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a b s t r a c t

This paper presents a theoretical design of how aminimax equilibrium of differential game is achieved in
stochastic cellular neural networks. In order to realize the equilibrium, two opposing players are selected
for the model of stochastic cellular neural networks. One is the vector of external inputs and the other
is the vector of internal noises. The design procedure follows the nonlinear H infinity optimal control
methodology to accomplish the best rational stabilization in probability for stochastic cellular neural
networks, and to attenuate noises to a predefined level with stability margins. Three numerical examples
are given to demonstrate the effectiveness of the proposed approach.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The past two decades have witnessed enormous advances
in engineering and in computer science to build artificial
computational systems (Werbos, 2009), among which cellular
neural networks are being implemented by using microprocessor
chips and have been readily applied to many scientific and
engineering fields such as, pattern recognition, image processing,
DNA micro-array analysis, satellite data transmissions, etc (Arena,
Bucolo, Fortuna, & Occhipinti, 2002; Arik, 2002; Aziz & Lara,
2007; Chua & Roska, 2005). Many applications of them require
a well-defined solution for all possible initial conditions under
different circumstances. From a mathematical point of view, this
signifies that the network should have a unique equilibrium point,
which is both stable and globally attractive (Van den Driessche,
Wu, & Zou, 2001). Moreover, when the cellular neural networks
are implemented by very large-scale integrated (VLSI) circuits,
time delays arise in the processing of signal transmission and
information storage among the neurons, which lead to more
complicated dynamics such as oscillation phenomenon or network
instability (Cheng, 2009). Therefore, the stability of cellular neural
networks has become an important topic in the past decade
(see for example, Arik (2002), Cao (2003), He, Wu, and She
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(2006), Huang, Huang, and Liu (2005), Kwon, Park, and Lee
(2008), Liao and Wang (2000, 2003), Xia, Xia, and Liu (2008),
Xu, Lam, Ho, and Zou (2005) and references therein), especially
the stability of delayed cellular neural networks. However, all the
cellular neural networks discussed above are either autonomous
networks without considering inputs or having a constant input
vector. Because the model of cellular neural networks (in any
form) usually involves an external input that can be used as a
control input, it makes good sense to develop some controllers to
achieve the stabilization. Furthermore, the aforementioned studies
primarily focused on deterministic cellular neural networks. In
the mathematical models of these aforementioned networks, they
do not consider the noise process that is fraught with signal
transmission particularly in biological systems.

On the other hand, Haykin (Haykin, 1994) indicated that the
synaptic transmission is a noise process in real nervous systems.
Therefore, as Werbos (Werbos, 2009) pointed out that in order to
develop mathematical neural network specifications which have
dual uses asmodels of intelligence in the brain, and as highly effec-
tive artificial intelligent systems when implemented in computers
and chips, we must consider the stochastic environment. Unfor-
tunately, with regard to the analysis of stochastic cellular neural
networks, there has been little work in the literature until the very
recent years (Huang & Yang, 2009; Lu & Ma, 2008; Wan & Zhou,
2011). Moreover, all the stochastic cellular neural networks dis-
cussed by those aforementioned publications are autonomous cel-
lular neural networks without considering external inputs. Hence,
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it is important to analytically explore the characteristics of con-
trollability and stabilization by using external inputs (control in-
puts) for time-delay cellular neural networks under the influence
of stochastic perturbation.

As an extension of our previous study (Liu, Torres, Patel, &
Wang, 2008; Liu, Wang, & Schurz, 2009), this paper presents a
theoretic design of differential minimax controllers for stochastic
time-delay cellular neural networks to achieve both the best
rational stabilization in probability under an optimal control
strategy, and to attenuate noise to a predefined level within
stabilitymargins. By applying the theory of differential game to the
networks, the approach is developed by considering the vector of
external inputs as a player and the vector of internal noises as the
opposing player. Therefore, aminimax equilibriumcanbe achieved
by properly controlling stochastic cellular neural networks. The
rest of the paper is organized as follows. In Section 2, we
present the problem formulation and mathematical preliminaries.
In Section 3, we detail the theoretical results. In Section 4, we
demonstrate the performance of our design with three numerical
examples. Finally, the conclusion of the paper is given in Section 5.

2. Problem formulation and preliminaries

In this paper, we consider the following model of stochastic
time-delay cellular neural networks

dxi(t) =


−λxi(t) +

n
j=1

bijgj(xj(t))

+

n
j=1

cijgj(xj(t − τ)) + ui


dt + dwi(t) (1)

where i = 1, 2, . . . , n. Mathematically, this can be described in the
following Ito-type matrix–vector compact form

dx(t) = (−Ax(t) + Bg(x(t)) + Cg(x(t − τ)) + u)dt + dw (2)

where x(t) ∈ Rn is the state of the stochastic time-delay cellular
neural network, u ∈ Rn is the input, A = diag(λ, . . . , λ) = λI
∈ Rn×n and λ > 0, g(x(t)) = [ g1(x1(t)), . . . , gj(xj(t)), . . . , gn(xn
(t))]T ∈ Rn is a vector function, and gj(xj(t)) is a sigmoidal function
(scalar one) that models the nonlinear input–output activations
of the neurons, B ∈ Rn×n and C ∈ Rn×n are weight matrices,
τ ∈ R+ is the time delay, w is an n-dimensional independent
Wiener process with incremental covariance


(t)


(t)Tdt , i.e.,
E{dwdwT

} =


(t)


(t)Tdt where


(t) is an unknown bounded
function taking values in the set of nonnegative definite matrices.

Our design goal is to develop a feedback controller for the
stochastic cellular neural networks modeled by Eq. (2) to achieve
the best rational stabilization in probability and to attenuate noises
to a predefined level with stability margins under an optimal
control strategy.

Before we derive the main analytical results in the next section,
it is necessary to introduce the following definitions.

Definition 2.1. The norm ∥x∥ of a vector x is the Euclidean norm. If
A is amatrix, then ∥A∥ denotes the Frobeniusmatrix norm, defined
as ∥A∥ = (Tr{ATA})1/2, where Tr{.} denotes the trace of a matrix. If
f : Rn

→ Rn is a vector field and V : Rn
→ R is a scalar function, the

notation Lf V is used to denote ∂V
∂x f (x) =

∂V
∂x1

f1(x)+· · ·+
∂V
∂xi

fi(x)+

· · · +
∂V
∂xn

fn(x).

Definition 2.2. Let us define a nonnegative bounded function

∆(t) = Σ(t)Σ(t)T ∈ Rn×n (3)

whichwill be used as a player opposing an external control in order
to solve the game problem addressed in this paper.

Definition 2.3. The activation function gj(xj(t)) has the following
properties:
(i) gj(0) = 0.
(ii) The function gj : R → R is monotonically increasing and

globally Lipschitz with constant kj > 0, i.e. |gj(xi) − gj(yi)| ≤

kj|xi − yi|, ∀xi ∈ R, ∀yi ∈ R, with | · | the respective absolute
value.

3. Main results

We develop our theoretic design based on the concepts of
differential minimax game (Basar & Bernhard, 1995) together
with inverse optimality (Freeman & Kokotovic, 1996), which is
one of the most promising methods in the area of modeling
biologically-inspired neural networks (Todorov, 2006; Werbos,
2009). Following the technique of inverse optimality (Freeman &
Kokotovic, 1996; Krstic & Deng, 1998), we first need to find a
stabilizing control and thenmodify it to optimize ameaningful cost
functional.

Theorem 1. Consider the system of stochastic time-delay cellular
neural network modeled by Eq. (2), if we choose the control as

u = −(2 + ∥B∥2k2 + 2∥C∥
2k2)x(t), (4)

then the system achieves noise-to-state stabilization.

Proof. Let us rewrite the system of the stochastic cellular neural
networks represented by Eq. (2) as

dx(t) = (−Ax(t) + Bg(x(t)) + Cg(x(t − τ)))dt + udt + dw. (5)

Now we define a Lyapunov function V as

V =
1
2
x(t)T x(t) +

 t

t−τ

((Cg(x(s)))T (Cg(x(s))))ds. (6)

The infinitesimal generator given by Blythe, Mao, and Liao
(2001) is

LV = x(t)T (−Ax(t) + Bg(x(t)) + Cg(x(t − τ))) + x(t)Tu

+
1
2
Tr


(t)T


(t)


+ (Cg(x(t)))T (Cg(x(t)))

− (Cg(x(t − τ)))T (Cg(x(t − τ)))

= −λx(t)T x(t) + x(t)TBg(x(t)) + x(t)T

× Cg(x(t − τ)) + x(t)Tu +
1
2
Tr


(t)T


(t)


+ (Cg(x(t)))T (Cg(x(t)))

− (Cg(x(t − τ)))T (Cg(x(t − τ))). (7)

Let us apply the following Young’s Inequality to both the second
term x(t)TBg(x(t)) and the third term x(t)TCg(x(t(t − τ))) in (7),

xTy ≤
∥x∥2

2
+

∥y∥2

2
(8)

in which x and y are two vectors.
We obtain

x(t)TBg(x(t)) ≤
1
2
x(t)T x(t) +

1
2
∥Bg(x(t))∥2

≤
1
2
x(t)T x(t) +

1
2
∥B∥2

∥g(x(t))∥2 (9)

and

x(t)TCg(x(t − τ)) ≤
1
2
x(t)T x(t)

+
1
2
(Cg(x(x − τ)))T (Cg(x(x − τ))). (10)
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From Definition 2.3, we have

|gj(xj)| ≤ kj|xj|, ∀xj ∈ R, j = 1, 2, . . . , n (11)

and

∥g(x(t))∥2
≤ (Kx(t))T (Kx(t)) = x(t)TK 2x(t) ≤ k2x(t)T x(t) (12)

where K = diag(k1, k2, . . . , kn) and k = max{kj}, j = 1, . . . , n.
From Eq. (9), we gain

x(t)TBg(x(t)) ≤
1
2
x(t)T x(t) +

1
2
∥B∥2k2x(t)T x(t) = x(t)T

×


1 + ∥B∥2k2

2


x(t). (13)

In addition

(Cg(x(t)))T (Cg(x(t))) = ∥Cg(x(t))∥2
≤ ∥C∥

2k2x(t)T x(t). (14)

Substitute Eqs. (10), (13) and (14) into Eq. (7), we get

LV ≤ −λx(t)T x(t) + x(t)T

1 + ∥B∥2k2

2


x(t) +

1
2
x(t)T x(t)

+
1
2
(Cg(x(x − τ)))T (Cg(x(x − τ)))

+ x(t)Tu +
1
2
Tr


(t)T


(t)


+ (Cg(x(t)))T (Cg(x(t))) − (Cg(x(t − τ)))T (Cg(x(t − τ)))

≤ −λx(t)T x(t) + x(t)T

1 + ∥B∥2k2

2


x(t)

+
1
2
x(t)T x(t) + x(t)Tu +

1
2
Tr


(t)T


(t)


+ ∥C∥
2
∥g(x(t))∥2

−
1
2
(Cg(x(t − τ)))T (Cg(x(t − τ)))

≤ −λx(t)T x(t) + x(t)T

2 + ∥B∥2k2 + 2∥C∥

2k2

2


x(t)

+ x(t)Tu +
1
2
Tr


(t)T


(t)


−
1
2
(Cg(x(t − τ)))T (Cg(x(t − τ))). (15)

Because of (Cg(x(t − τ)))T (Cg(x(t − τ))) ≥ 0,
we finally achieve

LV ≤ −λx(t)T x(t) + x(t)T

2 + ∥B∥2k2 + 2∥C∥

2k2

2


x(t)

+ x(t)Tu +
1
2
Tr


(t)T


(t)


. (16)

With the control of Eq. (4), the inequality above becomes

LV ≤ −λx(t)T x(t) +
1
2
Tr


(t)T


(t)


− x(t)T

×


2 + ∥B∥2k2 + 2∥C∥

2k2

2


x(t). (17)

Let us define

α(|x|) = x(t)T

2 + ∥B∥2k2 + 2∥C∥

2k2

2


x(t)

=


2 + ∥B∥2k2 + 2∥C∥

2k2

2


∥x(t)∥2. (18)

Thus, we get

LV ≤ −x(t)T

2 + ∥B∥2k2 + 2∥C∥

2k2

2


x(t) = −α(|x|) (19)

whenever ∥x(t)∥ ≥


1
2 Tr {


(t)T


(t)}

1/2
√

λ
=


1
2 Tr (∆(t))

1/2
√

λ
.

By the definition of noise-to-state stability (Krstic & Deng,
1998, p. 78, Definition 4.1) and Theorem 4.2 of the reference
Krstic and Deng (1998, p. 78), we conclude that the system of Eq.
(2) is noise-to-state stabilization with the control of Eq. (4). This
completes the proof. �

Remark 3.1. Although the Lyapunov theory, the most successful
and widely used tool, was invented a century ago, there are still
no systematic methods to obtain Lyapunov functions for general
nonlinear systems. Therefore, it remains a challenging task to find
a Lyapunov function and stabilize a nonlinear system (Primbs,
Nevistic, & Doyle, 1999).

Next let us discuss how to achieve both the best rational
stabilization in probability for stochastic cellular neural networks,
and attenuate noises to a predefined level with stability margins
under an optimal control strategy. Here, we apply the concepts of
differential minimax game (Basar & Bernhard, 1995) and inverse
optimality (Freeman & Kokotovic, 1996). Regarding the system of
Eq. (2), we consider the control u(t) as a player to oppose the noise
function ∆(t), which is another player defined in Definition 2.2, in
the game of controlling the system modeled by Eq. (2).

Consider the following general stochastic nonlinear system that
is affined in the noise w and control u

dx = f (x)dt + g1(x)dw + g2(x)udt. (20)

If there exists a positive optimal value function V (x), which
satisfies the following Hamilton–Jacobi–Bellman equation

∂V
∂t

+ Lf V +
1
4
γ −2

gT
1 (x)

∂2V
∂x2

g1(x)
2

−
1
4
Lg2Vr

−1(x)LTg2V + q(x) = 0 (21)

then

u∗(x) = −
1
2
r−1(x)LgT

2 V (22)

is an optimal stabilizing control which minimizes the cost func-
tional

J(u, ∆) = lim
t→∞

E


V (x(t)) +

 t

0

×


q(x) + uT r(x)u −

γ 2

4
∥∆∥

2

ds


(23)

where γ > 0 is a predefined design parameter, both q(x) ≥ 0 and
r(x) > 0 for all x, and the worst case ∆∗(t) is

∆∗(t) =
1
γ 2


gT
1 (x)

∂2V
∂x2

g1(x)


. (24)

Remark 3.2. It is still an open problem to find the solution of
Hamilton–Jacobi–Bellman equation (21) for the general stochastic
nonlinear system (20).

We now consider the Lyapunov function V as optimal value
function and substitute it into Eq. (21), which yields the next
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equation

(Cg(x(t)))T (Cg(x(t))) − (Cg(x(t − τ)))T (Cg(x(t − τ)))

− λx(t)T x(t) + x(t)TBg(x(t)) + x(t)TCg(x(t − τ))

+
1
4
γ −2n −

1
4
x(t)T r−1(x(t))x(t) + q(x(t)) = 0. (25)

Let us define a new control that is a modification of Eq. (4)

u = −c

2 + ∥B∥2k2 + 2∥C∥

2k2

2
+

2
c


x(t)

= −
1
2
c

2 + ∥B∥2k2 + 2∥C∥

2k2 +
4
c


x(t) (26)

where c > 2 is a constant.
We then choose the function r(x(t)) as

r(x(t)) = c−1(2 + ∥B∥2k2 + 2∥C∥
2k2 +

4
c
)−1 (27)

and from Eq. (25) the function q(x(t)) is given by

q(x(t)) = λx(t)T x(t) +
c
4
(2 + ∥B∥2k2 + 2∥C∥

2k2 +
4
c
)x(t)T x(t)

−
1
4
γ −2n − x(t)TBg(x(t)) − x(t)TCg(x(t − τ))

+ (Cg(x(t − τ)))T (Cg(x(t − τ)))

− (Cg(x(t)))T (Cg(x(t))). (28)

Now let us assume

∥x(t)∥ ≥ max
√

n
2γ

,
γ

2
√

λ
∥∆∥


. (29)

With the assumption above, we can now derive the following
theorem.

Theorem 2. For the stochastic cellular neural network described by
Eq. (2), there exist a positive-definite function q(x(t)) Eq. (28) and
a strictly positive function r(x(t)) Eq. (27), such that the feedback
control law

u = u∗
= −

1
2
r−1(x(t))x(t) (30)

achieves an optimal noise-to-state stabilization with respect to a
meaningful cost functional

J(u, ∆) = lim
t→∞

E


V (x(t)) +

 t

0

×


q(x(s)) + uT r(x(s))u −

γ 2

4
∥∆(s)∥2


ds


(31)

for the worst case ∆(t)

∆(t) = ∆∗(t) =
1
γ 2

I. (32)

Furthermore, a minimax equilibrium (u∗, ∆∗) is achieved.

Proof. Step 1: By considering the Lyapunov function candidate V ,
the infinitesimal generator of the stochastic differential equation
(2) is

LV = −λx(t)T x(t) + x(t)TBg(x(t)) + x(t)TCg(x(t − τ))

+ x(t)Tu +
1
2
Tr


(t)T


(t)


+ (Cg(x(t)))T

× (Cg(x(t))) − (Cg(x(t − τ)))T (Cg(x(t − τ))). (33)

The substitution of the control law Eq. (30) into LV yields

LV = −λx(t)T x(t) + x(t)Tg(x(t)) + x(t)TCg(x(t − τ))

− x(t)T

1
2
c

2 + ∥B∥2k2 + 2∥C∥

2k2 +
4
c


x(t)


+

1
2
Tr{∆(t)} + (Cg(x(t)))T (Cg(x(t)))

− (Cg(x(t − τ)))T (Cg(x(t − τ))). (34)

From Eqs. (10), (13), (14) and (29), we obtain

LV ≤ −λx(t)T x(t) + x(t)T

1 + ∥B∥2k2

2


x(t)

+
1
2
x(t)T x(t) +

1
2
(Cg(x(x − τ)))T (Cg(x(x − τ))) − x(t)T

×


1
2
c

2 + ∥B∥2k2 + 2∥C∥

2k2 +
4
c


x(t)


+

1
2
Tr{∆(t)}

+ (Cg(x(t)))T (Cg(x(t))) − (Cg(x(t − τ)))T (Cg(x(t − τ)))

≤ −λx(t)T x(t) −


c − 1
2

 
2 + ∥B∥2k2 + 2∥C∥

2k2

+ 1


× x(t)T x(t) − x(t)T x(t) +

1
2
Tr{∆(t)}

−
1
2
(Cg(x(t − τ)))T (Cg(x(t − τ)))

≤ −λx(t)T x(t) −


c − 1
2

 
2 + ∥B∥2k2 + 2∥C∥

2k2

+ 1


× x(t)T x(t) −

n
4γ 2

+
1
2
Tr{∆(t)}

= −λx(t)T x(t) −


c − 1
2

 
2 + ∥B∥2k2 + 2∥C∥

2k2

+ 1


× x(t)T x(t) − Tr


1
2γ

I −
γ

2
∆(t)

T  1
2γ

I −
γ

2
∆(t)



+
γ 2

4
∥∆(t)∥2

≤ −λxT x +
γ 2

4
∥∆(t)∥2

−


c − 1
2


(2 + ∥B∥2k2 + 2∥C∥

2k2) + 1

x(t)T x(t). (35)

Let us define

α(|x|) =


c − 1
2

 
2 + ∥B∥2k2 + 2∥C∥

2k2

+ 1


x(t)T x(t)

=


c − 1
2

 
2 + ∥B∥2k2 + 2∥C∥

2k2

+ 1


∥x(t)∥2. (36)

Therefore LV ≤ −α(|x|) whenever ∥x∥ ≥
γ

2
√

λ
∥∆(t)∥.

Same as Theorem 1, we conclude that the system of Eq. (2)
achieves noise-to-state stabilization with the control law Eq. (30).

Step 2: Let us consider q(x(t)) and r(x(t))
By Eq. (28)

q(x(t)) = λx(t)T x(t) +
c
4


2 + ∥B∥2k2 + 2∥C∥

2k2 +
4
c


× x(t)T x(t) −

1
4
γ −2n − x(t)TBg(x(t)) − x(t)T

× Cg(x(t − τ)) + (Cg(x(t − τ)))T (Cg(x(t − τ)))

− (Cg(x(t)))T (Cg(x(t))). (37)
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Substitute Eqs. (10), (13), (14) and (29) into Eq. (37) above, we get

q(x(t)) ≥ λx(t)T x(t) +
c
4


2 + ∥B∥2k2 + 2∥C∥

2k2 +
4
c


× x(t)T x(t) −

1
4
γ −2n − x(t)T


1 + ∥B∥2k2

2


x(t)

−
1
2
x(t)T x(t) −

1
2
(Cg(x(x − τ)))T (Cg(x(x − τ)))

+ (Cg(x(t − τ)))T (Cg(x(t − τ))) − ∥C∥
2k2x(t)T x(t)

= λx(t)T x(t) +


c − 2
2


2 + ∥B∥2k2 + 2∥C∥

2k2

2


x(t)T

× x(t) + x(t)T x(t) −
1
4
γ −2n

+
1
2
(Cg(x(t − τ)))T (Cg(x(t − τ)))

≥ λx(t)T x(t) +


c − 2
2


2 + ∥B∥2k2 + 2∥C∥

2k2

2


× x(t)T x(t)

≥ 0. (38)

Then, q(x(t)) is positive definite and radially unbounded.
By Eq. (27)

r(x(t)) = c−1

2 + ∥B∥2k2 + 2∥C∥

2k2 +
4
c

−1

(39)

it is obvious that r(x(t)) > 0.
With the choice of q(x(t)) and r(x(t)) in Eqs. (28) and (27),

LV can be written into the following form

LV = −q(x(t)) − uT r(x(t))u +
γ 2

4
∥∆(t)∥2

− Tr

×


1
2γ

I −
γ

2
∆(t)

T  1
2γ

I −
γ

2
∆(t)


+ (u − u∗)T r(x(t))(u − u∗). (40)

According to Dynkin’s formula (Oksendal, 2002), we have

J(u, ∆) = lim
t→∞

E


V (x(t)) +

 t

0


q(x(s)) + uT r(x(s))u

−
γ 2

4
∥∆(s)∥2


ds



= lim
t→∞

E


V (x(0)) +

 t

0


LV + q(x(s)) + uT r(x(s))u

−
γ 2

4
∥∆(s)∥2


ds



= E[V (x(o))] + lim
t→∞

E
 t

0


(u − u∗)T r(x(s))(u − u∗)

− Tr


1
2γ

I −
γ

2
∆(s)

T  1
2γ

I −
γ

2
∆(s)


ds. (41)

From the above equation, we know that the optimal control u = u∗

is an optimal solution to J Eq. (31) for theworst disturbance∆(t) =

∆(t)∗, that is,

min
u

max
∆

J(u, ∆) = E[V (x(o))]. (42)

Therefore, by considering the control u(t) as a player and the noise
covariance ∆(t) as the opposing player, a minimax equilibrium
(u∗, ∆∗) is achieved (Basar & Bernhard, 1995). This completes the
proof. �

Remark 3.3. In the society of control engineering, there is a strong
motivation for designing optimal systems because such systems
automatically have many desirable properties, such as, stability,
robustness, reduced sensitivity, etc., (Moylan & Anderson, 1973).
Because it is too difficult to solve the Hamilton–Jacobi–Bellman
equation, the problem of finding a direct optimal control solution
for nonlinear systems remains open. Therefore, the research
community resorts to an alternative approach, inverse optimality.
On the other hand, recent research results have shown that the
inverse optimal control appears to be one of the most promising
methods in the area of modeling biologically-inspired neural
networks (Todorov, 2006; Werbos, 2009). There are many strong
evidences to support that biological movements are optimal.
However, the exact cost function that is being optimized in a
particular mission is not always clear.

4. Numerical examples

In this section, we consider three examples, with which the
networks have different structures and activation functions, to
verify the theoretical analysis. To consider all situations from
various perspectives, a low level of disturbance noises is applied
to Example 1 and a high level of disturbance noises is applied
to Example 2. In addition, Example 3 presents a more realistic
application experiment, which shows one of applications of time-
delay cellular neural networks. Three numerical examples are
simulated by using theMatlab/Simulink software under the fourth
order Runge–Kutta method with a fixed small step size of 0.005.

Example 1. A stochastic time-delay cellular neural network is
given as
dx1(t)
dx2(t)


=


−


1 0
0 1

 
x1(t)
x2(t)


+


2.1 −0.12

−5.1 3.2


×


tanh(x1(t))
tanh(x2(t))


+


−1.6 −0.1
−0.2 −2.4



×


tanh(x1(t − τ))
tanh(x2(t − τ))


dt +


dw1
dw2


+


u1
u2


dt (43)

where x1(0) = 0.3, x2(0) = −3, λ = −1, B =
2.1 −0.12

−5.1 3.2


, C =


−1.6 −0.1
−0.2 −2.4


, activation function gj(xj) =

tanh(xj) (j = 1, 2), τ = 1, and w1, w2 are white noises (uniformly
random) with the magnitude of |wj| = 5 (j = 1, 2).

Fig. 1 shows the result of phase plane of the network without
both thenoise and the control,which tells that the original network
is actually a chaotic delayed cellular neural network. Figs. 2 and 3
display the results of phase plane and time response of the neural
network with the noise (|wj| = 5) but without the control. The
system is unstable and chaotic. The effect of the noise in the system
can be seen obviously, which further worsen the system. Finally,
the control signal Eq. (30) is applied to the system at t = 50. The
result is given by Fig. 4. One can see that the network is globally
asymptotically stable, that is, it achieves the stochastic noise-to-
state stabilization.
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Fig. 1. Phase plane (u = 0 and wj = 0 (j = 1, 2)).

Fig. 2. Phase plane (u = 0 and |wj| = 5 (j = 1, 2)).

Example 2. Let us consider the following stochastic time-delay
cellular neural network
dx1(t)
dx2(t)


=


−


1 0
0 1

 
x1(t)
x2(t)


+


1 2

−3 4



×


s(x1(t))
s(x2(t))


+


1 2

−3 4

 
s(x1(t − τ))
s(x2(t − τ))


dt

+


dw1
dw2


+


u1
u2


dt (44)

where x1(0) = 5, x2(0) = −5, λ = −1, B =


1 2

−3 4


, C =

1 2
−3 4


, activation function gj(xj) = 1/(1+exp(−2xj))−0.5 (j =

1, 2), τ = 1, andw1, w2 arewhite noises (uniformly random)with
the magnitude of |wj| = 20 (j = 1, 2).

Fig. 5 represents the result of phase plane of the network
without both the noise and the control. The system is not globally
asymptotically stable. Figs. 6 and 7 display the results of phase
plane and time response of the neural network with the noise
(|wj| = 20) but without the control. The system is unstable
and becomes chaotic. Fig. 8 demonstrates the result of the time

Fig. 3. System response (u = 0 and |wj| = 5 (j = 1, 2)).

Fig. 4. System response with the control (u = Eq. (30) at t = 50).

Fig. 5. Phase plane (u = 0 and wj = 0 (j = 1, 2)).

responses when the proposed control signal Eq. (30) is inputted
at t = 50 to the system. It can be seen that the system achieves
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Fig. 6. Phase plane (u = 0 and |wj| = 20 (j = 1, 2)).

Fig. 7. System response (u = 0 and |wj| = 20 (j = 1, 2)).

Fig. 8. System response with the control (u = Eq. (30) at t = 50).

the expected performance which conforms the aforementioned
theoretical analysis in Section 3.

Fig. 9. System Response (u = 0 and |w| = 5).

Fig. 10. System response with the Control (u = Eq. (30) at t = 50).

Example 3. A time-delay cellular neural network can be used to
model a continuous PH neutralization of an acid stream (Zhang,
Wang, & Liu, 2008). Therefore,we consider the following stochastic
time-delay cellular neural network that is the extension of the
application example in Zhang et al. (2008).

dx(t) = (−Ax(t) + W tan h(x(t))
+W1 tan h(x(t − τ)))dt + dw + udt (45)

where x(0) = 2, A = 0.5,W = 0.5,W1 = 3, τ = 1, and w is a
white noise (uniformly random) with the magnitude of |w| = 5.

Fig. 9 shows the result of time response of the neural network
with the noise (|w| = 5) but without the control. It is obvious that
the system is not globally asymptotically stable. Fig. 10 illustrates
the result of the time response when the proposed control signal
Eq. (30) is inputted at t = 50 to the system. One can see that the
network is globally asymptotically stable, that is, it achieves the
stochastic noise-to-state stabilization.

5. Conclusions

This paper has presented a new theoretical design for
stochastic time-delay cellular neural networks to achieve an
optimal noise-to-state stabilization in probability. The proposed
approach is developed by using differentialminimax game, inverse



Author's personal copy

Z. Liu et al. / Neural Networks 26 (2012) 110–117 117

optimality, Lyapunov technique, and Hamilton–Jacobi–Bellman
equation. After considering the vector of external inputs as a
player and the vector of internal noises as the opposing player,
a minimax equilibrium is achieved in controlling stochastic
cellular neural networks. Owing to the difficulty in solving the
Hamilton–Jacobi–Bellman equation for nonlinear systems, optimal
stabilization seems to be an unachievable goal in feedback design.
However, an alternative way has been proposed in this paper to
solve the problem and obtain an optimal feedback controller with
respect to a meaningful cost functional by using the knowledge
of inverse optimality. Simulation results show that the proposed
approach turns out to be very effective for different systems
under different circumstances. It is believed that the new design
presented in this paper would accelerate the applications of
stochastic cellular neural networks. Further research is under way
to extend our results to other types of neural networks.
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