
Computer Communications 33 (2010) 124–135
Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/ locate/comcom
Task-execution scheduling schemes for network measurement and monitoring

Zhen Qin, Roberto Rojas-Cessa, Nirwan Ansari *

Department of Electrical and Computer Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, United States

a r t i c l e i n f o
Article history:
Available online 12 November 2009

Keywords:
Scheduling
Network measurement
Active measurement
Graph coloring
Clique
0140-3664/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.comcom.2009.11.005

* Corresponding author.
E-mail addresses: zq4@njit.edu (Z. Qin), rojas@njit

njit.edu, nirwan.ansari@njit.edu (N. Ansari).
a b s t r a c t

Measurement is a required process in high performance networks for efficient quality-of-service (QoS)
provisioning and service verification. Active measurement is an attractive approach because the mea-
surement traffic injected into the network can be controlled and the measurement tasks can be distrib-
uted throughout the network. However, the execution of measurement tasks in common parts of a
network may face contention for resources, such as computational power, memory, and link bandwidth.
This contention could jeopardize measurement accuracy and affect network services. This contention for
limited resources defines a conflict between measurement tasks. Furthermore, we consider two sets of
measurement tasks, those used to monitor network state periodically, called periodic tasks, and those
for casual measurements issued as needed, called on-demand measurement tasks. In this paper, we pro-
pose a novel scheduling scheme to resolve contention for resources of both periodic and on-demand mea-
surement tasks from graph coloring perspective, called ascending order of the sum of clique number and
degree of tasks. The scheme selects tasks according to the ascending order of the sum of clique number
and conflict task degree in a conflict graph and allows concurrent execution of multiple measurement
tasks for high resource utilization. The scheme decreases the average waiting time of all tasks in periodic
measurement tasks scheduling. For on-demand measurement tasks, the proposed scheme minimizes the
waiting time of inserted on-demand tasks while keeping time space utilization high. In other words, the
total time spent on finishing all the tasks is shortened. We evaluate our proposed schemes under different
measurement task assignment scenarios through computer simulations, and compare the performance of
this scheme with others that also allow concurrent task execution. The simulation results show that the
proposed scheme produces effective contention resolution and low execution delays.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Some applications, such as voice over IP (VoIP), streaming video
and online gaming have stringent requirements for Quality-of-Ser-
vice (QoS) provisioning, which further requires accurate and up-to-
date information of the network performance, through measuring
and monitoring tools to estimate and collect those data. Therefore,
network measurement becomes an important subject driven by
Internet Service Providers (ISPs) to quantify network status, mon-
itor existing traffic, and service verification on service agreement
compliance for applications with QoS requirements.

Measurement techniques can be coarsely divided into passive
and active approaches. Passive measurement uses traversing traf-
fic, whether carrying users’ data or network control packets, to
determine the network state. The accuracy of passive measure-
ment is a function of the amount of existing traffic. On the other
hand, active measurement has controllable properties that are
independent of the absence of user traffic, thus making it an attrac-
ll rights reserved.

.edu (R. Rojas-Cessa), ansari@
tive approach [1–12]. In active measurement, a measurement
point, which can be a router or end host or some equipment at-
tached to them, creates and sends probing packets to the target
(destination) measurement point with controlled departure times.
Either the destination measures the arrival time in a synchronized
network, or the source estimates the delay time by using the re-
sponse of the destination point [13–16]. Fig. 1 shows an example
of a network with active measurement for (a) end-to-end (using
end hosts) paths, or (b) local links (between neighbor routers).
Without loss of generality, Fig. 2 shows a measurement infrastruc-
ture designed by Internet2 E2E piPEs projects [18]. The network
information obtained by active measurements can be, for example,
available bandwidth, capacity, one-way delay, round-trip time
(RTT), jitter, and topology data. The adoption of active measure-
ment can be found in several large-scale networks [20–23].

Examples of active measurement tools that can be deployed in
any network in general, range from the simple ones, such as Ping
and Traceroute, to the more sophisticated, such as Pipechar [24],
Pathload [25], Cing [26], Clink [27], Nettimer [28], Pathrate
[29], Pathchar [30], and Yaz [31], among others. A network
measurement toolkit includes the various measurement tools to
evaluate the different QoS parameters. The toolkit shown in

http://dx.doi.org/10.1016/j.comcom.2009.11.005
mailto:zq4@njit.edu
mailto:rojas@njit.edu
mailto:ansari@ njit.edu
mailto:ansari@ njit.edu
mailto:nirwan.ansari@njit.edu
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

23
22

21
18

10

5

4

3

2

28
3031

13

32

7
9

16

17

20

15

14
26

27

25

29

11
19

12
8

1

24

6

Fig. 1. Network measurement implementation topology.

Fig. 2. An example of network measurement infrastructure.

Z. Qin et al. / Computer Communications 33 (2010) 124–135 125
Table 1, though not an exclusive one, is an example. Different tools
require different network resources and execution times. The mea-
surement tools are normally run periodically to monitor the con-
secutive network status, by which the tasks are called periodic
measurement tasks. These tasks are known in advance and can
Table 1
Selected measurement tools for QoS parameters.

QoS parameter Tool

One-way delay OWAMP [32]
Round-trip delay Ping
Available bandwidth Pipechar, Pathload
Topology Traceroute
Bandwidth capacity Pathchar
be scheduled before their execution starts. Moreover, the tools
can also be invoked once (or for short periods) at any arbitrary time
to measure a network parameter as needed. These tasks are re-
ferred to as on-demand tasks. On-demand tasks emerge at any
time and need to be scheduled in combination with the periodic
tasks while the network is in operation.

Independently of the measurement approach used, probing
overhead is a general concern for active measurement mechanisms
as it may affect the user traffic. For example, an active measure-
ment experiment [19] showed that a 700-Byte packet used in
60-packet probing trains can achieve sufficiently accurate results
of available bandwidth measurement per path on the Internet. In
this case, one path overhead is about 42 KB, and so measuring all
end-to-end paths in a 200-nodes bidirectional mesh system re-
quires about 1.7 GB for just one snapshot if all network links are
simultaneously tested. Therefore, the network resources need to
be efficiently managed under active probing.

In addition, distributed measurement tasks may be executed
simultaneously at one measurement point in a network. Hence, it
is possible that different measurement tasks contend for network
resources, including transmission channels and bandwidth. Mea-
surement processes that are executed in different common points
also contend for resources, such as processing time, bandwidth,
and memory. The accuracy of some measurement processes may
be affected by other measurement processes run concurrently. This
contention for resources is called measurement conflict problem.
To gain insight of the implications of contention for resources,
we executed Pipechar, Pathload, and Ping in a host, all at the same
time, and used them to measure several parameters in the trans-
mission from one host to another through a 100-Mbps fast Ether-
net link [16]. We observed that the measurement resources and
measurement processing time had a large discrepancy among
those measurement tools, as shown in Table 2, and the obtained
measurement results are instable because of the disturbance from
other measurement processing. Sommers and Barford [17] also
implemented a testbed through which the experiment results
show that the measurements of packet loss and delay from active
probes can be skewed significantly due to the contention of prob-
ing packets. Thus, the active measurement tasks that are per-
formed at each measurement point need to be scheduled to
avoid both potential resource contention and measurement distur-
bance from each other while achieving a satisfactory measurement
in terms of time and accuracy.

To solve the above problem, we provide a solution to schedule
the periodic and on-demand measurement tasks to achieve the fol-
lowing four goals:

1. Avoid conflicts among concurrent executed measurement tasks.
2. Network resources are not exhausted by measurement tasks.
3. Shorten the waiting time of each measurement task for the

execution.
4. Shorten the total completion time of measurement tasks set,

that is, improve the resource utilization.

To comply with the above requirements, we propose an algo-
rithm to schedule periodic tasks and to improve the measurement
efficiency. We also propose an algorithm to schedule on-demand
Table 2
Comparison of network consumption of sample tools.

Tool CPU/memory Bandwidth Time

Ping Very low Very low 6 2 s
Pipechar Low Low P 20 s
Pathload Low Medium 7 s

126 Z. Qin et al. / Computer Communications 33 (2010) 124–135
measurement tasks that minimize the delay of both periodic tasks
and the incoming on-demand tasks. Both algorithms are based on
graph coloring theory, where each measurement task is treated as
a vertex in a graph, and the contention/conflict by two tasks is rep-
resented as an edge connecting those two vertices.

The remainder of this paper is organized as follows. Section 2
analyzes the contention problem of distributed network measure-
ment tasks. Section 3 introduces related scheduling algorithms for
network measurement. Section 4 describes the modeling of mea-
surement tasks for scheduling by using a coloring approach. Sec-
tion 5 introduces our proposed scheduling schemes for periodic
and on-demand measurement tasks, respectively. Section 6 shows
the performance evaluation obtained by computer evaluation, and
analysis of the proposed schemes and other comparable schemes.
Section 7 presents our conclusions.

2. Problem analysis

According to the classification approach of scheduling intro-
duced by Graham et al. [33], the task scheduling problem is defined
in terms of a three-tuple classifications ½a; b; c�, where a defines the
machine (processor) environment, b specifies the job’s characteris-
tics, and c denotes the optimality criterion. Following this classifi-
cation method, the measurement scheduling problem can be
described as ½P; frec; rig;

P
Ci�. Here, P is the number of identical

parallel processors to perform the required jobs. However, differ-
ent from that approach [33], P is a variable instead. The value of
P depends on the number of measurement tasks run simulta-
neously. Considering that n tasks need to be processed, the follow-
ing relationship exists:

P 6 n ð1Þ

rec refers to the constraints on the resources used by the execution
of measurement tasks. In order to minimize or to avoid the impact
of probing packets on the performance of regular data traffic, a net-
work resource constraint, such as the maximum bandwidth, is set at
each measurement point. This is called measurement resource con-
straint (MRC) in this paper. Scheduling measurement tasks need to
ensure that the total amount of resources consumed by the mea-
surement tasks are within this constraint rec. Measurement task i
is denoted as si in the remainder of this paper. The parameter ri de-
notes the release time of a measurement task si, upon which one in-
stance of the task si becomes available for processing or execution.P

Ci indicates that the optimal criterion chosen is to minimize the
total completion time on P parallel processors, where Ci denotes the
completion time of the measurement task si. This optimal criterion
reflects the fourth goal listed in Section 1. It is easy to see that the
third goal listed in Section 1 is the sufficient and necessary condi-
tion of the fourth goal, as described by Lemma 1. Therefore,

P
Ci

can cover both the third and fourth goals.

Lemma 1. Minimizing the total completion time of a set of measure-
ment tasks is equivalent to minimizing the average waiting time of the
measurement tasks in this set.

Proof. For a measurement tasks set, the completion time of task si

is:

Ci ¼ ei þwi ð2Þ

where ei is the execution time of measurement task si and wi is the
waiting time of task si. Hence, the total completion time of the mea-
surement tasks set is:X

Ci ¼
X

ei þ
X

wi ¼
X

ei þm�wavg ð3Þ

where m is the number of measurement tasks in the set and wavg is
the average waiting time of the tasks. Since the execution time of
each measurement task is a constant, the sum of the execution timeP
ei is a constant too. According to Eq. (3), minimizing

P
Ci is equal

to minimizing m�wavg , and thus is equal to minimizing wavg . �

A scheduling algorithm can be further classified as preemptive
or non-preemptive. In preemptive scheduling, the execution of a
task can be interrupted prior to completion and resumed later.
On the other hand, in non-preemptive scheduling, a task must be
executed to completion once execution has started. In general,
measurement task scheduling is regarded as non-preemptive
scheduling as the measurement results are expected at completion
and the measurement results may be time sensitive. Another issue
with this problem that differentiates it from the others is the po-
tential conflict that measurement tasks have with each other. This
characteristic increases the complexity of the scheduling scheme
because the tasks cannot be just sorted according to one parameter
(e.g., deadline or execution time of the task), but also the conflict
with scheduled tasks has to be considered.

3. Related work

Round robin is one of the simplest scheduling schemes
[22,34,35] where the tasks are executed by a fixed order in uni-
processor systems and only one task is executed at a time. This
scheme requires the longest processing time for measurement
tasks as it does not admit concurrent execution.

Network Weather Service (NWS), a well-known network mea-
surement infrastructure, adapts a token passing scheme [36] to en-
sure mutual exclusion between measurement tasks. In this
scheme, the measurement point that receives a token is entitled
to execute a measurement task. Afterwards, the measurement
point releases the token to a successor. However, this method does
not allow concurrent execution of measurements.

Deadline driven scheduling (DSS), also known in the literature
as the Earliest Deadline First (EDF) scheduling scheme [37], selects
tasks based on their deadlines, and was originally defined for uni-
processor execution.

It is shown that the problem of determining whether a given
periodic task system is non-preemptively feasible on either a single
processor or multiprocessors is NP-hard in a strong sense [38,39].
To provide network measurement scheduling, a scheduling algo-
rithm based on EDF that allows multiple concurrent executions, re-
ferred to as EDF-CE [40], was recently proposed. This approach
initializes a queue that stacks all pending tasks to be processed
in an EDF order, where the deadline is defined as the time before
the task must be executed again. Whenever a task is ready to be
released or a task finishes execution, the available tasks in the
queue are scheduled. This method introduces the possibility of
overlapping multiple tasks in some time slots, but it does not con-
sider the utilization ratio; in other words, sorting the tasks in the
pending queue with their deadlines ignores the fact that the con-
current execution of multiple tasks greatly depends on the existing
conflicts between the tasks as much as on the tasks’ deadlines.

4. Modeling of network measurement scheduling schemes

4.1. Definitions

Let s ¼ fs1; s2; . . . ; sng represent the measurement tasks set
with up to n measurement tasks to be executed in the network.
Here, si is characterized by a three-tuple of parameters:

� aðsiÞ: the time the measurement task is released, which is the
task’s arrival time.

� eðsiÞ: the execution time required by a measurement task to
complete the measurement.

Z. Qin et al. / Computer Communications 33 (2010) 124–135 127
� pðsiÞ: the period of the measurement task, or the time to execute
task si after the previous instance. This parameter describes how
often a measurement task is executed.

A timetable of periodic measurements is constructed by se-
quences of tasks, each of which is executed again in pðsiÞ units of
time, and each task requires execution of eðsiÞ time units. The jth

job (or repetition) of measurement task si is denoted as sij. Thus,
the first job, si1, of measurement task si occurs at time aðsiÞ; con-
secutive jobs generated by si occur exactly pðsiÞ time units apart.
Fig. 3 illustrates an example delineating the terms defined above.

In a set of periodic tasks where the tasks (and the number of
them) do not change and where each task can have any particular
period, the combination of tasks’ release times is finite. This is,
after a long period of time, because of the task periodicity, the com-
bination of release times repeats again. Therefore, for the measure-
ment set s, we define the term hyperperiod ph to be the period of
time where all tasks in the set occur at different times and without
replication of the combination of release times. That is, all periodic
tasks in one hyperperiod are able to follow the same schedule as
used in the previous hyperperiod. The hyperperiod is defined as
the least common multiple of the periods of all measurement tasks
in s.

ph ¼ lcm pðs1Þ;pðs2Þ; . . . ;pðsnÞð Þ ð4Þ

Without loss of generality, we define the execution time eðsiÞ,
initial available time aðsiÞ, and the period pðsiÞ as integer multiples
of a time unit which is referred to as a time slot. The deadline of
each job dðsijÞ coincides with the period, that is, the job sij should
be completed before the next job siðjþ1Þ is available to be executed.
According to this definition, Lemma 2 can be readily obtained:

Lemma 2. Given a measurement tasks set s ¼ fs1; s2; . . . ; sng, at any
time instance, there is at most one job available to be executed for any
measurement task si 2 s.
Proof. At any time instance, there must be a job available for exe-
cution at the beginning of that period. If there are some jobs gen-
erated from previous periods still pending for execution, those
postponed jobs passed their own deadlines and they are consid-
ered as missed jobs. Hence, there is at most one job for each mea-
surement task at any time instance. �
Fig. 3. Illustration of network measurement tasks.
4.2. Modeling of measurement scheduling

Our scheduling algorithms are based on graph theory. In the lit-
erature, there are some articles using graph coloring to solve time
slots assignment problem [41–43], but most of them are designed
for single processing, which are not fit for multi-task processing
such as the network measurement scenario.

Consider a measurement tasks set s ¼ fs1; s2; . . . ; sng to be exe-
cuted in a network. Each measurement task can be represented as
a node ð2 VÞ in a graph and any two measurement tasks are con-
nected by a link ð2 EÞ if they are to be executed with mutual exclu-
sion on the measurement point or channel. These tasks are said to
be adjacent to each other. The graph GðV ; EÞ that describes these
nodes and links is called a conflict graph. Fig. 4 illustrates an exam-
ple of a conflict graph where two measurement tasks are to be exe-
cuted between measurement points 1 and 2 in a full-duplex
connection. Assume that task s1 contends with s2 for the available
memory at measurement point 1, and at the same time, it contends
for the transmission channel with s3. Task s3 also contends with s4

for available memory at measurement point 2. Therefore, these
four tasks comprise a conflict graph with three links. In this exam-
ple, measurement tasks s1 and s4 (represented by shaded nodes),
or s2 and s3 (represented by unshaded nodes) can be concurrently
executed.

In our considered network, there is a central controller to com-
pute the schedule of all measurement tasks and to send out the
schedule information to each measurement point. This central
management mode is feasible and adopted in real network mea-
surement frameworks. Scheduling is requested each time when a
new job is available for execution and when a job execution has
been completed. We name these time instances as scheduling
points. There is a waiting queue to store the jobs available for exe-
cution. At each scheduling point, jobs stored in the waiting queue
become eligible candidates for the scheduler. Based on the conflict
relationship between the measurement tasks, these jobs that be-
long to different measurement tasks construct a conflict graph at
the job level. The conflict relationship between jobs follows the
same conflict relationship between measurement tasks. For peri-
odic tasks, the conflict relationship among them is known prior
to performing scheduling because the submitted tasks and the
amount of resources they consume are both known in advance.
For on-demand tasks, the attributes of measurement tools are
known a priori so the tasks’ conflicts are known once an on-de-
mand task emerges.
Fig. 4. Illustration of the relationship between measurement tasks by a conflict
graph.

128 Z. Qin et al. / Computer Communications 33 (2010) 124–135
As the measurement results obtained by earlier periodic mea-
surement tasks are used to describe the current network perfor-
mance, it is desired that the measurement tasks can be
completed as soon as possible after a task is available for execu-
tion. Therefore, the scheduling problem is converted into a process
to schedule the available jobs at each scheduling point so as to
minimize the job waiting time for execution. At the same time,
the scheduling of measurement jobs at one scheduling point is
enunciated as the arrangement of the vertices of graph G at the
job level such that none of the nodes connected with each other
are scheduled for simultaneous execution. This process can be de-
scribed as a vertex coloring problem as follows.

Scheduling of measurement tasks: Given a conflict graph
GðV ; EÞ with vertices V ¼ VðGÞ, assign each vertex a color out of
the range ½1;2; . . . ; k� such that no two adjacent vertices have the
same color.

Here, each color maps to one time slot. The color set to be used
by a vertex v ij in the conflict graph is mapped to the time range
½tc; dðsijÞ� as described by Eq. (5), where tc is the current scheduling
point and dðsijÞ is the deadline of the job mapped by vertex v ij. That
is, the scheduler only considers the time slots prior to a job’s
deadline.

½1;2; . . . ; k� ! ½tc; dðsijÞ� ð5Þ

Each measurement point is considered to have limited process-
ing and storage (memory) capabilities, and each channel to have a
limited bandwidth capacity. Therefore, the load of intrusive prob-
ing packets in active measurement needs to be restricted within
a range, so as to minimize the disturbance of the measurement
of the existing data traffic, as described by MRC values. We propose
to use a consumption matrix to describe such constraints. Let us
denote the number of schedule slots and the number of the mea-
surement jobs as the column and row of a matrix as shown in
Fig. 5. The resource utilization objective can be described as
follows:

Resource utilization of measurement tasks: Jobs of measure-
ment tasks set s ¼ fs1; s2; . . . ; sng with execution times
eðs1Þ; eðs2Þ; . . . ; eðsnÞ, can be represented as a ph � n consumption
matrix A, where a row indicates the task and its duration in time
slots and the column indicates the time slot. The maximum num-
ber of rows is bounded by the amount of processing resources con-
strained by Eq. (1). Each column as circled in Fig. 5 represents the
consumption of network resources at that particular time slot.

The objective is to place the measurement tasks in the con-
sumption matrix such that

Pn
j¼1Aij 6 MRC;8i 2 ½1;2; . . . ; ph�, where

ph is the hyperperiod duration, i.e., the total consumption of re-
sources by measurement tasks per time slot is within the measure-
ment resource constraint.

5. Proposed scheduling schemes

This section introduces our scheduling schemes for periodic and
on-demand measurement tasks. The following definitions are used
in the description of the proposed schemes.
Fig. 5. Consumption matrix.
� Clique: a maximal set of adjacent vertices of graph G.
� Clique number: the number of vertices in the largest clique of G,

denoted as xðGÞ.
� Degree: degree of vertex v in graph G is the number of adjacent

vertices of v in G, denoted as dGðvÞ; the maximum degree of
graph G is the largest number of dGðvÞ, and it is denoted as DðGÞ.
5.1. Periodic measurement tasks scheduling scheme

Following the model of the scheduling problem described in
Section 4.2, our proposed algorithms consider the jobs stored in
the waiting queue for scheduling at each scheduling point. If a
job can be scheduled in the time range [current scheduling point,
deadline of job] without any conflict with already scheduled jobs
at any given time slot, this job is removed from the waiting queue
and the corresponding time slots for execution are marked in the
consumption matrix; otherwise, the job is kept in the waiting
queue and waits for consideration at the next scheduling point.
Hence, the goal is to find a feasible scheme to schedule the maxi-
mum number of concurrent jobs at each scheduling point, so that
the most time space in the consumption matrix can be utilized.

Consider available jobs in the waiting queue. Since their execu-
tion times are integer multiples of a time slot and the time slot can
be mapped to a vertex, each task can be divided into a set of sub-
vertices as follows:

In a conflict graph GðV ; EÞ at the job level, each vertex v ij that maps
job sij has a set of sub-vertices ðs1

ij; s2
ij; . . . ; sa

ijÞ, where a is the length of
eðsijÞ in time slots.

As the sub-vertices of v ij represent the different but consecutive
time slots of a task, they are said to contend with each other (or to
have a conflict with each other). These conflicts can be described
by a complete sub-graph Gij as in the example shown in Fig. 6. Con-
flict graph G is further represented by its sub-vertices and it is de-
noted as GsðVs; EsÞ. The clique number of a sub-graph Gij is equal to
the number of vertices in Gij. Here, Gs is the graph constructed by
sub-vertices.

As each color represents one time slot, each sub-vertex in graph
Gs is a candidate for a color assignment, so that any two adjacent
sub-vertices must not possess the same color. Each sub-vertex is
restricted to allowed colors that satisfy the relationship denoted
by Eq. (5). This is called the list coloring problem. To solve this
Fig. 6. Example of sub-graph.

Fig. 7. Pseudo code of scheduling algorithm for periodic measurement tasks.

Z. Qin et al. / Computer Communications 33 (2010) 124–135 129
problem, we propose to sort the sub-vertices in the ascending or-
der of their degree in graph Gs:

ds
Gðv l

ijÞ ¼ dGðvÞ þxðGijÞ ¼ dGðvÞ þ eðsijÞ; 8v l
ij 2 Gij ð6Þ

The rationale to schedule jobs in this fashion is the expectation that
a sub-vertex with a small degree has a few conflicts; therefore, a
large number of tasks might be scheduled at the same time. In a
network with a measurement scheduling environment, this can
be described by two aspects. For a sub-vertex v l

ij and its adjacent
sub-vertex vx:

� v l
ij and vx map to the same job: Then, the low degree implies the

job has a short execution time. This part is represented as the
execution time of the vertex eðsijÞ, or by the clique number of
the sub-graph xðGijÞ. Scheduling a job with a short execution
time will leave more available time slots for other jobs in the
waiting queue.

� v l
ij and vx map to different job: Then, the low degree of the sub-

vertex indicates the job might have few conflicts with other
available jobs in the waiting queue. Scheduling a job with few
conflicts allows additional jobs to be executed concurrently,
thus increasing the resource utilization.

The scheduling procedure is described below:

Step 1. At current scheduling point tc , check if there is a new job
available for execution. If so, the new job is placed in the
waiting queue.

Step 2. Map the candidate jobs in the waiting queue to a conflict
graph G and convert G into sub-graph Gs.

Step 3. Sort the sub-vertices in the ascending order of their
degree, as described by Eq. (6).

Step 4. Schedule the first job as indicated by the sorted sequence.
Any sub-vertex v l

ij selected to be scheduled will be col-
ored with other sub-vertices belonging to the same job
sij with consecutive colors. The used colors are the inter-
section set as colorsin�conflict \ ½tc; dðsijÞ� where ½tc; dðsijÞ� is
the time interval from tc to dðsijÞ; colorsin�conflict is the set
of available colors possessed by the on-going conflict
jobs, and colorsin�conflict is the complementary set of
colorsin�conflict , i.e., the available colors that can be used
by v l

ij.
Step 5. Check if the colored job and other on-going jobs violate

the resource constraint MRC. If there is no violation,
remove the colored job from the waiting queue, remove
the corresponding sub-vertices from the sorted sequence,
and add the completion time of the job to the scheduling
point list.

Step 6. Color the next sub-vertex in the sorted sequence. Repeat
Steps 4–5.

Step 7. Go to the next scheduling point. Repeat Steps 1–6.

The algorithm of periodic measurement tasks scheduling is
described by the pseudo code in Fig. 7.

5.2. On-demand measurement tasks scheduling scheme

During the execution of the periodic measurement, a network
administrator may request sporadic on-demand measurement
tasks to test specific network performance parameters at a partic-
ular time. Furthermore, on-demand tasks might conflict with some
periodic or on-demand tasks. Each on-demand task has also
defined execution and deadline times, and it is considered with
either a priority higher than or equal to that of the scheduled
periodic tasks. The proposed scheduling scheme for on-demand
measurement tasks is able to handle both of these two cases adap-
tively. The goal of scheduling on-demand tasks with higher priority
is to execute the on-demand tasks as soon as possible while
minimizing the latency of the periodic tasks caused by the
insertion of on-demand tasks. On the other hand, scheduling
on-demand measurement tasks with the same priority as periodic
tasks aims to shorten the average waiting time for all measure-
ment tasks including on-demand and periodic tasks.

The proposed method schedules all the tasks with higher
priority first, and then schedules the remaining on-demand and
periodic tasks according to the ascending order of the degree of
sub-vertices, as explained below:

Step 1. When a new on-demand task arrives at tc , check the pri-
ority type of the on-demand task. If its priority is high,
store this on-demand task to the waiting queue of high
priority tasks Q high. If the priority is equal to that of the
periodic tasks, the on-demand task is stored to Q regular .

Step 2. Schedule all the candidate jobs in the waiting queue of
high priority tasks Q high. In the pre-computed schedule,
all the jobs of periodic tasks that finish their execution
before tc and the jobs that are still being executed at time
tc are discarded/cancelled. The jobs that start processing
after tc are considered as rescheduled. Follow Steps 2–6
of the previous scheduling procedure for periodic tasks.
Note that the scheduling points are updated so the com-
pletion time of the scheduled jobs in Qhigh are added into
the scheduling points list. After this step, all the possible
jobs in Qhigh must be either scheduled or expired because
there are no available time slots to be scheduled before
the job’s deadline.

Fig. 9. Pseudo code of scheduling algorithm for on-demand measurement tasks.

130 Z. Qin et al. / Computer Communications 33 (2010) 124–135
Step 3. Add those jobs that start processing after tc in the
pre-computed schedule to the waiting queue of regular
priority tasks Q regular . Schedule all candidate jobs in
Qregular following the previous scheduling procedure for
periodic tasks.

Fig. 8 shows an example to illustrate this scheduling procedure.
In this example, the on-demand task sod conflicts with periodic
tasks s1 and s3, as shown in Fig. 8.a. If the priority of sod is higher
than that of other periodic tasks, then when it arrives at tc , all peri-
odic jobs that start the execution after tc are stored in Qregular while
sod is stored in Qhigh. Thus, sod is the first to obtain a schedule. As
shown in Fig. 8.b, sod is first scheduled and only the schedule of
job s32 is changed. If sod has same priority as other periodic task,
then sod and all periodic jobs that start the execution after tc are
stored in Qregular and sorted in the ascending order of sub-vertices’
degree. As shown in Fig. 8.c, sod is scheduled with longer waiting
time than in Fig. 8.b, but rescheduling for other periodic jobs is
unnecessary.

The algorithm of on-demand measurement tasks scheduling is
described by the pseudo code shown in Fig. 9.

5.3. Computational complexity analysis

According to Lemma 2, there are at most n jobs in the waiting
queue if there are n tasks in the measurement tasks set. Using a
simple sorting algorithm such as binary tree sort, the computa-
tional complexity of sorting n jobs is n lgðnÞ. In one hyperperiod, as-
sume there are m scheduling points which indicate the time jobs
arrive, then the computational complexity of the proposed algo-
rithm is mn lgðnÞ. Let’s denote C as the number of unique comple-
tion times of all jobs and K as the total number of jobs to be
executed in a hyperperiod. Therefore, we get:
Fig. 8. Example of scheduling on-demand measurement task: (a) pre-computed
schedule; (b) on-demand task has higher priority; (c) on-demand task has same
priority as periodic tasks.
K ¼
Xn

i¼1

ph

pðsiÞ

and so the following relationship exists:

m 6
Xn

i¼1

ph

pðsiÞ
þ C 6 2

Xn

i¼1

ph

pðsiÞ

Therefore, the computational complexity of the proposed algorithm
is n lgðnÞ

Pn
i¼1

ph
pðsiÞ

, and thus the complexity can be decreased by lim-
iting the upper-bound of ph. Some previously proposed methods
aimed to achieve this goal [44], but this is out of scope of this paper.

6. Simulation results

To study the performance of the proposed algorithms, we com-
pared them with other scheduling algorithms.

6.1. Schemes for comparison

We considered algorithms able to process multiple measure-
ment tasks at the same time for a fare comparison to the proposed
algorithms for their execution on an infrastructure with sufficient
resources. All of these algorithms have the same computational
complexity as the proposed ones. These algorithms are described
next:

6.1.1. Round robin
We improve the original round robin scheme to empower it

with the concurrent execution capability. The improved scheme
selects tasks for execution by following a pre-defined order. The
scheme performs scheduling at each scheduling point. At a sched-
uling point, all the available jobs waiting to be scheduled are se-
lected in a pre-defined round-robin order. If there is no conflict
with current on-going task, the job is scheduled; otherwise, the

Z. Qin et al. / Computer Communications 33 (2010) 124–135 131
job is kept in the queue to be considered/scheduled at the next
scheduling point. This algorithm is described in Fig. 10.

6.1.2. Descending order of sub-vertices’ degree (DOSD)
This scheme, also introduced here for comparison purposes, fol-

lows a similar procedure as described in Section 5.1 for the ascend-
ing order version, except that this scheme sorts the jobs in the
waiting queue in the descending order of the degree of the sub-
vertices mapped to the jobs, in Step 3.

6.2. Evaluation method

The algorithms are compared in terms of the average normal-
ized waiting time of all jobs in one hyperperiod that is defined as
below:

Avg: normalized waiting time ¼ avg
XwðsijÞ

pðsijÞ

� �

where wðsijÞ is the waiting time of the job sij. wðsijÞ is formally
defined as the difference between the time that the job starts exe-
cution and the beginning time the job is available to be executed. In
the worst case, some measurement jobs may be missed due to time
expiration (i.e., the waiting time exceeds the task period). We define
the waiting time of the missed job equal to its period time.

As the network performance is monitored by periodic measure-
ment requests, the measurement jobs are expected to be scheduled
at desired sampling times that the interval time between any two
consecutive samplings is a constant. However, because of the con-
flict of the network measurement tasks, the measurement jobs are
scheduled at the time deviated from the desired sampling times.
Fig. 10. Illustration of the improved round robin scheduling algorithm.
The average normalized waiting time is used to reflect how severe
such deviation impacts the acceptance of the measurement sam-
pling results. For example, if a measurement task with period equal
to 20 min waits for 1.5 min to start execution, the measurement
result is still acceptable to be used as periodic samples. However,
if a measurement task with period 2 min waits for 1.5 min for exe-
cution, the measurement sample obtained is far from the expected
measurement sampling time.

Another evaluation parameter is the execution success ratio of
jobs to be executed, which is defined as:

Execution success ratio¼number of executed jobs in one hyperperiod
number of total jobs in one hyperperiod
6.3. Simulation results of periodic tasks scheduling

In this simulation, the period of the periodic measurement tasks
is uniformly distributed in the range of [11, 100] time units, and
the execution times of the periodic measurement tasks are uni-
formly distributed in the range of [2, 10] time units. The initial time
of task aðsiÞ is randomly selected in the range of [1, 5] time units.
We observed the performance of algorithms for different conflict
probability values from 0 to 1.0 with increments of 0.05. A conflict
probability of 0 between two tasks means that there is no conflict
between them, therefore there is no edge connecting these two
vertices in the conflict graph. A conflict probability of 1.0 means
that there is a conflict between any two tasks, corresponding to a
fully connected conflict graph. There might be a high conflict prob-
ability in a real network where the on-going measurement tasks
demand network resources for exclusive use. As an example, the
simultaneous measurement of bandwidth, delay, jitter and other
parameters at a gateway in a small network could be a network
performance bottleneck as all measurement tools contend for the
memory, processing time, and uplink/downlink bandwidth of that
gateway. To observe the maximum performance of the scheduling
schemes, the measurement resource is assumed to be large enough
so there is no MRC constraint on measurement tasks. We compare
the performance of the algorithms with 10 and 20 periodic tasks
scenario. The simulation is run 1000 times (i.e., for each time a ran-
dom tasks set and the conflict relationship are generated) for each
scenario.

Fig. 11 shows the average normalized waiting times of 10 peri-
odic tasks for these schemes. The figure shows that the proposed
scheme has the lowest average normalized waiting times, and
EDF-CE has the highest.
0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Conflict probability

N
or

m
al

iz
ed

 w
ai

tin
g

tim
e

Round robin
EDF−CE
DOSD
Proposed scheme

Fig. 11. Normalized waiting time for 10 periodic measurement tasks.

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Conflict probability

E
xe

cu
tio

n
su

cc
es

s
ra

tio

Round robin
EDF−CE
DOSD
Proposed scheme

Fig. 14. Execution success ratio for 20 periodic measurement tasks.

132 Z. Qin et al. / Computer Communications 33 (2010) 124–135
Fig. 12 shows the success ratio of 10 periodic tasks of the com-
pared schemes. The figure shows that as the conflict probability in-
creases, the success ratio of the schemes decreases. Here, the
success ratio of the proposed scheme is the highest among other
schemes as this scheme misses scheduling the fewest number of
tasks as compared to the other schemes, while DOSD, which sorts
the task in the opposite order, has the lowest success ratio. The
combination that increases the success ratio seems to be the selec-
tion of a small task and with a small number of conflicts.

Fig. 13 shows the normalized waiting times of these schemes
with 20 tasks. The outcome for 20 tasks is similar to the case with
10 tasks, where the proposed scheme achieves the lowest waiting
time. The advantage of using the proposed scheme is more pro-
nounced for scenarios with a larger number of tasks.

Fig. 14 shows that the proposed scheduling scheme and the EDF-
CE scheme provide similar execution success ratio, which is the
highest success ratio as compared to round robin and DOSD
schemes. We can see that when the conflict probability is lower
than 0.5, the performance of all algorithms is similar, but as the con-
flict probability increases, the performance differences of the
schemes become more pronounced. As an interesting observation,
when the conflict probability is 1, where no more than one job
can be executed at a time by any of the schemes, the waiting time
and success ratio of the schemes show differences. The low success
probability of DOSD is expected as it selects jobs with long execu-
tion time first, and the remaining time will then be left to a large
0 0.2 0.4 0.6 0.8 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Conflict probability

E
xe

cu
tio

n
su

cc
es

s
ra

tio

Round robin
EDF−CE
DOSD
Proposed scheme

Fig. 12. Execution success ratio for 10 periodic measurement tasks.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Conflict probability

N
or

m
al

iz
ed

 w
ai

tin
g

tim
e

Round robin
EDF−CE
DOSD
Proposed scheme

Fig. 13. Normalized waiting time for 20 periodic measurement tasks.
number of tasks that may be delayed close to or beyond the end
of their periods; therefore, a large number of jobs are missed. In
the proposed scheduling algorithm, the degree of a sub-vertex is
decided by the length of the execution time of the job, so that
scheduling by the ascending order of the degree means that the
job with the shortest execution time is scheduled first. This selec-
tion can potentially save a larger number of time slots for the sub-
sequent jobs in the waiting queue. Therefore, the performance of
this algorithm is also the highest with the conflict probability of 1.0.

We also simulated a scenario where the execution times of peri-
odic measurement tasks are non-uniformly distributed. The peri-
odic measurement task set is composed of 10 measurement
tasks. The execution time of 5 measurement tasks are uniformly
distributed in the range of [2, 10] time units while the execution
time of the rest of 5 tasks are randomly selected in the range of
[8, 10] time units. The period of the tasks is uniformly distributed
in the range of [11, 100] time units. The initial available time of a
task is randomly selected in the range of [1, 5] time units. The sim-
ulation is run 1000 times.

Fig. 15 shows the average normalized waiting times under non-
uniform distribution in the execution time of the 10 tasks. The
large number of tasks with long execution times is not beneficial
to the proposed scheme, but the proposed scheme still achieves
the lowest normalized waiting time among all compared schemes.
The round-robin scheme achieves similar normalized waiting
0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Conflict probability

N
or

m
al

iz
ed

 w
ai

tin
g

tim
e

Round robin
EDF−CE
DOSD
Proposed scheme

Fig. 15. Normalized waiting time for 10 periodic measurement tasks with
non-uniformly distributed execution times.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Conflict probability

A
ve

ra
ge

 w
ai

tin
g

tim
e

of
 o

n−
de

m
an

d
ta

sk
s

 (
tim

e
un

its
)

Round robin
EDF−CE
DOSD
Proposed scheme

Z. Qin et al. / Computer Communications 33 (2010) 124–135 133
times (although slightly higher) to those of the proposed scheme.
The other schemes are favored by this distribution of execution
times, but their normalized waiting times are larger than those
of the proposed scheme. This indicates that the measurement sam-
ples generated by scheduling schemes in comparison are more
biased from the regular measurement sampling points, so that
the jitter of the time intervals between any two inter-sampling
points is large.

Fig. 16 shows the execution success ratios of these schemes for
tasks with non-uniformly distributed execution times. The results
show that the execution success ratios of all these schemes are
lower than the values obtained under execution times with a uni-
form distribution. The consideration of a larger number of tasks
with long execution times makes the scheduling schemes less
efficient, and more tasks miss their executions. Nevertheless, the
results show that the proposed scheme achieves the highest execu-
tion success ratio.
Fig. 17. Average waiting time for on-demand measurement tasks of on-demand
tasks in a combination with periodic tasks.
6.4. Simulation results of on-demand tasks scheduling

We also simulated the scheduling of periodic tasks combined
with on-demand tasks and evaluate the performance of the
scheme according to the average waiting time instead of average
normalized waiting time of the jobs since there is no period for
the on-demand tasks. In this scenario, there are 10 periodic tasks,
and on-demand tasks are created at arbitrary time slots. We com-
bine the periodic tasks with on-demand tasks created at arbitrary
time slots, where the arrival of an on-demand measurement task is
created with a probability of 0.05 for each time slot. For scheduling
(and execution), the priority of on-demand tasks is set to be equal
to that of periodic tasks.

The execution and period times are uniformly distributed in the
ranges of [2, 10] and [11, 100] time slots, respectively. As in the
previous section, we considered the conflict probability among
all measurement tasks (including both periodic and on-demand
tasks) increasing from 0 to 1.0 with steps of 0.05. We ran the sim-
ulation for 500 times.

Fig. 17 shows the average waiting times measured only on the
on-demand tasks. The results indicate that the proposed algorithm
can achieve the lowest waiting time for on-demand tasks among
the considered algorithms as all task are considered with the same
priority levels. However, different from the cases with periodic
tasks only, the round-robin scheme shows the lowest performance
(the longest average waiting time) as some tasks cannot be re-or-
ganized with the addition of on-demand tasks because periodic
0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Conflict probability

E
xe

cu
tio

n
su

cc
es

s
ra

tio

Round robin
EDF−CE
DOSD
Proposed scheme

Fig. 16. Execution success ratio for 10 periodic measurement tasks with non-
uniformly distributed execution times.
tasks would still follow the pre-determined round-robin order.
However, the other schemes follow similar trends as those ob-
served for periodic tasks only.

Fig. 18 shows the average waiting times of the periodic tasks
only, under this scenario. The results show that the periodic tasks
undergo similar average waiting times as in the case of periodic
tasks only, and the round-robin scheme and the proposed scheme
achieve the lowest average waiting times. The performance of
round-robin is high in this scenario as the pre-determined order
followed by this scheme isolates the periodic task from the arrivals
of on-demand tasks. The proposed scheme, however, accommo-
dates the on-demand tasks and still achieves an efficient outcome,
or the lowest average waiting times.

Fig. 19 shows the normalized waiting times of the periodic mea-
surement tasks. This graph also corroborates the previous observa-
tions, where the periodic tasks have similar results to the case of
only periodic tasks, with the proposed scheme achieving the high-
est performance and the EDF-CE scheme achieving the lowest
performance.
7. Conclusions

In this paper, we have analyzed the problem of contention for
resources in network active measurement. The scheduling of
0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

Conflict probability

A
ve

ra
ge

 w
ai

tin
g

tim
e

of
 p

er
io

di
c

ta
sk

s

 (
tim

e
un

its
)

Round robin
EDF−CE
DOSD
Proposed scheme

Fig. 18. Average waiting time of periodic tasks when they are combined with
on-demand tasks.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Conflict probability

N
or

m
al

iz
ed

 w
ai

tin
g

tim
e

of
 p

er
io

di
c

ta
sk

s
(%

)

Round robin
EDF−CE
DOSD
Proposed scheme

Fig. 19. Normalized waiting time of periodic tasks when they are combined with
on-demand tasks.

134 Z. Qin et al. / Computer Communications 33 (2010) 124–135
active measurement tasks can be used to resolve this contention
to allow high utilization of network resources and to provide
accurate measurement results and least disturbance to users’ data
traffic. Critical contentions for any resource are defined as
conflicts.

Based on graph coloring theory, we have proposed to describe
the measurement tasks relation by using a conflict graph, and to
convert this scheduling problem into a graph coloring problem.
We have also proposed two algorithms to schedule tasks according
to the ascending order of the degree of sub-vertices in the conflict
graph, one for periodic measurement tasks, and another for on-de-
mand measurement tasks. Each sub-vertex represents one basic
time unit for the execution time of the task. The results showed
that the proposed scheduling schemes provide the shortest aver-
age waiting time for cases where periodic tasks are considered in
the network as well as when on-demand task are added in a net-
work with existing periodic tasks. The proposed schemes also
achieve the highest utilization of network resources as shown by
achieving the highest execution success ratios in the presented
results.

In addition, the schemes are able to schedule the on-demand
tasks with either higher or equal priority with respect to that of
the periodic measurement tasks.

Acknowledgements

This work has been partially supported by Computation and
Communication: Promoting Research Integration in Science and
Mathematics (C2PRISM), NSF GK-12 Project #0638423, at New
Jersey Institute of Technology.

References

[1] L. Ciavattone, A. Morton, G. Ramachandran, Standardized active measurements
on a tier 1 IP backbone, IEEE Communications Magazine 41 (6) (2003) 90–97
(June).

[2] T. Tsugawa, T.M. Cao-Leh, G. Hasegawa, M. Murata, Inline bandwidth
measurements: implementation difficulties and their solutions, IEEE
Workshop on End-to-End Monitoring Techniques and Services (E2EMON),
May 2007, pp. 1–8.

[3] G. Dos Santos et al., UAMA: a unified architecture for active measurements in
IP networks; end-to-end objetive quality indicators, in: IEEE/IFIP Integrated
Network Management Symposium, May 2007, pp. 246–253.

[4] M. Zhanikeev, S. Xu, Y. Tanaka, Active performance measurement for IP over
all-optical networks, in: IEEE/IFIP International Conference in Central Asia on
Internet, September 2006, pp. 1–5.

[5] M. Zhanikeev, Y. Tanaka, A testbed for agent-based multi-purpose extensible
active measurement, Testbeds and Research Infrastructures for the
Development of Networks and Communities (TRIDENTCOM), March 2006.
[6] M. Mushtaq, T. Ahmed, Adaptive packet video streaming over P2P networks
using active measurements, in: IEEE Symposium on Computers and
Communications (ISCC), June 2006, pp. 423–428.

[7] R. Mishra, V. Sharma, QoS routing in MPLS networks using active
measurements, in: IEEE Conference on Convergent Technologies for Asia-
Pacific Region (TENCON), October 2003, pp. 323–327.

[8] M. Zangrilli, B. Lowekamp, Comparing passive network monitoring of grid
application traffic with active probes, Grid Computing Workshop, November
2003, pp. 84–91.

[9] M. Aida, K. Ishibashi, T. Kanazawa, CoMPACT-Monitor: change-of-measure
based passive/active monitoring weighted active sampling scheme to infer
QoS, in: Applications and the Internet (SAINT) Workshops, February 2002, pp.
119–125.

[10] P. Calyam, D. Krymskiy, M. Sridharan, P. Schopis, Active and passive
measurements on campus, regional and national network backbone paths,
in: IEEE Conference on Computer Communications and Networks (ICCCN),
October 2005, pp. 537–542.

[11] V. Sharma, M. Suma, Estimating traffic parameters in Internet via active
measurements for QoS and congestion control, in: IEEE Global Tele-
communications Conference (GLOBECOM), November 2001, pp. 2527–2531.

[12] K. Mase, Y. Toyama, End-to-end measurement based admission control for
VoIP networks, in: IEEE Communications Conference (ICC), April 2002, pp.
1194–1198.

[13] R. Prasad, C. Dovrolis, M. Murray, K. Claffy, Bandwidth estimation: metrics,
measurement techniques, and tools, IEEE Network 17 (6) (2003) 27–35
(November–December).

[14] M. Luckie, A. McGregor, IPMP: IP measurement protocol, in: Proceedings
of the Passive and Active Measurement Workshop, April 2002, pp. 168–
176.

[15] S. Shalunov, B. Teittelbaum, One-way active measurement protocol (OWAMP),
in: IETF, RFC3763, 2004.

[16] Z. Qin, R. Rojas-Cessa, N. Ansari, Distributed link-state measurement for QoS
routing, in: IEEE Military Communications Conference (MILCOM), October
2006, pp. 1–6.

[17] J. Sommers, P. Barford, An active measurement system for shared
environments, in: ACM SIGCOMM Conference on Internet Measurement
(IMC), October 2007, pp. 303–314.

[18] E2E piPEs, [online] available: <http://e2epi.internet2.edu/e2epipes/>.
[19] N. Nu, P. Steenkiste, Evaluation and characterization of available bandwidth

probing techniques, IEEE JSAC 21 (6) (2003) 879–894 (August).
[20] perfSONAR, [online] available: <http://www.perfsonar.net/>.
[21] Y. Labit, P. Owezarski, N. Larrieu, Evaluation of active measurement tools for

bandwidth estimation in real environment, in: End-to-End Monitoring
Techniques and Services Workshop, May 2005, pp. 71–85.

[22] National laboratory for Applied Network Research (NLANR), Active
Measurement Project (AMP), [online] available: <http://moat.nlanr.net/
Papers/AMP.html>.

[23] F. Strohmeier, H. Dorken, B. Hechenleitner, Aquila Distributed QoS
Measurement, Aquila Project, August 2001.

[24] Pipechar, [online] available: <http://dsd.lbl.gov/NCS/>.
[25] Pathload, [online] available: <http://www.cc.gatech.edu/fac/Constantinos.

Dovrolis/bw-est/pathload.html>.
[26] K. Anagnostakis, M. Greenwald, R. Ryger, Cing: measuring network-internal

delays using only existing infrastructure, in: IEEE Conference on Computer
Communications (INFOCOM), March 2006, pp. 2112–2121.

[27] A. Downey, Clink: a tool for estimating Internet link characteristics, [online]
available: <http://allendowney.com/research/clink/>.

[28] K. Lai, M. Baker, Nettimer: a tool for measuring bottleneck link bandwidth, in:
Proceedings of the USENIX Symposium on Internet Technologies and Systems,
March 2001.

[29] C. Dovrolis, P. Ramanathan, D. Moore, What do packet dispersion techniques
measure? in: IEEE Conference on Computer Communications (INFOCOM),
April 2001, pp. 905–914.

[30] Pathchar, [Online] available: <http://www.caida.org/tools/utilities/others/
pathchar/>.

[31] J. Sommers, P. Barford, W. Willinger, Laboratory-based calibration of available
bandwidth estimation tools, Microprocessors and Microsystems 31 (4) (2007)
222–235 (June).

[32] One-way Ping (OWAMP), [online] available: <http://e2epi.internet2.edu/
owamp/>.

[33] R. Graham, E. Lawler, J. Lenstra, A. Kan, Optimization and approximation in
deterministic sequencing and scheduling: A survey, Annals of Discrete
Mathematics 5 (1979) 287–326.

[34] T. McGregor, H. Braun, J. Brown, The NLAMR network analysis infrastructure,
IEEE Communications Magazine 38 (5) (2000) 122–128 (May).

[35] S. Kalidindi, M. Zekauskas, Surveyor: an infrastructure for internet
performance measurements, Internet Global Summit(INET), June 1999.
[Online] available: <http://www.isoc.org/inet99/proceedings/4h/4h_2.htm>.

[36] R. Wolski, N. Spring, C. Peterson, Implementing a performance forecasting
system for metacomputing: the network weather service, in: Proceedings of
Supercomputing’97, August 1997.

[37] C. Liu, J. Layland, Scheduling algorithms for multiprogramming in a hard real-
time environment, Journal of the ACM 20 (1) (1973) 46–61 (January).

[38] K. Jeffay, D. Stanat, C. Martel, On non-preemptive scheduling of periodic and
sporadic tasks, in: IEEE Real-Time Systems Symposium, pp. 129–139,
December 1991.

http://e2epi.internet2.edu/e2epipes/
http://www.perfsonar.net/
http://moat.nlanr.net/Papers/AMP.html
http://moat.nlanr.net/Papers/AMP.html
http://dsd.lbl.gov/NCS/
http://www.cc.gatech.edu/fac/Constantinos.Dovrolis/bw-est/pathload.html
http://www.cc.gatech.edu/fac/Constantinos.Dovrolis/bw-est/pathload.html
http://allendowney.com/research/clink/
http://www.caida.org/tools/utilities/others/pathchar/
http://www.caida.org/tools/utilities/others/pathchar/
http://e2epi.internet2.edu/owamp/
http://e2epi.internet2.edu/owamp/
http://www.isoc.org/inet99/proceedings/4h/4h_2.htm

Z. Qin et al. / Computer Communications 33 (2010) 124–135 135
[39] Y. Cai, M. Kong, Nonpreemptive scheduling of periodic tasks in uni- and
multiprocessor systems, Algorithmica 15 (6) (1996) 572–599 (June).

[40] P. Calyam, C. Lee, P. Arava, D. Krymskiy, Enhanced EDF scheduling algorithms
for orchestrating network-wide active measurements, IEEE Real-Time Systems
Symposium (RTSS), December 2005, p. 10.

[41] I. Gopal, M. Bonuccelli, C. Wong, Scheduling in multibeam satellites with
interfering zones, IEEE Transactions on Communications 31 (8) (1983) 941–
951 (August).
[42] W. Chen, P. Sheu, J. Yu, Time slot assignment in TDM multicast switching
systems, in: IEEE Conference on Computer Communications (INFOCOM), April
1991, pp. 1296–1305.

[43] A. Bagchi, S. Hakimi, Data transfers in broadcast networks, IEEE Transactions
on Computers 41 (7) (1992) 842–847 (July).

[44] J. Goossens, C. Macq, Limitation of the hyperperiod in real-time periodic task
set generation, in: Proceedings of the RTS Embedded System (RTS’01), 2001,
pp. 133–147.

	Task-execution scheduling schemes for network measurement and monitoring
	Introduction
	Problem analysis
	Related work
	Modeling of network measurement scheduling schemes
	Definitions
	Modeling of measurement scheduling

	Proposed scheduling schemes
	Periodic measurement tasks scheduling scheme
	On-demand measurement tasks scheduling scheme
	Computational complexity analysis

	Simulation results
	Schemes for comparison
	Round robin
	Descending order of sub-vertices’ degree (DOSD)

	Evaluation method
	Simulation results of periodic tasks scheduling
	Simulation results of on-demand tasks scheduling

	Conclusions
	Acknowledgements
	References

