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Abstract—Data redundancy elimination (DRE), also known as
data de-duplication, reduces the data amount to be transferred
or stored by identifying and eliminating both intra-object and
inter-object duplicated data elements. It is one of the key content
delivery acceleration techniques over wide area networks (WANs)
to reduce delivery latency and bandwidth consumptions by
reducing the amount of data to be transferred. Deploying DRE
at the end hosts maximizes the bandwidth savings and latency
reductions, because the amount of content sent to the destination
hosts is minimized. However, standard DRE used to identify
redundant content chunks is very expensive in terms of memory
and processing capability especially on resource constrained
hosts. By analyzing the web application traffic traces, we find
out that some types of contents have more redundant contents
than others. Thus, it is possible to apply DRE selectively and
opportunistically on those contents with more redundant data
elements than other content types to save the memory and
processing resources at the hosts. In this paper, we propose
content-type based selective DRE (SDRE), which deploys DRE
selectively on the contents which have the most opportunities
for redundant content identification. We explore the benefits of
deploying SDRE on smartphone traffic traces. The results show
that SDRE can achieve almost the same bandwidth savings as
that of standard DRE with less computation and smaller memory.

Index Terms—Data redundancy elimination (DRE), data de-
duplication, content delivery acceleration, wide area network
(WAN) optimization.

I. INTRODUCTION

Today’s IT organizations tend to deploy their infrastructures

geographically over a wide area network (WAN) to increase

productivity, support global collaboration, and minimize costs,

thus constituting today’s WAN-centered environments. As

compared to a local area network (LAN), a WAN is a

telecommunication network that covers a broad area; WAN

may connect across metropolitan, regional, and/or national

boundaries. Traditional LAN-oriented infrastructures are in-

sufficient to support global collaboration with high application

performance at low cost. Deploying applications over WANs

inevitably incurs performance degradation owing to the intrin-

sic nature of WANs such as high latency and high packet loss

rate [1]. Many factors, not normally encountered in LANs,

can quickly lead to performance degradation of applications

which are run across a WAN. As reported in [2], the WAN

throughput degrades greatly with the increase of transmission

distance and packet loss rate.

The need for speedup over WANs spurs on application

performance improvement over WANs. WAN optimization,

also commonly referred to as WAN acceleration, describes

the idea of enhancing application performance over WANs. A

variety of WAN acceleration techniques have been proposed.

Some focus on maximizing bandwidth utilization, others ad-

dress latency, and still others address protocol inefficiency

which hinders the effective delivery of packets across the

WAN. Data compression is very important to reduce the

amount of bandwidth consumed on a link during transfer

across the WAN, and it can also reduce the transit time for

given data to traverse over the WAN by reducing the amount

of transmitted data. Data redundancy elimination (DRE) [3, 4],

also known data de-duplication, is a data reduction technique

and a derivative of data compression. Data compression [5]

reduces the file size by eliminating redundant data contained

within an object, while DRE can identify and eliminate the

transmission of redundant content from both intra-object and

inter-object, such as an entire file and a data block, to reduce

the amount of data to be transferred or stored. When multiple

instances of the same data element are detected, only one

single copy of the data element is transferred or stored. The

redundant data element is replaced with a reference or pointer

to the unique data copy. A study of large-scale traffic traces

[6] indicated that network traffic exhibits a large amount of

redundancy. DRE is one of the important content delivery

acceleration techniques to enhance application performance

over WANs and meet quality of service (QoS) requirements by

reducing the amount of data to be transferred, thus reducing

the delivery latency and bandwidth consumptions.

Based on the algorithm granularity, DRE algorithms can

be classified into three categories: whole file hashing [7, 8],

sub-file hashing [9–17], and delta encoding [18]. Traditional

DRE operates at the application layer, such as web caching,

to eliminate redundant data transfers. With the rapid growth

of network traffic in the Internet, DRE techniques operating

on individual packets have been deployed [9–14] based on

different chunking and sampling methods. The main idea

of packet-level DRE is to identify and eliminate redundant

chunks across packets. A large scale trace-driven study on

the efficiency of packet-level DRE [6] showed that packet-
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level DRE can obtain average bandwidth savings of 15-60%

when deployed at access links of the service providers or

between routers. Experimental evaluations on various DRE

technologies are presented in [3, 6, 12].

Standard DRE for identifying redundant content chunks is

very expensive in terms of memory and processing capability

especially on resource constrained hosts. By analyzing the

web application traffic traces, we find out that some types of

contents have more redundant contents than others, e.g., texts

have more redundant data elements than videos since videos

are stored in compressed formats in general and almost do

not exhibit redundant data blocks within one video. Thus, it

is possible to apply DRE selectively and opportunistically on

those contents with more redundant data elements than other

types to save the memory and processing resources at the

hosts. In this paper, we propose content-type based selective

DRE (SDRE), which deploys DRE selectively on the contents

which have the most opportunities for redundant content

identification. The main benefits of SDRE include achieving

almost the same bandwidth savings with less computation

resources and improving memory utilization. However, the

benefits of SDRE come at the cost of less bandwidth savings

since the redundant content is not identified across all of the

contents transferred from the source to the destination.

The rest of the paper is structured as follows. We present

a brief outline of a popular mechanism for packet-level DRE,

and analyze its computation complexity in Section II. Then,

we describe the proposed content-type based SDRE in Section

Packet Cache
Server

Packet Cache
Client

Original Packet

Shrinked Packet Shrinked Packet

Recovered Packet
Router Router

(a) A typical packet-level DRE implementation.

Fingerprint Table Packet Storage Cache

Incoming packet

A Set of Representative

Fingerprints
Packet Payload

(b) The packet-level DRE elements.

Fig. 1: The classical packet-level data redundancy elimination.

Algorithm 1 MODP DRE Algorithm

1: for i = w − 1; i < S;i++ do

2: fingerprint = RabinHash(data[i : i+ w − 1]);

3: if (fingerprint mod p == 0) then

4: if (fingerprint exists in the fingerprint table) then

5: Remove the matched region from the arriving

packet and replace the matched region with a

fingerprint description;

6: else

7: Insert fingerprint in the fingerprint table;

8: end if

9: end if

10: end for

11: Insert packet payloads in the packet store cache.

III. The benefits of SDRE over the standard DRE are explored

in Section IV. Finally, Section V concludes the paper.

II. DRE ALGORITHMS AND COMPUTATIONAL OVERHEAD

In this section, we briefly describe the typical implementa-

tion of packet-level DRE techniques. We outline one popular

DRE mechanism, MODP [9], to identify redundant chunks

across packets. We also analyze its computational overhead.

A. Packet-Level DRE

The classical packet-level DRE technique is implemented

at routers, which work cooperatively. A typical packet-level

DRE implementation is shown in Figure 1(a). The router near

the source removes the identified redundant data chunks, while

the router located at the other end recovers the original packet

by inserting the identified redundant data chunks. To deploy

packet-level DRE algorithms, a fingerprint table, which stores

representative fingerprints calculated from each packet, and a

packet cache, which stores packet payloads, are required as

shown in Figure 1(b). Only those representative fingerprints

and packet payloads observed over some past interval of time

are stored in the fingerprint table and the packet cache, respec-

tively. The end-to-end DRE pushes the DRE implementation

to the sources and the destinations. The benefits of end-to-end

DRE is multi-folder; for examples, it can be applied to operate

on encrypted data traffic and it may minimize the redundant

data elements transmitted over the networks.

B. MODP DRE Algorithm

MODP was first applied to the DRE mechanism by Spring

et al. [9] to remove redundant content chunks across packets.

For every packet arriving in a particular direction, MODP

first computes a set of Rabin fingerprints by applying the

Rabin-Karp hash [19] function over sliding windows of w
contiguous bytes of the packet’s payload (line 2). According to

the findings of redundant match distribution [6], w = 32 bytes

is suggested to maximize the effectiveness of DRE. Thus, for

an S-byte packet (S ≥ w), a total of S − w + 1 fingerprints

are generated. It is impossible to store all fingerprints in the

fingerprint table, and only those fingerprints whose value is 0
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Fig. 2: The components of a SDRE manager.

mod p are chosen as the representative fingerprints (lines 3-

10), which will be stored in the fingerprint table. Hence, 1/p
of the calculated fingerprints are sampled as the representative

fingerprints for every packet. The packets are stored in the

packet store cache as shown in Figure 1(b). Pointers from

each fingerprint to the corresponding packet are also stored.

Each representative fingerprint is then checked against the

fingerprints stored in the fingerprint table. If one matched

fingerprint already exists in the table (line 4), the matching

region is then found in the packet store cache. In general,

two matching mechanisms can be used for DRE techniques.

One is called chunk-match, and the other one is maximum-

match. If one matched representative fingerprint is found in

the fingerprint table, the w byte representative region used

to compute this representative fingerprint is identified as

the redundant chunk by the chunk-match mechanism. While

with the maximum-match mechanism, the matched region

is maximized by expanding to the left and right of the

representative region. After the matched region is identified,

it is removed from the arriving packet and replaced with a

fingerprint description (line 5), which consists of the offset

of the fingerprint in the packet store cache as well as the

amount of the redundant bytes before and after the matched

representative region. If there is no matched fingerprint in

the fingerprint table, a new representative fingerprint will be

inserted into the fingerprint table (line 7). Finally, the packet

payloads will be stored in the packet cache (line 11). A

formal description of the MODP DRE algorithm is shown in

Algorithm 1.

C. Computational Overhead

As described above, the representative fingerprints for each

packet are selected from the calculated Rabin fingerprints,

which are calculated for every w-byte length substring of the

packet. Given a sequence of bytes [t1, t2, · · · , tw] of length w
bytes, a Rabin fingerprint can be expressed as:

RF (t1, t2, · · · , tw) = (t1p
w−1+ t2p

w−2+ · · ·+ tw) mod M
(1)

where p and M are constant integers.

For a S-byte packet (S ≥ w), a sequence of S − w + 1
Rabin fingerprints can be calculated using the above equation

with the substrings {{t1, t2, · · · , tw}, {t2, t3, · · · , tw+1}, · · · ,
{tS−w+1, tS−w+2, · · · , tS}}. By observing the above equa-

tion, the calculation for the next Rabin fingerprint can be

Start

End

Content Type belongs to one the

bypass-elimination types?

Identify Content Type

of the Arriving Packet

Eliminate Redundant

Data Chunks

No

Yes

Update Content Type

Containing HTTP Header?

Yes

No

A new source?

Insert a new record to

the end-to-end SDRE list

Yes

No

Remove terminated connection

record from the SDRE list

The length of the packet

payload > ω 

Yes

No

Fig. 3: Selective Data Redundancy Elimination Mechanism.
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TABLE I: Smartphone Traffic Trace Breakdown

Trace Volume Text Image Video Audio Appl.

1 39.7 MB 19% 10% 39% 0 32%

2 23.7 MB 38% 19% 0 0 43%

3 61.9 MB 23% 9% 0 42% 26%

4 24.4 MB 29% 35% 10% 0 26%

5 24.4 MB 33% 16% 7% 0 44%

6 27.9 MB 34% 27% 0% 0 39%

7 52.7 MB 21% 25% 3% 0 51%

simplified by using the previous one as follows:

RF (ti+1,ti+2, · · · , ti+w) =
(RF (ti, · · · , ti+w−1)− ti × pw)× p+ ti+w mod M

(2)

Since p and w are constant, ti × pw can be precalculated and

stored in a table. With this fast Rabin fingerprint execution,

a substraction, a multiplication, an addition and a modular

calculation are required to compute one fingerprint.

A subset of these calculated Rabin fingerprints are then

selected as the representative fingerprints for the packet.

If the maximum-match criterion is used, for each matched

fingerprint, the corresponding matched data block needs to

be retrieved from the packet cache, and the matched region

is expanded byte-by-byte in both directions to obtain the

maximal region of redundant data block.

Based on the above DRE computation overhead analysis,

we can see that standard DRE is very expensive in terms

of memory and processing capability to identify redundant

content chunks.

III. SELECTIVE DATA REDUNDANCY ELIMINATION

SDRE is a packet-level content-type based end-to-end data

redundancy elimination technique, which deploys DRE se-

lectively on the contents which have the most opportunities

for redundant content identification. As shown in Figure 2,

SDRE consists of a packet classifier, a DRE packet cache

manager, and multiple end-to-end SDRE modules, which are

created and terminated dynamically according to the end-to-

end traffics. The packet classifier maintains a content-type

table according to the TCP flow tuples, consisting of the

source IP address, the source port, the destination IP address,

and the destination port. For any content transferred from the

source to the destination over a TCP connection for web ap-

plications, a HTTP header should be transmitted ahead of the

content delivery. Thus, the packet classifier can categorize the

content-type of the following content packets by identifying

the “CONTENT-TYPE” HTTP field in the HTTP header. A

DRE packet cache manager is another important component

in an end-to-end DRE technique especially for resource-

constrained hosts because a content source connects to many

end users and an end-user connects to multiple content sources

simultaneously, while the size of the packet cache used for

redundancy elimination is limited. A properly designed packet

cache management algorithm can improve the effectiveness

of DRE techniques. The packet cache can be shared evenly

among all host-to-host connections, but this might reduce

the utilization of the packet cache and effectiveness of DRE

because some host-to-host connections may transfer more

contents than others. Hence, traffic volume based packet cache

assignment could be an effective method for end-to-end DRE

techniques than connection based cache assignment. SDRE

modules are the components which eliminate the redundant

elements from the packets. The starts and terminations of

SDRE modules are controlled by the SDRE manager, which

maintains an end-to-end SDRE list. When a new source IP

address is detected by the SDRE manager, a new record will

be inserted to the end-to-end SDRE list. When a source has

completed all the content transmission, the SDRE manager

will remove its record from the end-to-end SDRE list.

A brief description of the SDRE mechanism is shown in

Fig. 3. When a new packet arrives, the SDRE manager checks

its source IP address first against the end-to-end SDRE list. If

there is no matched record, a new record will be inserted into

the end-to-end SDRE list. At the same time, if the content type

belongs to one of the bypass redundancy elimination types,

a new end-to-end SDRE module will be created, and some

space of the packet cache will be assigned to it. Otherwise,

the end-to-end SDRE module will not be created and the DRE

packet cache will not be assigned for this source-to-destination

connection until one packet, which contains the payload does

not belong to all of the bypass redundancy elimination types,

has been received by the end user. Then, the terminated source-

to-destination connections are checked and removed from the

list. If the length of the packet payload is smaller than the size

of the Rabin sliding window, it will bypass the redundancy

elimination procedure; otherwise, it will be passed to one of

the SDRE module according to its source IP address. For

every arriving packet which is passed to the SDRE module,

it will be classified as a HTTP header packet if it contains

a completed or partial HTTP header; otherwise, it will be

classified as a HTTP content packet. For a HTTP header

packet, the HTTP field “CONTENT-TYPE” is filtered out and

its field value is used for packet content classification. If the

content type of the arriving packet belongs to one of the SDRE

elimination types, it will bypass the redundancy elimination;

otherwise, redundant data elements in the arriving packet will

be identified and eliminated against the DRE packet cache.

IV. PERFORMANCE EVALUATION OF SDRE

In this section, we explore the benefits of deploying SDRE

on smartphone traffic traces. First, we explain how these traffic

traces are collected. Seven smartphone 3G traffic traces were

collected from seven persons and used for SDRE evaluation.

Each person uses his/her smartphone to access the Internet

normally, and the web application traffic will be recorded to

a file automatically. Web application traffic of at least seven

days was recorded for each person.

The major part of web traffic could be text, image, video,

audio, and application. There are also some other types of
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content used in the web application, such as message, model

and multipart, but they only compose a very small part of

the whole web traffics. The traffic breakdown based on the

content-type for these seven traffic traces is shown in Table

I. The total volumes recorded for these seven persons range

from 20 to 60 MB. In these seven traffic traces, the text, image

and application types of contents compose of 19%-38%, 9%-

35% and 26%-51% of the total volume, respectively. Among

these seven persons, only one of them (trace 1) used his/her

smartphone to watch some video contents substantially. The

video content made up of 39% of the total volume for this trace

record. Other six persons rarely used their smartphone to surf

videos on the Internet. Only another person listened to some

audio content (trace 3), which occupied 42% of his/her total

traffic volume, and no other persons downloaded any audio

contents in these seven traces.

Figure 4 shows the bandwidth saving ratios of SDRE over

that of DRE versus different sizes of packet store caches,

ranging from 100 MB to 1 MB. The MODP fingerprint

calculation algorithm and the maximum matching mechanism

are deployed in this evaluation. The sliding window size is set

to 32 bytes as suggested to maximize the effectiveness of DRE

in [6]. Each point represents the bandwidth saving ratio of the

SDRE over that of DRE for one traffic trace with some size

of packet cache. Connection-based packet cache management

is used in this evaluation. Two bypass DRE content-type sce-

narios are evaluated. One includes videos and audios, and the

other bypass DRE content-type set includes images, videos,

and audios. The images, videos and audios are stored in com-

pressed formats in general due to the relatively large original

sizes of images, videos and audios compared to text files. Thus,

redundancy within these compressed content, such as images,

videos and audio, is quite limited; this provides opportunities

to reduce the computation overhead of DRE algorithms while
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Fig. 4: Bandwidth savings of SDRE over DRE for different

smartphone traffic traces.

achieving almost the same DRE effectiveness. With enough

packet caches, the bandwidth saving ratio of SDRE over that

of DRE represents how much redundancy is contributed by

the bypassed DRE content types. In this case, 100 MB packet

cache is large enough to remove all the redundant data chunks

which can be identified by the DRE techniques. From the

results with 100 MB packet cache, we see that all the ratios are

smaller than 1 because only parts of packets are checked for

redundant data chunks, but more than 90% of the redundant

data chunks can be identified by SDRE. This result verifies that

redundancy within images, videos and audio is quite limited.

With the decrease of the DRE packet cache, SDRE achieves

more bandwidth savings than that of standard DRE. Since the

content with more redundant data chunks will stay in the DRE

packet cache longer and will not be refreshed by the content

with less redundancy, the effectiveness of the packet cache

for redundant data identification can be improved. Among all

of these seven smartphone traces, about 19%-51% and 3%-

42% of traffic processed for redundant data identifications

can be reduced by setting up the DRE bypass content types

with {images, video, audio} and {videos, audio}, respectively.

From the results shown in Figure 4, we can see that SDRE can

achieve almost the same bandwidth savings as that of standard

DRE with less computations and smaller memory.

V. CONCLUSION

DRE has been developed to eliminate the transmission of

redundant content to improve the application performance over

WANs by reducing the amount of data to be transferred, hence

reducing the delivery latency and bandwidth consumptions.

However, standard DRE for identifying redundant content

chunks is very expensive in terms of memory and processing

capability especially on resource constrained hosts. In this

paper, we have proposed a content-type based selective DRE

(SDRE) technique to reduce the resource requirement of DRE

algorithms by applying DRE selectively on the contents which

have the most opportunities for redundant content identifica-

tion. The benefits of deploying SDRE on smartphone traffic

traces were evaluated, and the results showed that SDRE can

achieve almost the same bandwidth savings as that of standard

DRE with less computation and smaller memory size.
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