-
nificantly reduced under the control action. For this particular
test configuration, the control is applied at mode one (61.5 Hz),
which is the dominant mode of the nut, as shown in Fig. 7, and
is the significant mode contributing to the vibration.

VIII. CONCLUSION

The control of lightly damped systems has been consid-
ered in this paper. Most lightly damped mechanical systems

Fig. 10. Nut transient response: (top) no control and (bottom) with control.

exhibit significant parametric deviation and require accurate
regulation by using a minimal-control bandwidth. The passband
controller described in this paper combines a neural-network-
based mode separator followed by a modular NTR. To carry
out the controller design, it is only necessary to know the
number of modes. Closed-loop response is then optimized
online by adjusting a tuning gain for each modular section and
the learning rate of the NMS. The combination of the NMS and
NTR constitutes a special separation principle, where learning
and regulation simultaneously take place. Finally, a numerical
example with closely spaced mode frequencies and the ex-
perimental control of a magnetic leadscrew are considered to
illustrate the feasibility and properties of this method.
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