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Abstract—Transmission Control Protocol (TCP) slow start
degrades TCP performance under conditions of long-distance and
high end-to-end latency, i.e., inherent characteristics of wide area
networks (WANs). In this paper, we propose a new TCP slow start
algorithm for WANs, called Adaptive Fast Start (AFStart), which
incorporates an inline available bandwidth measurement over
TCP technique into TCP slow start to set the slow start threshold
adaptively and adjusts the congestion window intelligently. The
performance of AFStart is evaluated through simulations using
the dumb-bell topology and parking-lot topology by applying
AFStart to Fast TCP. The simulation results show that AFStart
can ramp up the congestion window from its initial value to the
slow start threshold more quickly and smoothly than standard
slow start, and AFStart achieves higher network link utilization
and TCP throughput during the slow start than Fast TCP.

Index Terms—Wide area network (WAN), Transmission Con-
trol Protocol, slow start, inline measurement TCP (ImTCP).

I. INTRODUCTION

Today’s IT organizations tend to deploy their infrastructures

geographically over a wide area network (WAN) to increase

productivity, support global collaboration and minimize costs,

thus constituting to today’s WAN-centered environments. Tra-

ditional local area network (LAN) oriented infrastructures are

insufficient to support global collaboration with high applica-

tion performance and low costs. Deploying applications over

WANs inevitably incurs performance degradation owing to the

intrinsic nature of WANs such as long-distance, high latency

and high packet loss rate. Transmission Control Protocol

(TCP) is the de facto standard for Internet-based commercial

communication networks. However, TCP is well known to

have poor performance under conditions of moderate to high

packet loss and end-to-end latency.

Many studies have observed that TCP performance suffers

from the TCP slow start mechanism in high-speed long-delay

networks. In standard slow start, TCP exponentially increases

the congestion window cwnd, doubling cwnd every round-trip

time (RTT), until it reaches the slow start threshold ssthresh. In

WANs, the round-trip time (RTT) is generally in tens and even

hundreds of milliseconds. At the beginning of a connection,

TCP is trying to probe the available bandwidth while the

application data is waiting to be transmitted. Therefore, TCP

slow start increases the number of round trips and delays the

entire application, thus resulting in inefficient network capacity

utilization. TCP slow start can be enhanced by setting slow

start threshold ssthresh [1]–[4] intelligently and adjusting the

congestion window cwnd [5]–[7] wisely.

As the switching point between slow start and congestion

avoidance, the slow start threshold ssthresh is critical to

TCP performance. If ssthresh is set too low, TCP switches

from slow start to congestion avoidance prematurely that may

cause TCP to experience a very long time to reach a proper

window size. However, a high ssthresh may lead to multiple

packet losses and more seriously may cause TCP timeouts.

Bandwidth-delay product (BDP) calculated with the available

bandwidth is a good estimate for ssthresh. So, it would be

great that TCP can provide some way to measure the available

bandwidth and set ssthresh intelligently.

At the beginning of the transmission, the exponential in-

crease of the congestion window size is necessary to increase

the bandwidth utilization quickly. However, it is too aggressive

as the connection nears its equilibrium, leading to a large

number of packet losses within one RTT, and more seriously,

potentially causing TCP timeouts. In order to shorten the

interval that TCP increases cwnd from its initial value to

ssthresh quickly at the beginning and smoothly when it nears

ssthresh, TCP slow start needs to provide an efficient method

to adjust cwnd targeting to ssthresh wisely.

Moreover, it has been observed that traffic during slow start

can be very bursty and can far exceed the BDP of the network

path. This serious overshoot may put a heavy load on router

queues and produce higher queuing delays, more packet losses

and lower throughput. TCP pacing [8] has been proposed to

smooth the behavior of TCP traffic by evenly spacing, or

pacing, data transmission across a RTT.

In this paper, we propose a new TCP slow start algorithm,

called adaptive fast start (AFStart), for WANs. AFStart in-

corporates an inline available bandwidth probing over TCP

technique, namely inline measurement TCP (ImTCP) [9]–[11],

into the TCP slow start algorithm. The slow start threshold

ssthresh can thus be set adaptively with the measured available

bandwidth. AFStart recommends an efficient way to grow

the congestion window from its initial value to the slow

start threshold ssthresh quickly and smoothly. AFStart also

incorporates TCP pacing [8] to fill the link pipe smoothly.

The remainder of this paper is organized as follows. In



the next section, we provide some background on TCP Slow

Start. The proposed adaptive fast TCP algorithm for WANs

is described in Section II. The TCP performance especially

on slow start performance is evaluated in Section III. Finally,

we end with a discussion on related work and conclusions in

Section V.

II. ADAPTIVE FAST START ALGORITHM

This section describes how we integrate an inline mea-

surement, ImTCP, into the TCP startup phase to set ssthresh

intelligently and how to grow the congestion window from its

initial value to the slow start threshold quickly and smoothly.

A. AFStart Algorithm

The AFStart alorithm is described in Fig. 1. Initially, the

congestion window cwnd is set to 4 packets. The initial

4 packets are sent back-to-back to measure the available

bandwidth by the packet train algorithm [12]. The estimated

available bandwidth may not be very accurate with 4 probe-

packets one time only measure, but it can provide a good

enough reference whether to continue the adaptive fast slow

start process or not. Based on this rough available bandwidth

estimation, if the calculated BDP is larger than 16 packets,

the adaptive fast start algorithm will continue with the up-

dated congestion window cwnd = 16pkts and measuring the

available bandwidth by the ImTCP method. Otherwise, the

slow start process will switch back to standard slow start.

In order to estimate the available bandwidth within some

bandwidth searching range, this bandwidth searching range

is divided into 2-4 subranges based on the ratio of the whole

bandwidth searching range over the previously estimated avail-

able bandwidth as suggested in ImTCP [9]. If the congestion

window is large enough, 8 packets are used as the probes for

each subrange; otherwise, 4 probes are used for each subrange.

Thus, a maximum of only 32 packets will be used for the

available bandwidth measurement within one RTT. Moreover,

as the results reported in [10] that ImTCP can yield acceptable

available bandwidth estimate in intervals as short as 1-4 RTTs.

Therefore, ImTCP can be integrated in TCP slow start to set

the slow start threshold intelligently without degrading TCP

data transmission performance.

Using ImTCP to measure the available bandwidth, the slow

start threshold parameter ssthresh will be updated as:

ssthresh = (Avail BW ∗RTT )/(8 ∗ pktsize) (1)

where Avail BW denotes the measured available bandwidth,

RTT represents the estimated RTT, and pktsize is the packet

size in bytes.

If the variance of the measured available bandwidth is

smaller than some pre-defined threshold, the measured avail-

able bandwidth is stable and the congestion window cwnd is

set as ssthresh; otherwise, the measured available bandwidth

is unstable and the congestion window size is updated with

half of the difference between ssthresh and cwnd.

cwnd = cwnd+ (ssthresh− cwnd)/2
= (ssthresh+ cwnd)/2

(2)

Start with cwnd_ = 4 pkts

end

Available bandwidth measurement 

with packet train method

The calculated BDP with packet train 

measured available bandwidth > 16 pkts

Update cwnd_ = 16 pkts and 

measure available bandwidth 
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Time elapsed from the TCP flow start  
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Normal Fast TCP 
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No

Yes

Measured available 

bandwidth is stable?

Update ssthresh_ with measured 

available bandwidth

Update cwnd_ = (cwnd_ + ssthresh_)/2 Update cwnd_ = ssthresh_

No

Yes

Fig. 1: Adaptive fast start algorithm.

Fig. 2 shows the congestion window update iteration by us-

ing the AFStart algorithm where cwnd is increased by half of

the difference between ssthresh and cwnd. From this figure,

we can see that with 6 rounds of RTT time, the congestion

window can ramp up from its initial value to more than 90% of

ssthresh. Therefore, after 6 rounds of RTT time, TCP sets the

congestion window to ssthresh and switches to congestion

avoidance. As a comparison, the congestion window update

with standard slow start is also shown in Fig. 2 with ssthresh
set to 1000 packets. From this comparison, it is obvious that

the standard slow start algorithm increases the congestion win-

dow much more aggressive than AFStart, while AFStart ramps

up the congestion window faster than exponential growth as

the standard slow start does at the beginning of the TCP

connection. Thus, AFStart can ramp up the congestion window

very quickly from the very beginning of the connection to

improve TCP throughput performance during slow start, and

avoid the congestion window overshooting problem when the

congestion window nears its equilibrium point by decreasing

the congestion window increase increment.

Further, in order to smooth TCP behavior in slow start, TCP

pacing is applied to all packets except the probe packets used

for ImTCP. Within each RTT interval, ImTCP probe packets

are transmitted first, and then the other packets are transmitted

evenly spacing across the left time interval if more packets can

be transmitted.
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Fig. 2: Congestion window ramps up with AFStart.

B. Slow Start Improvement Analysis

With standard slow start, the slow start threshold parameter

ssthresh is set up initially. This initial ssthresh may be

larger than BDP, thus causing TCP flows suffer from tem-

porary queue overflow and multiple packet losses, or smaller

than BDP, thus causing TCP flows switch to the congestion

avoidance phase prematurely. With standard slow start, TCP

flows take Nss = ⌊log2(ssthresh)⌋ rounds of RTT time to

complete the slow start stage.

Keeping a consistent available bandwidth 200 Mbps and

assuming that the initial ssthresh is set to BDP, Fig. 3 shows

the relationships between the RTT time and the slow start

threshold parameter ssthresh, and the relationship between

the RTT time and the required rounds of RTT time to complete

the slow start stage with the standard slow start algorithm (the

initial cwnd is set to 4). With the increase of RTT from 10

ms to 200 ms, the slow start threshold parameter ssthresh
increases linearly and the required rounds of RTT time to

complete the slow start stage increases almost log-linearly.

However, with the proposed adaptive fast slow start algorithm,

a constant NAF = 6 rounds of RTT time is required to increase

the congestion window to more than 90% ssthresh.

III. PERFORMANCE EVALUATION

We evaluate the performance of the proposed AFStart

algorithm by applying it to Fast TCP [13], and testing it

under two different network topologies, namely, the dumb-bell

topology and parking-lot topology. Fast TCP is a TCP con-

gestion control algorithm especially targeted at long-distance

and high-latency network links. The dumb-bell topology is

shown in Fig. 4 (a) with C Mbps link capacity and D ms
link delay between routers R1 and R2. In the dumb-bell

topology simulations, the link capacity is 200 Mbps and the

link delay is D = 20 ms. We simulate 4 flows totally that are

activated and terminated in 20 ms interval, and their activation

and termination time are shown in Fig. 4(b). The parking-lot

simulation topology is shown in Fig. 5 (a) with (C1, C2, C3)

Mbps link capacities and (D1, D2, D3) ms link delays. In

the parking-lot topology simulations, the link capacities are

all 200 Mbps (C1 = C2 = C3 = 200 Mbps), and the link
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Fig. 3: RTT rounds to complete slow start.

delays are all 20 ms (D1 = D2 = D3 = 20 ms). We simulate

4 flows in total, and their activation and termination time are

shown in Fig. 5 (b). The congestion window trajectories over

time under the dumb-bell topology and parking-lot topology

are shown in Fig. 6 (a) and Fig. 6 (b), respectively.

We first investigate the congestion window ramp up speed

of the proposed AFStart. The slow start improvement analysis

for each TCP flows in the dumb-bell topology and the parking-

lot topology is summarized in Table I. From this table, we can

see that AFStart can ramp up the congestion window from its

initial value to the slow start threshold in 6 rounds of RTT

time. It is easy to identify from this table that the time spent

in the slow start stage with AFStart can save more than 75%

than that of Fast TCP.

Furthermore, we investigate the averaged TCP throughput

during the first several seconds. Fig. 7 (a) and Fig. 7 (b) show

the averaged TCP throughput of 4 Fast TCP flows with or

without AFStart over the first two seconds under the simulated

dumb-bell topology and parking-lot topology, respectively. It is

obvious that AFStart improves the TCP throughput during the

slow start because AFStart ramps up the congestion window

more quickly than the standard slow start.

IV. RELATED WORK

Several works focused on improving the estimate of ssthresh

with an estimation of BDP. Hoe [1] proposed to enhance

TCP slow start performance by setting a better initial value of

ssthresh to be the estimated value of BDP which is measured

by the packet pair method. It has been reported in the literature

that other cross traffic may hinder proper estimation of the

available bandwidth by the packet pair method. Aron and

Druschel [2] proposed to improve the estimate of ssthresh

iteratively with multiple packet pairs. Paced Start [3] uses

packet trains to estimate the available bandwidth. These meth-

ods avoid TCP from prematurely switching to the congestion

avoidance phase, but they may suffer from temporary queue

overflow and multiple packet losses when the bottleneck buffer

is not big enough as compared to the BDP. Adaptive Start

[4] was proposed to reset ssthresh repeatedly to a more

appropriate value by using eligible rate estimation. Adaptive
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Fig. 6: Congestion window trajectories over time for simulated dumb-bell and parking-lot topologies.

Start interleaves the exponential growth and linear growth of

the congestion window to avoid packet overflows. However,

Adaptive Start is slower than standard slow start. Moreover,

it is designed specially for TCP-Westwood, and not integrated

with other TCP variants easily.

Several TCP slow start enhancements focus on intelligent

adjustment of the congestion window. Smooth Start [5] im-

proves the TCP slow start performance as the congestion

window approaches the connection equilibrium by splitting

the slow-start into two phases, the filling phase and the

probing phase. In the filling phase, the congestion window

is adjusted in the same manner as standard slow start, while

it is increased more slowly in the probing phase. How to

distinguish these phases is not addressed in smooth start. An

additional threshold max ssthresh is introduced in Limited

Slow Start [6]. The congestion window doubles per RTT if the

congestion window is smaller than max ssthresh; otherwise,

the congestion window is increased by a fixed amount of

max ssthresh packets per RTT. Limited Slow Start reduces the

number of drops in the TCP slow start phase, but max ssthresh

is required to be set statistically prior to starting a TCP

connection. Quick-Start [14] can determine the flow’s allowed

sending rate very quickly, but it requires the cooperations of

the routers along the path. In order to address the overshooting

problem of slow start, Hybrid Slow Start (HyStart) [7] suggests

a slow-start exit point to finish slow start and switch to

congestion avoidance, by using two congestion indicators:

ACK train length and the increase of RTT delays.

V. CONCLUSION

In this paper, we have proposed Adaptive Fast Start (AF-

Start) for wide area networks that incorporates an inline
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Fig. 7: Throughput Improvement with adaptive fast start.

TABLE I: Congestion Window Ramp Up Improvements in Slow Start

TCP Flows
Dumb-Bell Parking-Lot

AF Start (RTTs) Fast TCP (RTTs) Saving AF Start (RTTs) Fast TCP (RTTs) Saving

Flow 1 6.25 18.75 66.7% 6.25 25.00 75.0%

Flow 2 6.25 18.75 66.7% 6.25 18.75 66.7%

Flow 3 6.25 37.50 83.3% 6.25 31.25 80.0%

Flow 4 6.25 37.50 83.3% 6.25 37.50 83.3%

Average 6.25 28.13 75.0% 6.25 28.13 76.25%

available bandwidth measurement over TCP technique, called

ImTCP, into TCP slow start to measure the available band-

width efficiently and to set the slow start threshold ssthresh

adaptively to the bandwidth delay product derived from the

measured available bandwidth, and ramp up the congestion

window cwnd more quickly and smoothly than the standard

slow start. We have validated our claims by applying AFStart

to Fast TCP, and demonstrated its superiority under two

network topologies, namely, dumb-bell topology and parking-

lot topology.
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