IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013 39

On Architecture Design,

Congestion Notification,

TCP Incast and Power Consumption in Data
Centers

Yan Zhang, Student Member, IEEE, and Nirwan Ansari, Fellow, IEEE

Abstract— With rapid deployment of modern data center net-
works (DCNs), many problems with respect to DCN architecture,
congestion notification, TCP Incast, and power consumption
have been observed. In this paper, we provide a comprehensive
survey of the most recent research activities in DCNs, with
emphasis on the network architecture design, congestion noti-
fication algorithms, TCP Incast, and power consumption. We
describe in detail the architecture of a typical modern DCN.
Furthermore, we investigate the challenges of the typical tree-
based hierarchical DCN architecture encountered today and the
requirements for the optimal DCN architecture, and we classify
the proposed DCN architectures into switch-centric topology and
server-centric topology. A section is also devoted to describe some
newly proposed DCN architectures. We present a brief overview
of the TCP Incast problem along with previously proposed
solutions. We also review the recent energy-efficient solutions
to minimize the power consumption in DCNs. Finally, we outline
possible future research topics in DCNs.

Index Terms—Data center networks (DCNs), modular data
center networks, architecture design, data center congestion
notification, TCP Incast, TCP throughput collapse, power con-
sumption, energy efficiency, green data centers.

I. INTRODUCTION

ATA centers, facilities with communications network
equipments and servers for data processing and/or stor-
age, are prevalent and essential to provide a myriad of
services and applications for various private, non-profit, and
government systems. They are used and deployed in nearly
every sector of the economy, e.g., financial services, media,
universities, and government institutions. Many large data
center networks (DCNs) have been built in recent years to
host online services such as web search and online gaming,
distributed file systems such as Google File System (GFS)
[1], and distributed Storage System such as BigTable [2] and
MapReduce [3]. DCNs are growing rapidly, and the number of
servers in DCNs is expanding at an exponential rate. Google
hosted approximately 450,000 low-cost commodity servers
running across 20 datacenters in 2006 [4], and Microsoft is
doubling the number of servers every 14 months.
With rapid deployment of modern high-speed low-latency
large-scale DCNs, many problems have been observed in

Manuscript received 30 January 2011; revised 23 June 2011, 7 October
2011, 28 November 2011, and 10 December 2011.

Y. Zhang and N. Ansari are with the Advanced Networking Lab., De-
partment of Electrical and Computer Engineering, New Jersey Institute
of Technology, Newark, NJ, 07102 USA. (e-mail:yz45@njit.edu and Nir-
wan.Ansari@njit.edu)

Digital Object Identifier 10.1109/SURV.2011.122211.00017

DCNs, such as DCN architecture design, congestion notifica-
tion, TCP Incast, and power consumption. This survey/tutorial
focuses on addressing the above four critical issues in a
coherent manner. Readers are referred to [5]-[9] in addressing
other issues such as virtual machine migration and routing
in DCNs. The typical DCNs are constructed based on a
tree-like hierarchical topology [10]. As the scale of modern
DCNs is expanding, many problems have been observed in
this tree-like hierarchical topology [11], such as scalability,
reliability, utilization, and fault tolerance. Several new DCN
architectures have been proposed to tackle challenges of
typical tree-based architecture [12]-[31]. To support cloud ser-
vices, existing solutions for the enterprise data center, which
were originally developed for smaller data centers in tree-
based hierarchical topology, are no longer effective. Typical
enterprise data centers are quite different from cloud service
data centers [11]. The cloud service data centers must support
large economies of scale. The size of cloud DCNs presents
an opportunity to leverage economies of scale not present in
enterprise DCNs. Automation is a fundamental principle of the
design requirement in cloud DCNGs; this might be just partially
true for enterprise data centers. The leading cost in running
enterprise DCNs is the operational staff while such cost is
very small (smaller than 5%) in the cloud data centers due to
automation. The typical ratio of IT staff members to servers
in enterprise data centers is 1:100 while it is 1:1000 for cloud
data centers. Furthermore, cloud service DCNs are required
to scale out to distribute workload over a large number of
low-cost commodity servers and switches, while enterprise
DCNs are often optimized for the physical space and number
of switches in order to consolidate the workload onto a small
number of high-end servers and switches. Here, our objective
is to mainly survey the cloud service DCN architectures.

In this survey, we also discuss other problems in DCNs,
including congestion notification algorithms [32]-[37], TCP
Incast [38]-[40], as well as power consumptions. Congestion
notification algorithms have been developed to reduce or
remove packet drops at congested switches. Several congestion
notification algorithms have been proposed, e.g., Backward
Congestion Notification (BCN) [32], [33], Forward Explicit
Congestion Notification (FECN) [34], the enhanced FECN (E-
FECN) [35], and Quantized Congestion Notification (QCN)
[36]. QCN has been developed probably for inclusion in the
IEEE 802.1Qau standard to provision congestion notification
at the Ethernet Layer or Layer 2 (L2) in DCNs by the IEEE
Data Center Bridging Task Group.

1553-877X/12/$31.00 © 2013 IEEE

40 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013

TCP throughput collapse has been observed during syn-
chronous data transfers in early parallel storage networks
[41]. This phenomenon is referred to as TCP Incast and is
attributed to having multiple senders overwhelming a switch
buffer, thus resulting in TCP timeout due to packet drops at
the congestion switch. TCP Incast has also been observed
by others in distributed cluster storage [38], MapReduce [3],
and web-search workloads. The main root cause of the TCP
Incast analyzed in [38]-[40] is due to the packets drops at the
congestion switch that result in TCP timeout.

To provide reliable and scalable computing infrastructure,
the high network capacity of DCNs is especially provisioned
for worst-case or busy-hour load, and thus data centers con-
sume a huge amount of energy. Report to Congress on Server
and Data Center Energy Efficiency [42] assessed trends in
the energy use and energy costs of data centers and servers
in U.S., and outlined existing and emerging opportunities for
improved energy efficiency. It is estimated that data centers
and servers consumed about 61 billion kilowatt-hours (kWh)
in 2006 (1.5% of the total U.S. electricity consumption) for
a total electricity cost of about $4.5 billion. The energy use
of data centers and servers in 2006 is estimated to be more
than double the electricity that was consumed for this purpose
in 2000 and could nearly double again in 2011 to more than
100 billion kWh, representing a $7.4 billion annual electricity
cost. However, numerous studies have shown that data center
servers rarely operate at full utilization, and it has been well
established in the research literature that the average server
utilization is often below 30% of the maximum utilization in
data centers [43], [44] and a great number of network devices
work in the idle state in these richly-connected data networks.
At low levels of workload, servers are highly energy-inefficient
because even at the idle state, the power consumed is over 50%
of its peak power for an energy-efficient server [44] and often
over 80% for a commodity server [45]. Barroso and Holzle
[44] showed a mismatch between common server workload
profiles and server energy efficiency. Thus, these servers
are not power-proportional, as the amount of power used is
proportional to the provisioned capacity, not to the workload.
They proposed the concept of energy proportional computing
systems that ideally consume almost no power when idle and
gradually consume more power as the activity level increases.
The high operational costs and the mismatch between the data
center utilization and power consumption have spurred great
interest in improving DCN energy efficiency. Currently, power
consumption and energy efficiency is also a major concern
for other communication networks, such as wireless cellular
networks, optical networks, and future Internet. Several survey
papers on power consumption for these different networks
[46]-[49] have been reported, and readers are referred to these
references for further exploration.

The rest of the paper is organized as follows. We describe
a typical modern DCN architecture, challenges encountered
in DCNs today, and main requirements for emerging DCN
architectures in Section II. Section III categorizes the DCN
architectures into switch-center as well as server-center topolo-
gies, and introduces some newly proposed DCN architec-
tures. Section IV compares various congestion notification
algorithms proposed for DCNs. Section V provides a brief

Fig. 1. The conventional DCN architecture for data centers (adapted from
Cisco [10]).

overview of the TCP Incast problem and proposed solutions to
mitigate TCP Incast. Section VI summarizes current solutions
to minimize power consumptions in DCNs. Finally, Section
VII concludes the paper, outlining possible future research
topics in DCNs.

II. TYPICAL DATA CENTER NETWORK ARCHITECTURE

Conventional DCNs are typically constructed based on a
tree-based hierarchical topology. In this section, we review
the construction of conventional DCNs, summarize the major
problems of conventional DCNs, and present requirements for
new DCN architectures.

A. Typical DCN Construction

Recommended by Cisco data center infrastructure design
guide version 2.5 [10], conventional DCNs typically consist of
a two- or three-tier data center switching infrastructure. Two-
tier architectures are typically comprised of edge tier switches
located at top-of-rack or end-of-row switches, and core tier
switches. Two-tier DCNs are usually sufficient to support
up to several thousand hosts. For some very large networks,
three-tier architectures may be more appropriate, in which an
aggregation tier is inserted in the middle of the edge tier and
the core tier as shown in Figure 1. All servers attach to DCNs
through edge tier switches. There are typically 20 to 40 servers
per rack, each singly connected to two aggregation switches
for redundancy, and these aggregation switches are further
connected to the core tier switches. The aggregation tier
switches provide service module integration functions, such
as server load balancing, firewalling and Secure Socket Layer
(SSL) offloading. The aggregation layer defines the Layer 2
domain size and manages the Layer 2 domain by a spanning
tree protocol (STP) such as Rapid Per-VLAN Spanning Tree
(R-PVST) or Multiple STP (MSTP). The aggregation layer
also provides a primary and secondary router “default gate-
way” address for all servers across the entire access layer by
using default gate redundancy protocols such as Hot-Standby
Routing Protocol (HSRP), Virtual Redundant Routing Protocol
(VRRP), or Gateway Load Balancing Protocol (GLBP). At
the top of the three-tier hierarchy, core tier switches provide
the high-speed packet switching backbone for all flows going
into and out of DCN. The core tier switches connect to
multiple aggregation modules and provide a resilient Layer
3 routing fabric with no single point of failure. Typically,
edge tier switches have a number of GigE ports connected
to service servers as well as a number of 10 GigE uplinks to

ZHANG and ANSARI: ON ARCHITECTURE DESIGN, CONGESTION NOTIFICATION, TCP INCAST AND POWER CONSUMPTION IN DATA CENTERS

TABLE 1

41

CHALLENGES TO TREE-BASED DCN ARCHITECTURE AND REQUIREMENTS FOR OPTIMAL DCN ARCHITECTURES

Challenges to Tree-based DCN Architecture

Requirements for Optimal DCN Architecture

Scalability

Scale up : replacing or upgrading existing hardware with
advanced higher-capacity modules.

Scale out : adding more individual components to increase
the capacity.

Static Network Assignment

Each application is directly mapped to specific physical
switches and routers to cover the servers dedicated to the
application, which ossifies the server assignment.

Any server could be assigned to any service dynamically
according to the fluctuating demand requirements.

Server-to-Server Capacity
and Bandwidth
Bottleneck

Poor server-to-server capacity: limited by the server over-
subscription ratio; server oversubscription ratio increases
rapidly when moving up a higher layer in the tree-based
DCN hierarchy; bandwidth bottleneck at the aggregation
and core switches.

Intensive internal communications between any pair of
servers should be supported; any host can potentially com-
municate with other arbitrary hosts at the full bandwidth of
its network interface.

Resource Fragmentation
and Agility

Resource is fragmented due to the hierarchical nature of the
typical tree-based DCN and large oversubscription at higher
level of hierarchy; static network assignment prevents idle
servers from being assigned for overloaded services, thus
resulting in under-utilization of resources.

The server can be placed anywhere, and can be assigned
for any service; the server pools can be dynamically ex-
panded or shrunken; agility improves server utilization, risk
management and cost savings.

Reliability & Utilization

The typical tree-based data centers suffer from poor re-
liability and utilization; multiple paths are not effectively
deployed due to the STP used within the layer 2 domain;
switches and links in aggregation and core layer run at most
50% of utilization.

A dynamic DCN model is required to deploy network
resources when and where they are needed to improve
service reliability and maximize server utilization.

Load Balance

Links in the core layer have higher utilization than those in
the edge layer.

Traffic needs to be distributed evenly across network paths.

Fault Tolerance

A high-level switch is a potential single-point failure spot
for its sub-tree branch in the tree-based DCN architecture;
performance degrades ungracefully when hardware fails.

Failure detection should be rapid and efficient; system
performance should degrade gracefully when hardware fails;
recovery time should be minimal.

Cost

High-end switches incur prohibitive costs to expand the
cluster size.

The optimal DCN should deliver scalable bandwidth at
moderate cost.

Power Consumption

Power consumption is high and inefficient; over-
provisioning of server resources is a huge drain on
energy and cooling systems.

Power consumption should be proportional to network
utilization.

Traffic affects each other from different services if they

Performance Isolation share the same network sub-tree.

Traffic of different services should not be affected by each
other in the optimal DCNs.

Network Capacity oversubscription ratio.

High bandwidth services are constrained by a large server

High network capacity should be provided to better support
bandwidth hungry services.

one or more aggregation switches that aggregate and transfer
packets between edge switches. The aggregation and core tier
switches are typically equipped with 10 GigE ports to provide
significant switching capacity for aggregated traffic between
edges. Servers are usually isolated into several server groups
by virtual LAN (VLAN) partitioning in the Layer 2 domain.

B. Challenges to Typical DCN Architecture and Requirements
for Optimal DCN Architectures

Several works have observed the problems of typical tree-
based DCN architecture. Table I summarizes the challenges
to typical tree-based DCN architecture and requirements for
optimal data centers.

o Scalability

Modern DCNs must be scalable to accommodate a large
number of servers and allow for incremental expansion. The
conventional tree-based DCN architecture increases capacity
by scaling up, in other words, by replacing or upgrading exist-
ing hardware with advanced high-end ones. However, scaling
up is unscalable and expensive, and therefore, newly proposed
DCN architectures should be scaled out instead of scaled
up by adding more individual components to increase the

capacity instead of replacing or upgrading existing hardware
with newer, higher capacity and expensive models.

« Static Network Assignment

In tree-based DCNs, each application is mapped to one VLAN,
constructed by specific physical switches and routers to cover
the servers dedicated to the application. The direct physical
mapping application to switches and routers ossifies the server
assignment. In the optimal DCN, any server could be assigned
to any service dynamically according to the fluctuating de-
mand requirements.

« Server-to-Server Capacity and Bandwidth Bottleneck

Server-to-server capacity is limited by the server oversub-
scription ratio, which can be calculated by simply dividing
the total server connection bandwidth by the total aggregated
uplink bandwidth at the access layer switch. The typical
oversubscription ratios are 2.5:1 up to 8:1 in large server
clusters, and the ratio increases rapidly when moving up in the
typical tree-based network architecture hierarchy. Therefore,
the bandwidth of a typical tree-based DCN is bottlenecked at
the aggregation switches and the core switches. The optimal
DCN architecture should support intensive internal commu-
nications between any pair of servers in the data center,

42 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013

regardless of server locations. The server oversubscription
ratio should be near to 1:1 as much as possible, indicating
that any host can potentially communicate with other arbitrary
hosts at the full bandwidth of its network interface.

e Resource Fragmentation and Agility

As a consequence of the hierarchical nature of the typical
DCN architecture and the large server oversubscription ratio
at the core and aggregation layer, resources are fragmented
and isolated, thus limiting the ability to dynamically reassign
servers among the applications running in the data center.
Owing to limited server-to-server capacity, designers tend to
cluster servers near each other in the hierarchy because the
distance in the hierarchy affects the performance and cost of
the communication. If an application or service grows and
requires more servers, resource fragmentation constrains it
from using idle servers of other applications. Thus, without
agility, each application and service must be pre-assigned with
enough servers to meet service demands which are difficult to
predict. The resource fragmentation results in under-utilization
of resources, and severely limits the entire data center’s
performance. In the optimal DCN architecture, the server can
be placed anywhere and can be assigned to any service, and
thus the server pool can be dynamically expanded or shrunk
to meet the fluctuating demands of individual services from a
large shared server pool. Agility improves server utilization,
risk management and cost savings.

« Reliability and Utilization

The typical tree-based DCNs suffer from poor reliability and
utilization. Multiple paths are not effectively utilized in typical
tree based DCN architecture, since only a single path is used
by STP within a layer 2 domain even though multiple paths
exist between switches. The typical tree-based DCN topology
offers two paths at most. In the aggregation and core layer of
tree-based hierarchy, the basic resilience model is 1:1, which
leads to at most 50% of maximum utilization of each switch
and link. This over-provisioning model used by a typical
tree-based DCN architecture for years is rapidly becoming
unsustainable. A dynamic DCN model is required to deploy
network resources when and where they are needed to improve
service reliability and maximize server utilization.

o Load Balance

DCN link loads have been examined by analyzing Simple
Network Management Protocol (SNMP) logs collected from
19 DCNs in [50]. Links in the core layer are more heavily
utilized than those in the edge layer. Traffic needs to be
distributed evenly across network paths in the optimal DCN.

o Fault Tolerance

Fault tolerance is essential for DCNs since failures are com-
mon in DCNs. DCNs must be fault tolerant to various types
of server failures, server rack failures, link failures and switch
failures. A high-level switch may be a single-point failure
spot in the tree-based DCN architecture. For instance, a core
switch failure may tear down millions of users for several
hours. Adding redundant switches may alleviate the problem,
but does not solve the problem due to low connectivity of the
inherent nature of tree-based architecture. In the optimal DCN
architecture, system performance should degrade gracefully

TABLE 11
DATA CENTER NETWORK TOPOLOGY CATEGORIES

Conventional DCN [10]
Two-Table Lookup [12]
Monsoon [13]

VL2 [14]

PortLand [15]

Energy Proportional DCN [16]
SPAIN [17]

Switch-centric Topology

Modular Data Center [18]-[23]
DCell [24]

BCube [25]

MDCube [26]

FiConn [27], [28]

DPillar [29]

CamCube [30], [31]

Server-centric Topology

when a hardware fails; failure detection should be rapid and
efficient, and the recovery time should be minimal.

o Cost
Al-Fares et al. [12] estimated the cost of a typical tree-
based DCN as a function of the total number of end hosts
with different oversubscription ratios. They found that existing
techniques for delivering high levels of bandwidth in large
clusters incur a significant cost. The high-end switches em-
ployed by traditional tree-based DCNSs incur prohibitive costs
to expand the cluster size. The optimal DCNs should deliver
scalable bandwidth at moderate cost.

« Power Consumption
Power consumption is not taken into consideration in the
typical tree-based DCN architecture design, and hence power
consumption is not efficient. The over-provisioning of server
resources in the typical tree-based data center hierarchical
architecture is a huge drain on energy and cooling systems.
Research in [44] showed that an energy efficient server con-
sumes about half of its full power even when it is idle. It has
been well established in the research literature that the average
server utilization in data centers is often below 30 percent and
servers operate most of the time at between 10 and 50 percent
of their maximum utilization levels [44], thus resulting in a
poor return on investment (ROI). The power consumption of
optimal datacenters should be proportional to utilization.

o Performance Isolation
Normally, multiple services may be hosted in one DCN. In
typical tree-based DCNss, a traffic flow may be affected by the
traffic flow from other services if they share the same network
sub-trees. Traffic of any service should not be affected by
traffic of any other service in the optimal DCNs.

« Network Capacity
The large server oversubscription ratio constrains the typical
tree-based DCN from providing high bandwidth services. The
optimal DCN architecture should be able to provide high
network capacity to better support bandwidth hungry services.

III. DCN ARCHITECTURE DESIGN OVERVIEW

As DCNs are growing in size, many problems have been
observed, such as scalability, resource fragmentation, reliabil-
ity, utilization, and fault tolerance. In order to address these

ZHANG and ANSARI: ON ARCHITECTURE DESIGN, CONGESTION NOTIFICATION, TCP INCAST AND POWER CONSUMPTION IN DATA CENTERS 43

Fig. 2. Fat-tree data center network topology

issues, several DCN architectures have been proposed recently
and some of them are reviewed and compared in this section.
DCN architectures can be classified into two categories as
shown in Table II. One is the switch-centric topology, in which
switches provide interconnection and routing intelligence. The
other is the server-centric topology, in which servers, with
multiple Network Interface Card (NIC) ports, also participate
in interconnection and routing.

A. Two-Table Lookup

Al-Fares et al. [12] adopted a special instance of a Clos
topology [51] called fat-tree [52], by interconnecting commod-
ity off-the-shelf (COTS) switches to build scalable DCNs. This
is referred to as the Two-Table Lookup DCN in this survey
due to the two-level routing tables used for traffic routing and
diffusion. A k-ary fat-tree topology with k = 4, shown in Fig.
2, is built with 5k?/4 k-port switches that interconnect k*/4
servers. In a k-ary fat-tree topology, there are k pods. Each pod
consists of k/2 edge switches and k/2 aggregation switches,
and the edge switches and aggregation switches form a Clos
topology by connecting each edge switch to each aggregation
switch as shown in Fig. 2. The edge and aggregation switches
form a complete bipartite graph in each pod. In each edge
switch, k/2 ports connect directly to servers and the other & /2
ports connect to k/2 of the k-ports in the aggregation switches.
Thus, each pod is connected to k2 /4 servers, and there are
k3 /4 servers in total. There are (k/2)? k-port core switches.
Each core switch has one port connected to each of k£ pods,
and each pod is connected to all core switches, thus forming
a second bipartite graph. A simple, fine-grained method of
traffic diffusion between pods, which takes advantage of the
fat-tree structure [52], was also proposed.

1) Addressing Scheme: Al-Fares et al. [12] assumed that all
the IP addresses are allocated in the network within the same
private network block. The pod switches are given addresses in
the form of net.pod.switch.1, where net denotes the private
network block, pod denotes the pod number (in [0,k — 1)),
and switch denotes the position of that switch in the pod (in
[0, k — 1], starting from left to right, bottom to top). The core
switch addresses are in the form of net.k.j.i, where j and
i denote that switch’s coordinates in the (k/2)? core switch
grid (each in [1, (k/2)], starting from top-left). The hosts have
addresses in the form of net.pod.switch.I D, where ID is the
host’s position in that subnet (in [2, k/2+ 1], starting from left

Core

to right). Therefore, each lower-level switch is responsible for
a /24 subnet of k/2 hosts (for k < 256).

2) Two-Level Lookup Tables Routing Algorithm: To pro-
vide the even-distribution mechanism, two-level prefix lookup
routing tables were proposed. Entries in the primary table are
in the form of 1™032~™ prefix masks, while entries in the
secondary tables are in the form of 0™132~™ right-handed
suffix masks, where m is the mask number. Pod switches act
as traffic filter, and pod switches in each pod have prefixes
matched to the subnets in that pod. In each edge switch, one
matching prefix exists in the primary table for each host in
that subnet. In each aggregation switch, a terminating /24
prefix pointing to each subnet in that pod in the form of
(net.pod.switch.0/24, port) is inserted in its primary table. For
outgoing inter-pod traffic, the pod switches have a default of /0
prefix in the primary table pointing to the secondary table, and
in the secondary table a terminating /8 suffix with matching
host IDs. Thus, traffic can be evenly distributed upward among
the outgoing links to the core switches. In the core switches,
a terminating /16 prefix (net.pod.0.0/16, port) is assigned for
each network ID in the primary table. Hence, the subsequent
packets to the same destination will follow the same path
without packet reordering.

B. Monsoon

Greenberg et al. [13] proposed Monsoon data center ar-
chitecture, which creates a huge, flexible mesh switching
domain by using programmable commodity layer-2 switches
to support any server/any service with low cost. It uses Valiant
Load Balancing (VLB) [53] on a mesh of commodity Ethernet
switches to realize a hot-spot free intermediate fabric that
supports arbitrary traffic patterns in an oblivious manner.
Monsoon leverages the programmability of the switches and
servers so that VLB can be implemented using only the
data-plane features available on commodity switches. It dis-
aggregates the function of load balancing into a group of regu-
lar servers, such that load balancing servers can be distributed
among racks in the data center leading to greater agility and
less fragmentation.

1) Monsoon Architecture: The border routers (BR) of the
Monsoon network connect the data center to the Internet, and
are connected to a set of access routers (AR) through a layer-3
Equal Cost Multi-Path (ECMP) configuration. The aggregation

44 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013

Border
Routers

[\
| |
| Layer 3 |
|)
\
> =t —_——_——_= = <
[Access)
| Al Routers |
! Layer 2 Consistent |
: Hashing |
|
| Load |
! LB1 Balancers |
: Request (VIPs)
| Spreading :
| fn. Racks of
| iﬁ Servers :
I Dy (OIPs)

Fig. 3. Overview of the Monsoon architecture.

routers use consistent hashing [54], which is introduced in
1997 as a way of distributing requests among a set of Web
servers, to spread the requests going to each application’s
public virtual IP (VIP) equally over the set of servers acting
as load balancers (LB) for that application. Finally, the load
balancers spread the requests using an application-specific
load distribution function over the pool of servers, identified
by their direct IPs (DIPs), which implement the application
functionality. Fig. 3 shows an overview of the Monsoon
architecture. All servers are connected by a layer 2 network
with no oversubscribed links.

2) Monsoon Routing: The sending server encapsulates its
frames in a MAC header addressed to the destination’s top-
of-rack switch, so that switches only need to store forwarding
entries for other switches and their own directly connected
servers. Each server needs to have the list of MAC addresses
for the servers responsible for handling that IP address, and the
MAC address of the top-of-rack switch where each of those
servers is connected. It also needs to know a list of switch
MAC addresses from which it will randomly pick a switch
to “bounce” the frame off of. Servers obtain these pieces of
information from a Directory Service maintained by Monsoon.

Inside the DCN, traffic is routed by address resolution
using the Monsoon directory service. Ethernet frames are
encapsulated at the source. Packets at the source will go
through a randomly selected intermediate node and the target’s
top-of-rack switch to the destination. The Monsoon routing is
based on source routing, and therefore, the outermost header
is the selected intermediate node address as the destination,
the middle header is the target’s top-of-rack switch address
as the destination, and the innermost header is the ultimate
destination’s MAC address. The sending server’s top-of-rack
switch forwards the frame towards the VLB intermediate node,
which upon receiving the frame removes the outer header and
forwards the frame to the top-of-rack switch of the destination.
The target’s top-of-rack switch will remove the middle routing
address in the packet header and forward a normal Ethernet
frame with a single header towards the destination server.

External traffic enters and exits the data center through
Border Routers, which are connected to a set of Access

Routers through a layer-3 ECMP routing configuration. The
Access Router is configured to send all the external traffic
through an Ingress Server, which is bundled with each Access
Router since today’s routers do not support the Monsoon load
spreading primitive or the packet encapsulation for VLB. The
Ingress Servers process all the external traffic redirected by
the Access Router and implement the Monsoon functionality
and acts as a gateway to the data center. Each Ingress Server
has two network interfaces; one is directly connected to an
Access Router and the other is connected to DCN via a top-of-
rack switch. For packets from the Internet, the Ingress Server
receives packets from the Access Router, resolves internal
IPs using the Monsoon directory service, and forwards traffic
inside the data center using encapsulated Ethernet frames like
any other server. The directory service maps the IP address of
the layer 2 domains default gateway to the MAC address of
the ingress servers, and so packets headed to the Internet flow
out through them to the access routers.

C. VL2

Virtual Layer Two (VL2) [14] employs flat addressing to
allow service instances to be placed anywhere in the network.
In addition, it uses Valiant Load Balancing (VLB) to spread
traffic uniformly across network paths, and end-system based
address resolution to scale out to huge data centers, without
introducing complexity to the network control plane.

1) VL2 Scale-out Topology: VL2 is a three-tier architec-
ture, which shares many features with the conventional DCN
architecture. The main difference is that a Clos topology is
formed with the core tier and the aggregation tier switches.
VL2 shares almost all of the features with the conventional
DCN architecture except the rich connectivity between the
aggregation switches and the core switches. The large number
of paths between every two aggregation switches implies
improvement of graceful degradation of bandwidth during link
failures. An example of VL2 networks is shown in Fig. 4. A
Clos network, formed between aggregation and core switches,
provides rich-connection that is quite suitable for VLB.

2) VL2 address resolution: VL2 uses two different IP-
address families: location-specific IP addresses (LAs) and
application-specific IP addresses (AAs). The network infras-
tructure operates by using LAs; all switches and interfaces
are assigned LAs, and switches run an IP-based link-state
routing protocol that disseminates only these LAs. This allows
switches to obtain the complete switch-level topology, as
well as forward packets encapsulated with LAs along the
shortest paths. On the other hand, applications use AAs, which
remain unaltered no matter how servers’ locations change due
to virtual-machine migration or re-provisioning. Each AA is
associated with a LA of the top-of-rack (TOR) switch to which
the server is connected. The VL2 directory system stores
the mapping of AAs to LAs, and this mapping is created
when application servers are provisioned to a service and are
assigned AA addresses.

3) VL2 routing: Since the network infrastructure operates
by using LAs while applications operate by using AAs,
the VL2 agent at each server needs to trap packets and
encapsulate them with the LA address of the destination edge

ZHANG and ANSARI: ON ARCHITECTURE DESIGN, CONGESTION NOTIFICATION, TCP INCAST AND POWER CONSUMPTION IN DATA CENTERS 45

Fig. 4. An example of VL2 network architecture.

switch. Switches run link-state routing protocol and maintain
only switch-level topology. Once the packet arrives at the
destination edge switch, the switch de-capsulates the packet
and delivers it to the destination AA carried in the inner
header. VL2 designs directory systems to lookup as well as
update AA-to-LA mappings. In order to offer hot-spot-free
performance for arbitrary traffic matrices, the VL2 agent at
each server implements VLB by sending traffic through one
of randomly-chosen intermediate switches. In fact, the same
LA address is assigned to all core switches, and the directory
system returns this anycast address to agents upon lookup.

D. PortLand

By deploying fat-tree topology, PortLand [15] was designed
to deliver scalable, fault-tolerant layer 2 routing, forwarding,
and addressing for DCNs. PortLand assigns internal pseudo
MAC (PMAC) addresses to all end hosts to encode their
positions in the topology. PMAC enables efficient, provably
loop-free forwarding with a small number of switch states.

1) PortLand Topology: PortLand is constructed by using
fat-tree topology. The edge and aggregation switches in one
pod form a complete bipartite graph, and the core switches and
the pods form a second Clos topology by connecting each pod
with all core switches.

2) Positional PMAC and Fabric Manager: The basis for ef-
ficient forwarding and routing as well as virtual machine (VM)
migration in PortLand is hierarchical PMAC addressing. Each
end host is assigned a unique PMAC address, which encodes
the location of the end host in the topology. A PMAC address
follows the format pod:position:port:vmid, where pod(16 bits)
represents the pod number of the edge switch, position(8 bits)
is its position number in the pod, por#(8 bits) is the switch-
local view of the port number the host is connected to, and
vmid(16 bits) is used to multiplex multiple virtual machines
on the same physical machine. The edge switches perform
mapping between the actual MAC (AMAC) and PMAC to
maintain the unmodified MAC addresses at the end hosts. The
pod number and position number within each pod are obtained
by edge switches through Location Discovery Protocol (LDP).
When an edge switch detects a new source MAC address, it
creates an entry in a local PMAC table mapping AMAC to
PMAC and simultaneously communicates this mapping to the

fabric manager, which is a user process running on a dedicated
machine responsible for assisting with ARP resolution, fault
tolerance, and multi-cast. Fabric manager maintains soft state
about network configuration information such as topology, and
it uses this state to respond to ARP requests. When an end host
broadcasts an ARP request, its directly connected edge switch
will intercept the ARP request for an IP to MAC address
mapping and forward the request to the fabric manager. The
fabric manager consults its PMAC table to see if an entry is
available for the target IP address. If so, it returns the PMAC
address to the edge switch; otherwise, the fabric manager will
fall back to broadcast to all end hosts to retrieve the mapping
by forwarding the ARP request to any core switch, which in
turn distributes it to all pods and finally to all edge switches.
The target host will reply with its AMAC, which will be
rewritten by the edge switch to the appropriate PMAC before
forwarding to both the querying host and the fabric manager.

3) Routing in PortLand: PortLand switches use their po-
sitions in the global topology to perform more efficient for-
warding and routing. PortLand utilizes LDP to obtain the pod
numbers and switch numbers for edge switches, aggregation
switches and core switches. PortLand switches periodically
send a Location Discovery Message (LDM) out their ports to
exchange the information with other switches and to monitor
the liveness of other switches. LDM contains the information
of the switch identifier, pod number, position number, tree
level and a switch port facing downward or upward in the
multi-rooted tree. The key insight behind LDP is that edge
switches receive LDMs only from the ports connected to
aggregation switches. If one switch only hears LDM mes-
sages from ports smaller than half of its total ports, then it
determines that the switch is an edge switch. Aggregation
switches set their level once they learn that some of their ports
are connected to edge switches. Finally, core switches learn
their levels once they confirm that all ports are connected to
aggregation switches. Aggregation switches assist in assigning
a unique position number for edge switches in each pod. LDP
leverages the fabric manager to assign unique pod numbers
to all switches in the same pod. A detailed location discovery
procedure in PortLand networks has been described in [15].

Core switches learn the pod number of directly-connected
aggregation switches. When forwarding a packet, the core
switch inspects the pod number in the PMAC destination
address to determine the appropriate output port. Aggregation
switches learn the position number of all directly connected
edge switches. Aggregation switches determine whether a
packet is destined for a host in the same pod or not; if so,
the packet will be forwarded to an output port corresponding
to the position entry in the PMAC. Otherwise, the packet may
be forwarded along any of the aggregation switch’s links to the
core layer. The forwarding protocol in PortLand is provably
loop-free. The packet is always forwarded up to either an
aggregation or core switch, and then down toward their
ultimate destination. Transient loops and broadcast storms are
avoided by ensuring that once a packet begins to travel down,
it is not possible for it to travel back up the topology.

LDP monitors the switch and link status in PortLand net-
works. Upon not having received LDM for some configurable
period of time, a switch assumes a link failure. The detecting

46 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013

switch informs the fabric manager about the failures and the
fabric manager maintains a logical fault matrix with per-link
connectivity information for the entire topology and updates it
with new information. Finally, the fabric manager informs all
affected switches of the failure, upon which they individually
recalculate their forwarding tables based on the new version
of the topology.

E. SPAIN

SPAIN (“Smart Path Assignment In Networks”) [17] was
designed to improve bisection bandwidth by providing multi-
path forwarding using low-cost, commodity off-the-shelf Eth-
ernet (COTS) switches over arbitrary topologies. Bisection
bandwidth can be thought of as the worst-case network seg-
mentation. A bisection of a network is a network partitioned
into two equal parts. The sum of the link capacities connecting
these two partitions is the bandwidth between these two parts.
The bisection bandwidth of a network is referred to the
minimum of such bandwidth among all possible bisections.
SPAIN merges a set of pre-computed paths, which exploit
the redundancy in the physical wiring, into a set of trees by
mapping each tree to a separate VLAN. SPAIN is composed
of three key components: path computation, path setup, and
path selection. The first two are run off-line, and the last step
is run online at the end hosts. The fault tolerance of SPAIN is
based on providing multiple paths between any pair of hosts,
and on end-host link and switch failure detection and recovery.

1) Path Computation: The goal of the path computation
is to compute a set of loop-free paths connecting pairs of
end hosts through the given network topology. The central-
ized configuration mechanism of SPAIN maintains the actual
network topology, and configures the switches with the ap-
propriate VLANs. SPAIN leverages on Link-Layer Discovery
Protocol (LLDP) to programmatically determine the topology
of the entire L2 network. The VLAN assignment is performed
by using Simple Network Management Protocol (SNMP) in
SPAIN. The set of calculated paths includes the shortest path
for each source-destination pair first, and then the set grows to
meet the desired path diversity between any source-destination
pair. Finally, link-disjoint paths are added to the path set by
incrementing the edge switches of the path to improve the
usability of a path set.

2) Path Setup: SPAIN maps the pre-computed path set
onto a minimal set of VLANs in the Path Setup step. It has
been proved that this VLAN Minimization problem, assigning
paths to the minimal number of VLANs, is NP hard. A
greedy VLAN-packing heuristic algorithm was employed to
process the paths computed in Path Computation serially and
construct the minimal number of VLANs. Owing to the serial
processing of each path in the path set, the greedy VLAN-
packing heuristic algorithm does not scale well. In order to
improve the scalability of the greedy algorithm, a parallel
per-destination VLAN computation algorithm was proposed.
It computes the set of subgraphs for each destination, and then,
these subgraphs of different destinations are merged to reduce
the overall number of VLANSs required.

3) Path Selection: The high bisection bandwidth of SPAIN
is achieved by spreading traffic across multiple VLANSs.

:4-ary 2-flat [0]

Fig. 5. An example of a (8,4,3) FBFLY topology. It is composed of 4 (8,4,2)
FBFLY structure.

SPAIN requires end-host software modifications to make a
decision on VLAN selection to efficiently spread load over
the network and trigger re-selection of the VLAN for a flow.
When a flow starts, the end host finds the set of usable VLANSs
to reach the edge switch to which the destination is connected.
Then, the end host randomly selects a VLAN for this new flow.

F. Energy Proportional DCN

Power consumption has spurred great interest in improving
data center energy efficiency. A high-performance energy
proportional DCN architecture [16] was proposed by using
the flattened butterfly (FBFLY) [55] topology. Abts et al. [16]
proved that a flattened butterfly topology is inherently more
power efficient.

1) Flattened Butterfly DCN Structure: A flattened butterfly
is a multi-dimensional direct network, and each dimension is
fully connected in an FBFLY. A tuple (¢, k,n) can be used
to describe a k-ary m-flat with ¢ (concentration) nodes per
switch flattened butterfly topology. A (¢, k,n) (n > 2) FBFLY
network can be built with & (¢, k,n — 1) FBFLY networks by
connecting each switch in each (¢, k,n — 1) FBFLY network
with its peer switches. Fig. 5 shows an example of a (8,4, 3)
FBFLY network topology, which is built with four (8,4,2)
FBFLY networks by interconnecting each switch in each
(8,4,2) FBFLY network with its peer in other three groups. In
addition, switches are fully connected in each (8, 4,2) FBFLY
network. This (8,4,3) FBFLY network houses 128 servers
with 16 switches, each with 14 ports.

2) FBFLY Properties: FBFLY network properties can be
summarized as follows:

o Scalability: a FBFLY scales exponentially with the num-
ber of dimensions. A (c, k, n) flattened butterfly network
can house ck("~1) servers with k("~1) switches. Each
switch is equipped with ¢+ (k — 1)(n — 1) ports.

o Packaging locality: for the flattened butterfly, the first
dimension can use short electrical links. In general, the
number of inexpensive electrical cables in a (¢, k,n)
FBFLY network is k("= (cx k + k x (k — 1)/2).

ZHANG and ANSARI: ON ARCHITECTURE DESIGN, CONGESTION NOTIFICATION, TCP INCAST AND POWER CONSUMPTION IN DATA CENTERS 47

G. DCell

A new concept in the data center design and deployment,
called modular data center [18]-[23], was proposed to con-
struct data centers with new building blocks of shipping
containers instead of server racks. Each container houses up to
a few thousands of servers on multiple racks within a standard
40- or 20-feet shipping container. Shipping container-based
MDC is a large pluggable service component with high degree
of mobility. It simplifies supply management by hooking up
to power, networking, and cooling infrastructure to commence
the services, shortens deployment time, increases system and
power density, and reduces cooling and manufacturing cost.
DCell, BCube and MDCube are recently proposed network
architectures for modular data centers.

The DCell-based DCN [24] solution has four components:
DClell scalable network structure, efficient and distributed
routing algorithm that exploits the DCell structure, fault-
tolerant routing that addresses various types of failures, and an
incremental upgrade scheme that allows for gradual expansion
of the DCN size. DCell is a recursively defined, high network
capacity structure with mini-switches to interconnect servers,
which connect to different levels of DCells switches via
multiple links. High-level DClells are constructed recursively
by forming a fully-connected graph with many low-level
DCells. Network traffic in DCell is distributed quite evenly
among servers and across links at a server. There is no
single point of failure in DCell, and DCell addresses various
failures at link, server, and server-rack level. Fault tolerance
of DCell is attributed to both its rich physical connectivity
and the distributed fault-tolerant routing protocol.

1) DCell Construction: DClell employs servers with multi-
ple network ports and mini-switches to construct a recursively
defined structure. High-level DCells are constructed recur-
sively by forming a fully-connected graph with many low-
level DCells. A level-k DCelli(k > 0) is constructed from
gr = tx—1 + 1 DCellp_, modules, where t;_; is the total
number of servers in one DCell_1. Thus, the total number of
servers in a DCelly is t, = tx_1g9x = ti—1(tk—1+1)(k > 0).
Equipped with n connected servers through one mini-switch,
DCelly (go = 1 and ty = n) is the basic building block
to construct higher level DClells. To facilitate the DCell
construction, each server in a DCelly, is assigned a (k + 1)-
tuple [a,ak—1,- - -, a1,a0], where a; < ¢;(0 < i < k)
indicates at which DCell;_ this server is located, and ag < n
indicates the index of the server in that DCelly. Each server
can be equivalently identified by a unique ID wuidy, taking a
value from [0, ¢). The mapping between a unique ID and its
(k + 1)-tuple is a bijection. The ID wuidj, can be calculated
from the (k + 1)-tuple using wid, = ag + Z?zl{aj X tj_1},
and the (k + 1)-tuple can also be derived from its unique
ID. A server in DCelly, is denoted as [ay, uidy—1], where ay,
is the index of DCell,_; to which this server belongs and
uidy_1 is the unique ID of the server inside this DCellj_1.
To construct DCelly, with g DCelly_1s, server [i,t,_1) in
the i*"(i € [0,t5_1)) DCelly_1 will be connected to the i*"
server in the j'"(j € [i + 1, 1)) DCell;_1 recursively. A
detailed building procedure is described in [24]. Fig. 6 shows
an example of DCelly network structure with n = 2. If there

DCell;[3]

DCell;[4]

Fig. 6. A DClellz network structure is composed of 7 DCell; networks,
and each DC'elly is composed of 3 DClellps.

are two servers in the basic building structure of DClelly, it
will need 3 DCelly modules to build a DCell; structure and
7 DClell; modules to build a DCelly network.

2) Routing in a DCell: DCellRouting and DCell Fault-
tolerant Routing (DFR) are the main routing protocols in
DClell. Both are designed to exploit the DCell structure to
perform routing. DCellRouting is the basic routing protocol
in a DCell without any failure while DFR is designed to
effectively handle various failures due to hardware, software,
and power problems.

e DCellRouting

DCellRouting is a simple and efficient single-path routing
algorithm by exploiting the recursive structure of DCell.
The design of DCellRouting follows a divide-and-conquer
approach. In a DCell; network, each server is assigned a
(k + 1)-tuple, and so, it is easy to examine the same prefix
[ak, ak—1," -, al] that the source server and the destination
server belongs to. At level-l, DCell;_; modules form a
complete graph, and therefore, the path of DCellRouting
can be divided into two sub-paths, one within the source
DCell;_1 and the other within the destination DCell;_q,
and the sub-path between the source DCell;—; and the
destination DCell;_1. The upper bound of the path length
in DCellRouting is 2°t! — 1 and the diameter of a DCell},
network is at most 2°t1 — 1. DCell Routing is not a shortest-
path routing algorithm, but the performance of DCell Routing
is quite close to that of shortest-path routing.

o DCell Fault-Tolerant Routing (DFR)

DFR is a distributed, fault-tolerant routing protocol by em-
ploying DCellRouting and DCellBroadcast as building blocks.
A server in the DCell network will broadcast the packet
to all its (k + 1) neighbors when it broadcasts a packet in
a DCelly by using DCellBroadcast. DFR deploys local-
reroute, local link-state, and jump-up to address link, server
and rack failures, respectively. Local-reroute is used to make
local decisions to reroute packets to bypass failed links in
DCellRouting. Local-reroute is efficient in handling link-

48 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013

failures, but it is not loop free and cannot completely address
node failures alone since local-reroute is purely based on
DClell topology and does not utilize any kind of link or node
states. Local link state can be updated at each node by using
DClellBroadcast. In a DCell, each node knows the status of
all the outgoing/incoming links by using DCellBroadcast to
broadcast the status of each node’s (k + 1) links periodically
or when it detects a link failure. If a whole rack fails, local-
reroute and local link-state may result in re-route endlessly
within the failed rack, and so jump-up is introduced to address
rack failure. With jump-up, the failed server rack can be
bypassed.

3) DCell Properties: DCell network properties can be
summarized as follows:

e Scalability: the number of servers in a DCell scales
doubly exponentially as the node degree increases. The
total number of servers in a DCell;, can be expressed as
tk = gkgk—l---glgOtO = tQ Hf:O gi and (7’L+ %)Qk — % <
ty < (n+ I)Qk —1 (k > 0), where n is the total number
of servers in a DCelly.

e Rich physical connectivity: each server in a DCell
network is connected to k + 1 links.

o Fault Tolerance: there is no single point of failure in
DCell, and DCell addresses link, server, and server-
rack failures. Fault tolerance is attributed to the rich
physical connectivity and the distributed fault-tolerant
routing protocol.

« High network capacity: the bisection width of a DCell,
is larger than Motgﬁ for k > 0. Bisection width denotes
the minimal number of links to be removed to partition
a network into two parts of equal size. A large bisection
width implies high network capacity and a more resilient
structure against failures. The bisection of DC'ell is larger
than mtimes that of the bisection of its embedding
directed complete graph.

« No severe bottleneck links: under all-to-all traffic pattern,
the number of flows in a level-i link is less than #2577,
The difference among the number of flows at different
levels is bounded by a small constant, and the lowest level
links carry most of the traffic instead of the highest-level
links.

H. BCube

The BCube network architecture [25] is another server-
centric DCN structure. Similar to DCell networks, BCube
networks are built with mini-switches and severs equipped
with multiple network ports. The BC'ube network structure
not only provides high one-to-one bandwidth, but also accel-
erates one-to-several and all-to-all traffic by constructing edge-
disjoint complete graphs and multiple edge-disjoint server
spanning trees. Furthermore, BCube improves fault-tolerance
and load balance.

1) BCube Construction: BCube is a recursively defined
structure, composing of servers with multiple network ports,
and mini-switches that connect to a constant number of
servers. A BCubeg is the basic building block, by simply
connecting n servers to an n-port mini-switch. A BCubey,
is constructed from n BCubej_; modules with n* n-port

BCube;,

Fig. 7. A BCubey network structure with n = 2.

switches for & > 0. In order to construct a BCubey, the
level-k port of the it" server (i € [0,nF — 1]) in the j*?
BCubey_1 (j € [0,n — 1]) is connected to the j** port of
the i*" level-k switch. A detailed building procedure of the
BC'ube structure is described in [25]. Fig. 7 shows an example
of the BC'ubes network structure with n = 2. In this example,
the basic building block BCubeq is constructed with one 2-
port mini-switch connecting 2 servers, BC'ube; is built with
2 2-port mini-switches and 2 BCubegs, and BCubes is built
with 4 2-port mini-switches and 2 BCubes.

2) BCube Source Routing (BSR): BSR, a source routing
protocol, was proposed to fully utilize the high capacity of
BC'ube, and to realize automatic load-balancing by leveraging
BCube topological properties. As a source routing protocol,
the source server controls the routing path of a packet flow.
The source server probes multiple parallel paths for a new
coming flow. The probe packets will be processed by the
intermediate servers by filling the needed information, and will
be returned by the destination server. When the source receives
the responses, it will start the path selection procedure based
on some kind of metrics, e.g., the path with the maximum
available bandwidth and least end-to-end delay. This path
selection procedure will be performed periodically to adapt
to network failures and network dynamics. The intermediate
server will send a path failure message back to the source
when it detects a next hop failure for a packet. Upon receiving
a path failure message, the source will switch the flow to one
of the available paths obtained from the previous probing;
otherwise, it will probe the network immediately. In BSR,
path switching could occur occasionally, but only one path is
used at a given time to avoid the packet out-of-order problem.

3) BCube Properties: BCube network properties can be
summarized as follows:

« Low-diameter network: the diameter, which is the longest
shortest path among all the server pairs, of a BC'ubey, is
k 4 1. Owing to its low diameter, BCube provides high
network capacity for all-to-all traffic.

« Fault-tolerance and load balancing: the number of parallel
paths between two servers is upper bounded by k + 1
in a BCubey. There are n edge-disjoint parallel paths
between any two switches in a BCubep. There are
k +1 edge-disjoint parallel paths between a switch and a
server in a BC'ubey, network. These parallel paths greatly
improve fault-tolerance and load balancing. By taking

ZHANG and ANSARI: ON ARCHITECTURE DESIGN, CONGESTION NOTIFICATION, TCP INCAST AND POWER CONSUMPTION IN DATA CENTERS 49

advantage of these parallel paths, BSR distributes traffic
evenly and handles server and/or switch failures without
link-state distribution. With BSR, the capacity of BC'ube
decreases gracefully as the server and/or switch failure
increases.

o Speedup one-to-several and one-to-all traffic: the time to
deliver a file to 7(r < (k+ 1)) servers or all can be sped
up by a factor of r or £ + 1 in a BCubej, than that of
the tree and fat-tree structure by constructing r or k + 1
edge-disjoint server spanning trees in a BCubey,.

« No bottleneck links: BCube does not have performance
bottlenecks since all links are used equally.

o Aggregate Bottleneck Throughput (ABT) for all-to-all
traffic: ABT, defined as the number of flows times the
throughput of the bottleneck flow, of BCube increases
linearly with the increase of the number of servers. ABT
reflects the network capacity under the all-to-all traffic
pattern. ABT for a BC'ube network under the all-to-all
traffic model is —25 (NN — 1), where n is the number of
ports of a switch and N is the number of servers.

« Supporting bandwidth-intensive applications: BCube
supports various bandwidth-intensive applications by
speeding-up one-to-one, one-to-several, and one-to-all
traffic patterns and by providing high network-capacity
for all-to-all traffic.

1. MDCube

BC'ube was proposed to build high capacity modular DCN
structures by using servers with multiple network ports and
COTS mini-switches. However, the fundamental barrier to
BCube is to scale out to millions of servers by adding
more ports to servers and deploying more COTS switches.
M DCube [26], built recursively with BC'ube containers, de-
ploys optical fibers to interconnect multiple BC'ube containers
by using the high speed (10Gb/s) interfaces of COTS switches.
Therefore, there are two kinds of links in M DCube: one is the
normal link connecting servers to switches, and the other is the
inter-container high-speed link between switches in different
containers. The high-speed interfaces of the BC'ube containers
form a complete graph in M DCube. In order to be scalable
with the increased number of containers, the complete graph
topology is be extended to a generalized cube by introducing
dimensions in M DC'ube.

1) MDCube Construction: in order to build a (D + 1)
dimensional M DCube with M = HdD:O mq BCube con-
tainers, where my is the number of containers on dimen-
sion d. A BCube container, identified by a (D + 1)-tuple
cID = cpep_y - - - ¢o,(cqg € [0,mq — 1],d € [0, D]), can
house Zgzo(md — 1) switches, with (mq — 1) switches on
dimension d. Each switch, identified by its container ID and its
switch ID in its BCube container {cid, bwid},cid € [0, M —
1], bwid € [0, Z(?:o (mgq — 1) — 1], contributes its high-speed
interface port for M DCube interconnection. M DCube is
built recursively with BC'ube containers. On dimension d, the
switch j — 14+ Y970 (m, — 1)(j € [i + 1,mq — 1]) in the
container [cp -+ - cgy1icqg—1 - col(i € [0,mg — 2]) will be
connected to the switch i + 3%~! (m, — 1) in the container
[ep - - car1icd—1 - - - o). A detailed M DCube building pro-
cedure is described in [26].

2) MDCube Routing: by exploring the hierarchy and multi-
dimensional structure properties of MDCube, a single-path
routing, MDCubeRouting, is designed for MDCube, which
works well for the balanced all-to-all communication pattern.
However, it may use bandwidth inefficiently to deal with
bursty traffic patterns because it tends to only choose the
shortest path at the container level. Moreover, it is not fault
tolerant when the selected inter-container link breaks. There-
fore, a load-balancing and fault tolerant routing algorithm is
designed. The detour routing is employed to achieve high
throughput by balancing the load among containers, and the
fault tolerant routing is deployed by handling inter- and inner-
container routing failures.

« MDCubeRouting
MDCubeRouting is designed to correct the tuples of the
container ID one by one to reach the destination container,
and the order of such correction is controlled by a permutation.
The inner-container routing is controlled by BCube routing.

o MDCubeDetourRouting
M DCubeDetour Routing balances the load among con-
tainers by initiating the routing by a random, container-
level jump to a neighboring container, then following with
M DCubeRouting from this randomly selected node to the
destination to avoid unnecessary overlap at that container.

o Fault Tolerant Routing
Fault tolerant M DCube routing is designed by leveraging the
M DC'ube structure: 1) the source node balances the load on
candidate parallel paths at the container level implemented by
a loosely controlled source routing protocol; 2) inner-container
routing is maintained by BCube. For inter-container switch or
link failures, a route error message will be generated and sent
back to the source node to trigger rerouting at the container
level using other available parallel paths.

3) MDCube Properties: M DCube network properties can
be summarized as follows:

e Scalability: 1-d M DCube can support up to n(k+1)+1
BCubey, containers and 2-d M DCwube can support up
to (“EED 4 1)2 BCubey, containers. Each BCubey,
container can house n*t! servers, and therefore, with
48-port switches, 1-d M DC'ube can support up to 0.22
million servers and 2-d M DCube can support up to 5.5
million servers.

e M DCube diameter: the diameter of an M DCube net-
work is at most b = 4k+3+D(2k+3), and so the shortest
path in M DCubeRouting between any two servers is
bounded by h = 4k + 3+ D(2k + 3) .

o Parallel paths: the number of parallel paths between
any two servers in an M DCube built from BCubey
structures is k£ + 1.

o Traffic distribution with M DCubeRouting: the num-
ber of flows carried on a BCube normal link with
M DCubeRouting is around (2k+1 +D(kl’c—+21 +1) 3+
and the number of flows carried on a high-speed link on
dimension 7 is fTN’ where ¢t and N are the numbers of
servers in a BCube and an M DCube, respectively. The
bottleneck link is determined by the ratio of the capacity
of high-speed links over that of normal links, which can

be estimated as r = t(kﬂ)kz . The ABT of

50 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013

M DC'ube is constrained by normal links and equals to

2
N(ZtL | pE k-1,

o Traffic distribution with M DCube Detour Routing: the
number of flows carried on a BCube normal link is
nearly @Ilj—ﬁ)t, and the number of flows carried on a

high-speed link is % The ratio of the capacity of high-

speed links over that of normal speed links between two

containers can be estimated as r = +%~. ABT of two

3k+2°
containers is constrained by normal links and equals to
9 242
3k+2°
J. FiConn

FiConn [27], [28], a new server-interconnection structure,
was proposed to form a scalable and highly effective structure
with commodity servers having two built-in Ethernet ports,
and low-end commodity switches, based on the observation
that the commodity servers used in today’s data centers
usually come with two built-in Ethernet ports, one for network
connection and the other for backup. FiConn uses traffic-
aware routing that exploits the available link capacities based
on traffic dynamics and balances the usage of different links
to improve the overall network throughput.

1) FiConn Architecture: FiConn defines a recursive net-
work structure in levels. A level-k FiConny is constructed
by many level-(k — 1) FiConni_1 modules. Each server s
can be identified by a (k + 1)-tuple, [ak, - - -, a1, ap], where
aop identifies s in its FiConng, and a; (1 < I < k)
identifies the F'iC'onn; comprising s in its FiConn;. There
are up = ag+ Ele (a;* N;—1) servers in a F'iConny, where
N is the total number of servers in a FiConn;.

When constructing a higher-level F'iConn, the lower-level
FiConn structures use half of their available backup ports for
interconnections and form a mesh over F'iConny_1 modules.
FiConng is the basic construction unit, which is composed
of n servers and an n-port commodity switch connecting
the n servers. If there are totally b servers with available
backup ports in a FiConng_1, the number of FiConng_1
in a FiConny, gy is equal to /2 + 1. In each FiConng_1,
b/2 servers out of the b servers with available backup ports
are selected to connect the other b/2 FiConny_1s using their
backup ports, each for one FiConnj_;. A detailed FiConn
building procedure was described in [27].

2) Traffic-Aware Routing in FiConn: A greedy approach to
set up the traffic-aware path hop by hop on each intermediate
server was proposed in F'iConn. Each server seeks to balance
the traffic volume between its two outgoing links. Specifically,
the source server always selects the outgoing link with higher
available bandwidth to forward the traffic. For a level-I (I > 0)
intermediate server, if the outgoing link using TOR is its level-
[link and the available bandwidth of its level-0 link is higher,
its level-/ link is bypassed via randomly selecting a third
FiConn;_1 in the FiConn; to relay the traffic; otherwise,
the traffic is routed by TOR.

3) FiConn Properties: FiConn network properties can be
summarized as follows:

o Scalability: the number of servers in FiConn, IN, grows

double-exponentially with FiConn levels. If we denote
the total number of servers in a FiConny as Ny, Nj >

2k+2 4 (n/4)2" (for n > 4), where n is the number of
servers in FiConng.

o Degree: the average server node degree in FiConny is
2 —1/2F.

o Diameter: the diameter of FiConn is O(log N), which
is small and can thus support applications with real-
time requirements. The upper bound of the diameter of
FiConny, is 2kt — 1.

o Level-l links: the number of level-{ links in FiConng,

denoted by L;, is L; = ;liﬁiz ié <(3 <k
o Fault Tolerance: the bisection width of FiConn is
O(N = logN), implying that FiConn may well
tolerate port/link faults. The lower bound of the
bisection width of FiConny, is Ni./(4 * 2¥), where Ny,
is the total number of servers in F'iConny.

o Cost: the number of used switches are much smaller in
FiConn. To construct a DCN of N servers with n-port
switches, the number of switches needed in Fat-Tree is

5N/n, while the number in FiConn is N/n.

« In traffic-aware routing, the maximum length of routing

path between any two servers in FiConny, is 2% 3% — 1.

K. DPillar

DPillar [29] uses low-end off-the-shelf typical dual-port
commodity PC servers and plug-and-play commodity Ethernet
switches to develop a scalable data center interconnection
architecture. One of the most important feature of DPillar is
that DCN can scale out without any physical upgrading of the
existing servers.

1) DPillar Architecture: A DPillar network is built with
low-cost dual-port commodity servers and n-port Ether-
net switches, which are arranged into k server columns
[Ho, Hy,- -+, Hi—1] and k switch columns [Sp, S7, - - -, Sk—1].
These server columns and switch columns are placed alter-
nately along a cycle: the server column H; is neighboring with
switch columns S; and S(;;4—1)%k, and the switch column
S; is neighboring with server columns H; and H i 1—1)%k-
where the symbol % denotes the modulo operation. Each
server in DPillar can be identified as a unique (k + 1)-
symbol label (C,v*~1, ... 2%), where C(0 < C < k — 1)
is the index of server column and v is an integer between
0 and (n/2 — 1). Those servers with the same label symbols
except v¢ (vF=1 ... w¥ ... 40) in server columns H¢ and
H(cy1)%k are connected to the same n-port switch in switch
column S¢. A detailed DPillar building procedure is described
in [29]. A DPillar network can be represented uniquely by a
tuple (n, k), where n is the number of ports of the switch,
and k is the number of server columns.

2) Routing in DPillar Network: The packet routing and
forwarding process in DPillar can be divided into two phases:
helix phase and ring phase. In the helix phase, the packet is
sent from the source server to an intermediate server whose
label is the same as the destination server’s label. In the ring
phase, the packet is forwarded to the destination from this
intermediate server.

Failures, including server failures and switch failures, in
DCNs are very common, and therefore DPillar includes a
fault-tolerant routing scheme to bypass a wide range of failures

ZHANG and ANSARI: ON ARCHITECTURE DESIGN, CONGESTION NOTIFICATION, TCP INCAST AND POWER CONSUMPTION IN DATA CENTERS 51

TABLE 111
COMPARISON OF DIFFERENT NETWORK STRUCTURES

Structure Degree Diameter Biw BoD
Ring [57] 2 x 2 a2
2D Torus [57] 4 VN -1 2N st
N2
Full Mesh [57] N-1 1 o 1
Tree [57] - 2logy_ N 1 N2(d5h)
Fat-tree [52] - 2log, N ¥ N
Hypercube [56] logy N logy N ¥ J
Butterfly ™ [56) 4 21 T O(N1)
De Bruijn [58] d logg N ey | OWlogy N)
DCell [24] k+1 | <2log, N-1| 5 | <Nlog, N
BCube [25] k+1 k+1 y (=L N
FiConn [27], [28] 2 < 2k+l 1 > ﬁ N2k
DPillar [29] 2 k4 [k/2] (n/2)k 3L

+For Butterfly, N = (I +1) x 2!

in DPillar. The Hello protocol is employed to discover the
connection failures. Server A assumes that server B is not
directly reachable if it does not hear its Hello message for a
certain period of time. It is relatively straightforward to bypass
a failure in the ring phase by changing the forwarding direction
from the clockwise direction to the counter-clockwise direc-
tion, or vice versa. In order to avoid over forwarding loops,
a packet can change its forwarding direction once; otherwise,
it will be dropped. In the helix phase, a server can tunnel the
packet to bypass failed servers. It always tries to bypass the
failed server by sending the packet to a reachable sever in
the clockwise neighboring column first. If it cannot send the
packet to any servers in this clockwise neighboring column,
the server will forward the packet to a server in the counter-
clockwise neighboring column to bypass the failure.

3) DPillar Properties: DPillar network properties can be
summarized as follows:

o Scalability: A (n, k) DPillar network can accommodate
k(n/2)* servers.

o Cost efficiency: A (n, k) DPillar network is built with
k(n/2)*=! switches. The average cost of connecting one
server in the DPillar network is 2(Us/n+ U.), where U,
is the unit price of an n-port switch and U, is the unit
price of an Ethernet cable.

« Bisection width: The bisection width of a (n, k) DPillar
network is close to (n/2)".

o Traffic distribution: in all-to-all communications, a
server-to-switch link carries at most 3k(N — 1)/2 flows.

« Longest path: the longest path in a (n, k) DPillar network
by using helix and ring two-phase routing is k + |k/2].

L. Comparison and Discussion

In recent years, the architecture design of DCNs has been
heavily investigated, and several structures have been pro-
posed. Switch-oriented structures, such as tree, Clos network
[51], Butterfly [56], Flattened Butterfly [55] and fat-tree [52],
cannot support one-to-many/one-to-all traffic well, and are

limited by the bottleneck links. Existing server-centric struc-
tures either cannot provide high network capacity (e.g., 2-D
and 3-D meshes, Torus [57], Ring [57]) or use a large number
of server ports and wires (e.g., Hypercube and de Bruijn [58]).

Table III shows the comparison results in terms of node
degree, network diameter, bisection width (BiW), and bottle-
neck degree (BoD). The smaller the node degree, the fewer the
links, and the lower the deployment cost. Network diameter
is defined as the longest shortest-path among all server pairs,
and a low diameter value typically results in efficient routing.
Bisection width denotes the minimal number of links to be
removed to partition a network into two parts of equal size.
A large bisection width implies high network capacity and a
more resilient structure against failures. The metric bottleneck
degree is defined as the maximum number of flows over a
single link under an all-to-all traffic mode. BoD indicates how
the network traffic is balanced over all the links. The smaller
the BoD, the more balanced of the traffic over all the links.
A total of N servers with n switch ports, and k construction
levels are assumed for comparison.

The ring structure has a node degree of 2, which is similar
to FiConn and DPillar. However, it has a large value of
diameter (/N/2) and small value of bisection bandwidth (2).
2D Torus only utilizes local links and has a constant degree
of 4. However, it has large diameter (v/N — 1) and BoD (in
proportion to N VN). Full Mesh has the smallest diameter (1),
smallest BoD (1), and large bisection bandwidth (N?2/4), but
it has large node degree (/N — 1), which means high cost of
link deployment and complexity of wiring. It is obvious that
all of these three structures are not suitable for DCNs even
for a very small one with hundreds of servers.

In a tree structure constructed with switches having the
same degree d, the diameter of the tree is 2log,_; N, but the
bisection bandwidth of the tree is 1 and the bottleneck degree
is proportional to N2. The Fat Tree structure introduces more
bandwidth into the switches near the root with a multi-stage
network to overcome the bottleneck degree problem in the
tree structure. However, the Fat-Tree structure does not scale
well as the required number of switches scales as O(N log N),
where N is the number of supported servers, thus incurring
high cost for deployment.

With a large bisection width of % and a small bottleneck
degree of (%), Hypercube is widely used in high-performance
computing. However, the node degree of hypercube is log, IV,
i.e., hypercube does not scale well and is thus not practical for
large DCNs. Butterfly has a node degree of 4, and the diameter
and bottleneck degree are very good, but unfortunately, But-
terfly is not tolerant to any failure because there is only one
path between any pair of two servers. Although de Bruijn [58]
can achieve near-optimal tradeoff between node degree and
network diameter, and between good bisection and bottleneck
degree, this structure is not practical for a large data center
due to the asymmetric links in de Bruijn, which doubles the
wire deployment and maintenance effort. Furthermore, wiring
in de Bruijin is un-expandable, i.e., even when the diameter
is increased by 1, the whole network has to be re-wired.

The node degree in DCell and BCube is as low as k + 1,
where k is the number of levels to deploy DCell and BCube
structures, and the diameter is small in both structures. The

52 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013

problem of DCell is that the traffic is imbalanced: the number
of flows carried on a level-i link is less than N25—%. Therefore,
the level-0 links carry much higher traffic than the other links.
Another problem of DCell is the wiring problem: the high-
level links in DCell may travel a relatively long distance.
The parallel paths between any two servers in DCell have
different lengths, thus making it difficult to speedup one-to-
many applications. There are k + 1 parallel paths between
any two servers in a BCubey with the same path length, and
thus one-to-many/one-to-all traffic can be sped up. Another
advantage of BCube is that there is no performance bottleneck
in all-to-all traffic model since the traffic is distributed equally
along all the links. BCube requires more mini-switches and
wires than DCell does.

The node degree in FiConn and DPillar is as low as 2,
which is smaller than that of DCell and BCube. Hence,
the wiring cost in FiConn and DPillar is less than that of
DCell and BCube since each server uses only two ports. The
diameter of FiConn is O(log N) and the bisection width is
O(N/log N). The high bisection bandwidth implies multiple
available paths between a pair of servers, thus providing fault
tolerance of FiConn to port or link failures. Routing in FiConn
balances the use of different levels of FiConn links. However,
FiConn has lower aggregate network capacity, which results
from the less number of links as the tradeoff of easy wiring.
The network throughput can be improved by traffic-aware
routing in FiConn by utilizing the available link capacities.
The network structure of DPillar is totally symmetric and it
offers rich connections between servers. DPillar has balanced
network capacity and does not incur network bottleneck. In
all-to-all communications, a server-to-switch link carries at
most 3k(N — 1)/2 flows.

IV. CONGESTION NOTIFICATION IN DATA CENTERS

Owing to the inherent merits of Ethernet, such as low cost,
ubiquitous connectivity, and ease of management, Ethernet
has become the primary network protocol for computer-to-
computer communications in a DCN. However, Ethernet was
designed for best-effort transmissions that may drop packets
when the network or switches are busy. In order to address
issues raised within a data center, such as increasing demand
for higher bandwidth and performance, and low latency inter-
connect for high performance cluster computing, new Ethernet
protocols are being developed by two separate standards
bodies, the Internet Engineering Task Force (IETF) [59] and
the IEEE Data Center Bridging Task Group of IEEE 802.1
Working Group [60].

Traditionally, transport protocols, such as TCP, are responsi-
ble for reliable transmissions in IP networks. Thus, one area of
Ethernet extensions is to provide congestion notification to en-
hance transport reliability without penalizing the performance
of transport protocols. Therefore, congestion notification is a
Layer 2 traffic management protocol that monitors the queuing
status at the Ethernet switches and pushes congestion to the
edge of the network at where the transmission rate limiters
shape the traffic to avoid frame losses. Reliable transport
protocols, such as TCP that has congestion control mechanism,
can also benefit from congestion notification protocols since it
can react to congestions in a timelier manner. With the increase

of Ethernet link rate to 10 Gbps in data centers, congestion
notification protocols are also able to enhance the bandwidth
usage more effectively.

Project IEEE 802.1Qau is concerned with specifications of
an Ethernet Layer or Layer 2 congestion notification mecha-
nism for DCNs deliberated in the IEEE Data Center Bridging
Task Group. Several congestion notification algorithms have
been proposed, e.g., BCN [32], FECN [34], enhanced FECN
(E-FECN) [35], and QCN [36]. The system models of these
congestion notification algorithms as shown in Fig. §; BCN,
FECN, E-FECN and QCN are all queue-based congestion
notification algorithms. They all assume that congestion de-
tector is integrated into the switch, where congestion happens.
The switches detect the congestion and generate the feedback
congestion message to the source based on the calculated
congestion measure, and the rate regulators at the sources will
adjust the rate of individual flows according to congestion
feedback messages received from switches. In this section,
we will summarize and compare the congestion notification
algorithms proposed for Ethernet extensions in data centers.

A. Backward Congestion Notification (BCN)

The BCN mechanism as shown in Fig. 8(a) for DCNs was
introduced by Bergasamo et al. at Cisco [32]. BCN is also
known as Ethernet Congestion Manager (ECM) [33]. BCN
works in three phases: Congestion Detection, Signaling, and
Source Reaction.

1) Congestion Detection: Two thresholds Q.4 (equilibrium
queue length) and (s, (severe congestion queue length) are
used to indicate tolerable congestion levels at the switch.
The switch samples the incoming packets with probability
P,,. When a packet is sampled, the congestion measure e;
is calculated as e; = —(Qof£(t) +w* Qs(t)), where Qorr =
q(t) — Qeq. Qs = Qo — Qq, g(t) denotes the instantaneous
queue-size, (), and)4 denote the number of arrived and
departed packets between two consecutive sampling times,
respectively, and w is a non-negative constant weight.

2) Backward Signaling: The arriving packets at the switch
are sampled with probability P, and for each sampled packet
the feedback BCN message, which uses the 802.1Q tag format
[32], is generated as follows:

« if the packet does not contain rate regulator tag

if ¢(t) < Qeq, no BCN message is sent.
if Qeq < q(t) < Qs normal BCN message is sent.
if q(t) > Qsc, BCN STOP message is sent.

« if the packet contains rate regulator tag

— if g(t) < Qeq and the CPID field in the 802.1Q tag,
which is the ID for the congestion point, matches with
this switch’s ID, a positive BCN message is sent.

— if Qeq < ¢(t) < Qsc, normal BCN message is sent.

— if ¢(t) > Qsc, BCN STOP message is sent.

3) Source Reaction: When a STOP message is received
at the source, the rate regulator stops sending packets for a
random period, and recovers with a rate of C'/K, where C
is the capacity of the bottleneck link, and K is a constant
depending on the number of flows in the network. When
a BCN normal message is received at the source, the rate

ZHANG and ANSARI: ON ARCHITECTURE DESIGN, CONGESTION NOTIFICATION, TCP INCAST AND POWER CONSUMPTION IN DATA CENTERS 53

Rate Regulator____ Qsc Qeq
0ooono %y _000000000000000

Server/Reaction Point

Switch/Congestion Point

(;:I BCN Message
(a) BCN system model

Rate Regulator. Qeq
Pt LN T

Server/Source Switch/Congestion Point

Server/Reaction Point

(=3 FECN Message
(b) FECN system model

Qsc Qeq

Rate Regulator__ G
8 DO00OD === == &, 0nn00amnga0nn) = == @

Server/Source Switch/Congestion Point Server/Reaction Point

@@ scNoo ‘
(::| FECN Message

(c) E-FECN system model

Qeq

Rate Regulator i -
uoonguo % _000000000000000
Server/Reaction Point Switch/Congestion Point

<;:I QCN Message
(d) QCN system model

Fig. 8. System model overview of congestion notification algorithms for
data center networks.

regulator adjusts its rate by using a modified Additive Increase
and Multiplicative Decrease (AIMD) algorithm as follows:

=

where R, represents the increase rate unit parameter, and G
and G4 denote the additive increase and the multiplicative
decrease gain parameters, respectively.

i + GzelRu
Ti(l + Gdei)

(if e; > 0)
(if e; < 0)

B. Forward Explicit Congestion Notification (FECN) and En-
hanced FECN (E-FECN)

As shown in Fig. 8(b), FECN is a close-loop explicit rate
feedback control mechanism. All flows are initialized with
the full rate. The sources periodically probe the congestion
condition along the path to the destination. The rate field
in the probe message is modified along the forward path by
the switches if the available bandwidth at each switch in the
forward path is smaller than the value of the rate field in the
probe message. When the sources receive the probe messages
returned back from the destination, the rate regulator adjusts
the sending rate as indicated in the received message. All flows
are treated fairly in FECN since the same rate is advertised
by the switch. FECN uses rate based load sensor to detect
congestion. At the congestion point, the switch periodically
measures the average arrival rate A; and the instantaneous
queue length g; during the interval, where 7 is the index of
the measurement interval. The effective load can be measured
as p; = JC(‘;W’ where C' is the link capacity, and f(g;) is
the hyperbolic queue control function which is defined below

to ensure a constant queue length:

aQe :
@ DatQu if ¢; < Qeq,

bQeq :
mazx(c, m) otherwise,

fla) =

where a, b, ¢ are constants. For ¢ < Q¢q, f(g) > 1. Then, the
queue control function attempts to aggressively increase the
advertised rate. For ¢ > Qcq, generally f(q) < 1. Then, the
queue control function attempts to aggressively decrease the
advertised rate.
The bandwidth allocation can be calculated as
ri _ Cf(a)
Tit1 = p_ =,

2 i

where C'f(g;) could be thought of as the available effective
bandwidth, and N = f— is the effective number of flows. If
Ti+1 < r where r is the rate value in the rate discovery probes,
then the rate value in the probe message will be marked with
Ti+1-

As shown in Fig. 8(c), almost all E-FECN operations
assume the same operations as those in FECN, except that, the
switches are allowed to feed back to the source directly under
severe congestion (¢(t) > Q) in E-FECN. Under severe
congestion, the switch sends a specific BCNOO message, which
causes the rate regulator at the source to reduce to a low initial
rate upon receiving this BCNOO feedback message.

C. Quantized Congestion Notification (QCN)

The QCN algorithm is composed of two parts as shown
in Fig. 8(d): switch or congestion point (CP) dynamics and
rate limiter (RL) or reaction point (RP) dynamics. At CP,
the switch buffer attached to an oversubscribed link samples
incoming packets and feeds back the congestion severity level
back to the source of the sampled packet. While at RP, RL
associated with a source decreases its sending rate based on
congestion feedback message received from CP, and increases
its rate voluntarily to recover lost bandwidth and probe for
extra available bandwidth.

1) Congestion Point Algorithm: The goal of CP is to
maintain the buffer occupancy at a desired operating point,
Qecq. CP samples the incoming packet with a probability
depending on the severity of congestion measured by Fy,
and computes the severity of congestion measurement Fj.
Fig. 9(a) shows the sampling probability as a function of
|Fy|. Fp is calculated as Fy, = —(Qofs + w * Q5), Where
Qors and Qs are defined similarly as those in the BCN
algorithm, and w is a non-negative constant, taken to be 2
for the baseline implementation. Fj captures a combination
of queue-size excess oy and rate excess (Js. Indeed, Qs is
the derivative of the queue-size, and equals the input rate less
the output rate. Thus, when F}, is negative, either the buffers or
the link or both are oversubscribed and a congestion message
containing the value of Fj}, quantized to 6 bits, is sent back
to the source of the sampled packet; otherwise, no feedback
message is sent.

2) Reaction Point Algorithm: The RP algorithm adjusts the
sending rate by decreasing the sending rate based on the con-
gestion feedback message received from CP, and by increasing
the sending rate voluntarily to recover lost bandwidth and

54 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013

probe for extra available bandwidth.
Rate decrease: when a feedback message is received, the
current rate (CR) and target rate (TR) are updated as follows:

TR = CR
CR = CR(1-Gy|Fy)

where the constant G4 is chosen to ensure that the sending rate
cannot decrease by more than 50%, and thus G g*| Fymaz| = %,
where F},,q2 denotes the maximum of Fy,.

Rate increase: Two modules, Byte Counter (BC) and Rate
Increase Timer, are introduced at RP for rate increases. Byte
Counter is a counter at RP for counting the number of bytes
transmitted by RL. As a clock at RP employed for timing
rate increase, Rate Increase Timer is introduced to allow fast
bandwidth recovery when the sending rate is very low while
tremendous bandwidth becomes available.

Rate increases at RP occur in Fast Recover (FR) and Active
Increase (AI) phases. The byte counter is reset every time a
rate decrease is applied and enters the FR state. At the FR
state, BC counts data bytes transmitted by RL and increases
the BC cycle by 1 when the BC_THRESHOLD bytes are
transmitted. After each cycle, RL increases its rate to recover
some of the bandwidth it lost at the previous rate decrease
episode. Thus, the goal of RP in FR is to rapidly recover
the rate it lost at the last rate decrease episode. After the
FR THRESHOLD cycles (where FR_ THRESHOLD
is a constant chosen to be 5 cycles in the baseline im-
plementation), BC enters the AI state to probe for extra
bandwidth on the path. In the AI phase, RP will transmit
BC_THRESHOLD/2 bytes data in each BC cycle.

The Rate Increase Timer functions similarly as BC. It is
reset when a feedback message arrives and enters the FR state.
In the FR state, this timer completes one cycle of 1" ms. After
FR_THRESHOLD cycles, it enters the Al state where each
cycle is set to T'/2 ms long.

The BC and Rate Increase Timer jointly determine rate
increases at RL. After a feedback message is received, they
each operate independently and execute their respective cycles
of FR and AI. The QCN control mechanism is summarized
in Fig. 9(b). BC and Timer determine the state of RL and the
sending rate is updated as follows:

1) RL is in FR if both the Byte Counter and the Timer
are in FR. In this case, when either the Byte Counter or the
Rate Increase Timer completes a cycle, TR remains unchanged
while CR is updated as CR = (CR+ TR)/2.

2) RL is in Al if either BC or the Timer is in Al In this
case, when either BC or Timer completes a cycle, TR and CR
are updated as:

TR = TR+ Rua;
CR L(CR+TR)

where R4 is a constant chosen to be 5 Mbps in the baseline
implementation.

3) RL is in the Hyper-Active Increase (HAI) phase if both
BC and Rate Increase Timer are in Al In this case, TR and
CR are updated as:

TR = TR+ Ruar* (min(BC_cycle, Timer_cycle)
—FR_THRESHOLD)
CR = i(CR+TR)

ofF,)

10%

Samping probability P =

-
°
&

F F

bmax b

(a) Sampling probability in QCN CP as a function of |Fy|

Byte Counter

« Increment 1 cycle after BC_THRESHOLD
bytes in FR phase or BC_THRESHOLD/2
bytes in Al phase are sent

« Counter reset on negative feedback

Switch/Congestion
Point

QCN negative feedback -

. Fb<0O

« Reset both byte counter
and Rate Increase Timer

- Multiplicative Decrease
TR=CR
CR=CR*(1-Gd*|Fb])

Rate Regulator

« Sample the‘incoming packets with
probability depending on the congestion

« Calculate congestion measurement Fb:
Fb = - (q(t)-Qeq)-w(a(t)-q(t-¢))

Rate Increase Timer

« Increment 1 cycle after every T ms in
FR phase and T/2 ms in Al phase

« Timer reset on negative Feedback

(b) QCN control mechanism

Fig. 9. QCN overview

where the constant Ry 45 is set to 50 Mbps in the base-
line implementation. So, the increment of TR in the HAI
phase occurs in multiples of 50 Mbps. It is very important
to note that RL goes to the HAI state only after at least
5BC_THRESHOLD packets have been sent and 57 ms
have passed since the last congestion feedback message was
received. This doubly ensures that aggressive rate increases
occur only after RL provides the network adequate opportunity
for sending rate decrease signals should there be congestion.
This is vital to ensure stability of the QCN algorithms while
optimization can be performed to improve its responsiveness,
for the sake of stability and simplicity.

In order to improve the fairness of multiple flows sharing
the link capacity of QCN, an enhanced QCN congestion
notification algorithm, called fair QCN (FQCN) [37], was
proposed. The performance of FQCN was evaluated in [37]
in terms of fairness and convergence. As compared to QCN,
fairness is improved greatly and the queue length at the
bottleneck link converges to the equilibrium queue length very
fast.

D. Comparison and Discussion

Some characteristics of BCN, FECN, E-FECN, and QCN
congestion notification algorithms are summarized in Table
IV. All of them are concerned with provisioning congestion
notification in DCNs. We will discuss and compare the pros
and cons of these congestion notification algorithms in the
following aspects.

ZHANG and ANSARI: ON ARCHITECTURE DESIGN, CONGESTION NOTIFICATION, TCP INCAST AND POWER CONSUMPTION IN DATA CENTERS 55

TABLE IV
A COMPARISON OF BCN, FECN, E-FECN, AND QCN

Parameters BCN [32], [33] FECN [34] E-FECN [35] QCN [36]
Fairness Unfair (better with drift) Perfect Perfect Unfair
Feedback Control Backward Forward Forward with beacon Backward
Overhead High (Unpredictable) Low (predictable), 20bytes Medium Medium (unpredictable)
Rate of Convergence to Stability Slow Fast Fast Medium
Congestion Regulation Fast Slow Medium Fast
Throughput Oscillation Large Small Small Medium
Load Sensor Queue based Rate based Rate + Queue based Queue based
Link Disconnection Support N/A Support Support
Fast Start Support N/A Support Support
Number of Rate Regulators Variable Fix (= number of source flows) Variable Variable
Reactive and Proactive Signalling Reactive Proactive Reactive & Proactive Reactive

1) Fairness: Research work has shown that BCN achieves
only proportional fairness but not max-min fairness [61]. With
max-min fairness, the minimum data rate that a data flow
achieves is maximized first; the second lowest data rate that
a data flow achieves is maximized, and so on. Proportional
fairness is a compromise between max-min fairness and
maximum throughput scheduling algorithm. With proportional
fairness, data rates are assigned inversely proportional to its
anticipated resource consumption. The fairness in FECN/E-
FECN is ensured by the congestion detection algorithm at the
switch, which advertises the same rate to all the flows passing
through the switch. Similar to BCN, the feedback message is
only sent to the source of the sampled packet in QCN, and
therefore QCN only achieves proportional fairness rather than
max-min fairness.

2) Feedback Control: From the system models shown in
Fig. 8, it is obvious that BCN and QCN use backward
feedback control, FECN employs forward feedback, and the
forward feedback control in E-FECN works together with
BCNOO messages to inform the source with congestion at the
switch.

3) Overhead: The overhead of BCN is high and unpre-
dictable. The overhead of QCN is also unpredictable, but
smaller than that of BCN since there is only negative QCN
message to reduce the sending rate, and the sampling proba-
bility is proportional to the congestion indicator. The overhead
of FECN is low and predictable because the FECN message
is sent periodically with a small payload of about 20 bytes.
The overhead of E-FECN is larger than that of FECN due to
the BCNOO signal involved in the E-FECN algorithm.

4) Rate of Convergence to Fair State: BCN is slow in
convergence to the fair state because AIMD-like algorithms
can achieve fairness only in the long term sense. FECN and
E-FECN can reach the perfect fair state within a few round
trip times because all sources get the same feedback.

5) Congestion Regulation: The source rate in BCN and
QCN can be reduced more quickly than that in FECN because
the message in BCN and QCN is sent directly from the
congestion point while the probe message in FECN has to
take a round trip before it returns back to the source. The

congestion adjustment speed is improved in E-FECN by using
the BCNOO message under severe congestion.

6) Throughput Oscillation: BCN incurs large oscillations
in throughput. FECN and E-FECN do not incur large os-
cillations in source throughput. The throughput oscillation is
improved in QCN with the rate increase determined jointly by
Byte Counter and Rate Increase Timer at the source.

7) Load Sensor: BCN and QCN send the queue dynamics
back to the sources, while FECN uses a rate based load
sensor to detect congestion. In addition to the rate-based
sensors, queue monitor is also employed for severe congestion
notification in E-FECN.

8) Link Disconnection: If a link is broken, BCN, E-FECN,
and QCN can employ the reactive feedback message to inform
the source in order to decrease or stop the packet transmission,
while in FECN, there is no reactive feedback message and the
probe might not return back to the source which will keep the
sending rate, thus causing packet loss. To solve this problem,
a probe timeout is introduced in FECN to let the sources lower
their sending rates during the link disconnection.

9) Fast Start: In BCN and QCN, the sources are initialized
with the full rate, and ramp down if a negative feedback is
received from a switch. In FECN, the sources start at a low
rate and move to the equilibrium rates as successive probes
return.

10) Number of Rate Regulators: FECN requires as many
regulators as the number of concurrent flows. Owing to
the introduced BCNOO message under severe congestion, the
number of rate regulators in E-FECN varies. In BCN and
QCN, the feedback message is only sent to the source of the
sampled packet, and therefore the number of rate regulators
in BCN and QCN also varies.

11) Reactive and Proactive Signaling: BCN and QCN use
reactive signaling, FECN deploys proactive signaling, and
E-FECN employs both signalling methods. Since proactive
probes are only sent periodically, at least one periodic interval
is needed to respond to the sudden overload, which may cause
the network to be severely congested. Reactive signaling with
feedback can help reduce congestion with sudden change of
the link capacity or traffic patterns. However, the problem of

56 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013

Server Request Unit (SRU)

Servers

&

Client

I A

Fig. 10. A simple and representative TCP Incast network setting with one
client requesting data from multiple servers through synchronized reads.

reactive signalling is that the rates of some flows are reduced
too much that they may not recover.

V. TCP INCAST

TCP Incast, where TCP throughput drastically reduces when
multiple sending servers communicate with a single receiver
separated by one or more Ethernet switches or routers in high
bandwidth (1-10 Gbps), low latency (round trip time of tens
to hundreds of microseconds) networks using TCP, potentially
arises in many datacenter applications, e.g., in cluster storage
[1], when storage servers concurrently respond to requests for
a data block, in web search, when many workers respond near
simultaneously to search queries, and in batch processing jobs
like MapReduce [3], in which intermediate key-value pairs
from many Mappers are transferred to appropriate Reducers
during the “shuffle” stage. In this section, we will present
a brief overview of TCP Incast network setting pattern and
earlier proposed solutions to mitigate TCP Incast.

A. Simplified TCP Incast network settings

A simple and basic representative network setting in which
TCP Incast can occur is shown in Fig. 10. Data is stripped
over a number of servers, and stored as a Server Request
Unit (SRU) on each server. In order to access one particular
data block, a client needs to perform synchronized readings:
sending request packets to all of the storage servers containing
a fragment of data block for this particular block. The client
will not generate data block requests until it has received all
the data for the current block. Upon receiving the requests, the
servers transmit the data to the receiver through one Ethernet
switch almost concurrently. Small Ethernet buffers may be
exhausted by the concurrent flood of traffic, thus resulting in
packet loss and TCP timeouts. Therefore, TCP Incast may
be observed during synchronized readings for data blocks
across an increasing number of servers. Fig. 11 illustrates
this performance drop in a cluster-based storage network
environment when a client requests data from several servers
with different buffer size. It shows that increasing the buffer
size can delay the onset of TCP Incast.

/[\lum Servers vs Goodput (SRU = 256K)
T T T

1000 T

900 -

800

700 -
3 600t
o
=3
5 5001
o
°
o
S 4001
S

300

200

100

—¥— 32KB —O— 64KB 128KB —E— 256KB 512KB —Ar— 1024KB
0 ‘ ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 120
Number of Servers

Fig. 11. TCP throughput collapse for a synchronized read application

performed on the network as shown in Fig. 10 with different buffer sizes.

Studies in [38]-[40] revealed that TCP timeout is the
primary cause of TCP Incast. The synchronized reading or
writing data flows can overload small switch buffers, thus
causing packet drops and leading to TCP timeouts which last
hundreds of milliseconds. Thus, TCP throughput is reduced
drastically. Phanishayee et.al [38] analyzed the TCP traces
obtained from TCP Incast simulations, suggesting that TCP
retransmission timeouts are the main root cause of TCP Incast.
As reported in [38], packet losses occurred during one block
request result in a link idle duration of 200 ms, which is the
TCP retransmission timeout (RTO) time. References [39], [40]
further confirmed this root cause analysis on TCP Incast by
investigating the effects of reducing TCP RTO parameter from
the default 200 ms to sub-milliseconds to alleviate the TCP
Incast problem. The inciting of TCP Incast can be summaried
by the following conditions:

« high-bandwidth, low-latency networks connected by Eth-

ernet switches with small buffers;

« clients issuing barrier-synchronized requests in parallel;

« servers responding with a fragment of data block per

request.

B. Current Approaches to Mitigate TCP Incast

Incast has not been thoroughly studied, but several methods
have been proposed to avoid TCP Incast.

1) Limiting the Number of Servers or Limiting Data Trans-
fer Rate: Current systems attempt to avoid TCP Incast onset
by limiting the number of servers involved in data block
transfer, or by limiting the data transfer rate. These solutions,
however, are typically specific to one configuration, and thus
are not robust to configuration changes in DCNs.

2) Reducing Losses with Larger Switch Buffers: Increasing
the Ethernet switch buffer size can delay the onset of TCP
Incast. Phanishayee et al. [38] stated that doubling the Ethernet
switch buffer size doubles the number of concurrent sending
servers before experiencing TCP Incast. However, switches
and routers with large buffers are expensive, and even large
buffers may be exhausted quickly with even higher speed
links.

ZHANG and ANSARI: ON ARCHITECTURE DESIGN, CONGESTION NOTIFICATION, TCP INCAST AND POWER CONSUMPTION IN DATA CENTERS 57

3) Reducing Idle Link Time by Increasing SRU Size:
Increasing the SRU size can also delay the onset of TCP
Incast. However, most applications ask for data in small
chunks, typically in the range of 1-256 KB. In addition, a
larger SRU size can increase lock content due to overlapping
writes, thus causing poor write performance in file system
applications.

4) TCP Variants and TCP Slow Start: Phanishayee et al.
[38] evaluated several TCP variants, including TCP Reno, New
Reno, and SACK. None of them can help solve the TCP Incast
problem. They also found that eliminating TCP slow start did
not help either.

5) Ethernet Flow Control: Ethernet flow control [62] is
effective for a single switch topology, but breaks down in
multi-switch or multi-layered switching topologies due to
head-of-line blocking.

6) Congestion Control: The performance of QCN with
respect to the TCP incast problem during data access from
clustered servers in datacenters has been investigated in [37].
QCN can effectively control link rates very rapidly in a dat-
acenter environment. However, it performs poorly when TCP
Incast is observed. As compared to QCN, FQCN significantly
enhances TCP throughput due to the fairness improvement.

7) Application Level Solution: Application level solutions,
such as global request scheduling, are possible, but they
require potentially complex modifications to many TCP ap-
plications.

8) Reducing TCP minimum RTO: Reducing the minimum
value of the retransmission timeout (RTO) from the default
200 ms to 200 us significantly alleviates the problem as
claimed in [39]. However, as the authors pointed out, most
systems lack the high-resolution timers required for such low
RTO values.

9) Fine-Grained TCP Retransmission: Fine-grained timers
to facilitate sub-millisecond RTO timer values, adding ran-
domness to RTO, and disabling TCP delayed ACKs were
proposed recently [40]. High resolution timers are introduced
to support fine-grained RTT measurements with the granular-
ity of hundreds of microseconds. The results in [40] show
that enabling microsecond RTO values in TCP is effective in
avoiding TCP incast collapse. It also shows that by adding
an adaptive randomized RTO component to the scheduled
timeout, the throughput does not experience collapse even
with a large number of concurrent sources due to the flow
retransmission de-synchronization. The TCP delayed ACK
mechanism attempts to reduce the amount of ACK traffic;
the results in [40] show that coarse-grained delayed ACKs
should be avoided when possible in DCNs, and most high-
performance applications in the datacenter favor quick re-
sponse over additional ACK-processing overhead. The results
in [39], however, contradict this point; the low resolution RTO
timer of 1 ms with delayed ACKs is actually optimal. The
authors further showed that with delayed ACKs turned off,
the congestion window exhibits larger fluctuations and a more
severe throughput collapse.

10) Small Buffers: Packet buffers in switches are expen-
sive, and a recent work [63] also explored the possibility of
using small buffers in equipment to still achieve near full link
utilization.

VI. GREEN DCN

The high operational cost and the mismatch between data
center utilization and power consumption have spurred in-
terest in improving data center energy efficiency. The en-
ergy saving opportunities for data centers [64] have been
studied to gain a solid understanding of data center power
consumption. IT infrastructure, including servers, storage, and
communication equipments, as well as power distribution
infrastructure and cooling infrastructure are the three main
contributors to power consumption of data centers. Based on
a benchmark study of data center power consumption [64],
the total power consumption of IT equipments accounts for
approximate 40%-60% power delivered to a data center, and
the rest is utilized by power distribution, cooling, and lighting
that support IT infrastructure. Figure 12 shows the power
usage of a typical data center [65]. In order to quantify the
energy efficiency of data centers, several energy efficiency
metrics have been proposed. The most commonly used metric
to indicate the energy efficiency of a data center is power
usage effectiveness (PUE), which is defined as the ratio of the
total energy consumption of data center to the total energy
consumption of IT equipment. The PUE metric measures the
total power consumption overhead caused by the data center
facility support equipment, including the cooling systems,
power delivery, and other facility infrastructure like lighting.
Working on improving energy efficiency of DCNs, Google
publishes quarterly the PUE results from data centers with
an IT load of at least SMW and time-in-operation of at
least 6 months [66]. The latest trailing twelve-month, energy-
weighted average PUE result obtained in the first quarter of
2011 is 1.16, which exceeds the EPA’s goal for state-of-the-art
data center efficiency.

Energy savings in DCNs can come from more energy
efficient hardware, servers and networking equipment. In
contrast, tremendous efforts have been made to address power
efficiency in DCNs with power management in server and
storage clusters. Improved DCN architecture can also save
energy. Moreover, some smart power delivery and cooling
technologies have been investigated and verified to be effec-
tive solutions to save energy. With servers becoming more
energy proportional, the network power cannot be ignored.
In addition, “green” energy supply is becoming popular for
datacenters as demonstrated by many small- and medium-
size datacenters, which are powered partially or completely
by solar and/or wind energy. In this section, energy-saving
approaches for DCNs are reviewed and discussed.

A. Energy Efficient Server

According to the research by Greenberg et al. [11], 45
percent of the total energy consumption goes to servers in
DCNs. Two reasons can be identified to cause this high
fraction of server energy consumption: low server utilization
and a lack of power-proportionality. At low levels of workload,
servers are highly energy-inefficient. As shown in [45], [67],
the power consumption of current commodity servers can
be approximated by a model with a large always-present
constant power and a dynamic power linear to server per-
formance. The amount of dynamic power is small, at most

58 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013

&=l oads =Cooling ==#Powerdelivery =#=Cumulative Power
50% A 100%

= / N
10% [30%
35% 70%

50%

Cumulative Power

20% 40%

Powver per Component
~ w
@ =]
R R
@
8
S

>—~
@
®

30%

H
Q
=
~
S
=

[}
X

‘-\I s

Serverfans CRACfan PDU CWpump Total
baseline

0%

Load Chiller PSU VRs uPs

Fig. 12. A typical data center power usage (adapted from [65]).

25% of the total dissipated power. At the idle state, the power
consumed is over 50% of its peak power for an energy-
efficient server [44] and often over 80% for a commodity
server [45]. High power waste at low workload has prompted
a fundamental redesign of each computer system component
to exemplify the energy-proportional concept, especially on
processors since the processor is the most power consuming
component before (processor contributes to over 55% of the
total server power in 2005 [44]). Many research works have
been done to explore processor designs to reduce CPU power
with Dynamic Voltage/Frequency Scale (DVES) [68], [69].
DVES can be deployed to save energy at the cost of slower
program execution by reducing the voltage and frequency.
The effectiveness of DVFS in saving energy with moderately
intense web workloads was examined in [43], and the results
show that DVFS can save from 23% to 36% of the CPU energy
while keeping server responsiveness within reasonable limits.
Unfortunately, processors no longer dominate power consump-
tion in modern servers. Processors currently contribute around
25% of the total system power consumption [44]. According
to a study shown in [45], the chipset is the dominant constant
power consumption in modern commodity servers.

Several techniques can be used to reduce power consump-
tion of memory and disk subsystems. A novel, system-level
power management technique, power shifting, for increasing
performance under constrained power budgets was proposed to
re-budget the available power between processor and memory
to maintain a server budget [70]. Power shifting is a threshold-
based throttling scheme to limit the number of operations
performed by each subsystem during an interval of time,
but power budget violations and unnecessary performance
degradation may be caused by improper interval length. Bruno
et al. [71] proposed and evaluated four techniques, called
Knapsack, LRUGreedy, LRU-Smooth, and LRU-Ordered, to
dynamically limit memory power consumption by adjusting
the power states of the memory devices, as a function of the
load on the memory subsystem. They further proposed energy
and performance aware version of these techniques to trade
off between energy consumption and performance. Bruno et
al. [72] proposed Mini-rank, an adaptive DRAM architecture,
to limit power consumption of DRAM by breaking a con-
ventional DRAM rank into multiple smaller mini-ranks with

a small bridge chip. Dynamic Rotations per Minute (DRPM)
[73] was proposed as a low-level hardware-based technique to
dynamically modulate disk speed to save power in disk drives
since the lower the disk drive spins the less power it consumes.

In order to design an energy-proportional computer sys-
tem, each system component needs to consume energy in
proportion to utilization. However, many components incur
fixed power overheads when active like clock power on
synchronous memory busses, and thus designing an energy-
proportional computer system still remains a research chal-
lenge. Several system level power management schemes have
been proposed [74], [75] to reduce power consumption by
putting idle servers to sleep. Given the state of the art of
energy efficiency of today’s hardware, energy proportional
systems can be approximated with off-the-shelf non-energy-
proportional hardware at the ensemble layer through dynamic
virtual machine consolidation [74]. It is also believed that new
alternative energy-efficient hardware designs will help design
energy proportional systems at both the single server and
ensemble layer. However, this method works at the coarse time
scale (minutes) and cannot address the performance isolation
concerns of dynamic consolidation. An energy-conservation
approach, called PowerNap [75], was proposed to attune to
server utilization patterns. With PowerNap, the entire system
transits rapidly between a high-performance active state and
a minimal-power nap state in response to instantaneous load.
Rather than requiring fine-grained power-performance states
and complex load proportional operation from each system
component, PowerNap minimizes idle power and transition
time. However, a transition time of under 10ms is required
for significant power savings; unfortunately, sleep times on
current servers are two orders of magnitude larger.

B. Server/Storage Clusters

Besides power proportional servers, tremendous efforts have
been made to achieve power proportional server/storage clus-
ters. Chen et al. [76] proposed to reduce power usage in the
data center by adopting dynamic server provisioning tech-
niques, which are effective techniques to dynamically turn on
a minimum number of servers required to satisfy application
specific quality of service and load dispatching that distributes
current load among the running machines. This work specially
deals with long-lived connection-intensive Internet services.
Several recent works utilized machine learning to dynamically
provisioning virtual machines while maintaining quality of
service [77], [78]. However, virtual machine migration takes
several minutes and virtual machines introduce performance
overheads. A power-proportional cluster [79], consisting of
a power-aware cluster manager and a set of heterogeneous
machines, was designed to make use of currently available
energy-efficient hardware, mechanisms for transitioning in
and out of low-power sleep states, and dynamic provisioning
and scheduling to minimize power consumption. This work
specially deals with short lived request-response type of work-
loads. Based on queuing theory and service differentiation, an
energy proportional model was proposed for server clusters
in [80], which can achieve theoretically guaranteed service
performance with accurate, controllable and predictable quan-
titative control over power consumption. The authors also

ZHANG and ANSARI: ON ARCHITECTURE DESIGN, CONGESTION NOTIFICATION, TCP INCAST AND POWER CONSUMPTION IN DATA CENTERS 59

analyzed the effect of transition overhead to reduce the impact
of performance degradation.

Significant opportunities of power savings exist at the
application layer, which has the most information on perfor-
mance degradation and energy tradeoff. As verified in [81],
consolidation of applications in cloud computing environments
can present a significant opportunity for energy optimization.
Their study reveals the energy performance trade-offs for
consolidation and shows that optimal operating points exist
and the application consolidation problem can be modeled as
a modified bin-packing problem. Kansal et al. [82] enabled
generic application-layer energy optimization, which guides
the design choices using energy profiles of various resource
components of an application.

Several energy saving techniques can be applied to en-
ergy proportional storage systems. The first set of techniques
uses intelligent data placement and/or data migration to save
energy. Hibernator [83], a disk array energy management
system, uses several techniques to reduce power consumption
while maintaining performance goals, including disk drives
that rotate at different speeds and migration of data to an
appropriate-speed disk drive. Sample-Replicate-Consolidate
Mapping (SRCMap) [84], a storage virtualization solution for
energy-proportional storage, was proposed by consolidating
the cumulative workload on a minimal subset of physical
volumes proportional to the I/O workload intensity. Some
other techniques benefit from inactive low energy modes in
disks. A log-structured file system solution was proposed in
[85] to reduce disk array energy consumption by powering off
a fraction of disks without incurring unacceptable performance
penalties because a stripping system could perfectly predict
disks for write-access. Based on the observation of significant
diurnal variation of data center traffic, Sierra [86], a power-
proportional, distributed storage system, was proposed to turn
off a fraction of storage servers during trough traffic period.
Sierra utilizes a set of techniques including power-aware
layout, predictive gear scheduling, and a replicated short-term
store, to maintain the consistency, fault-tolerance of the data,
as well as good system performance. A power-proportional
distributed file system, called Rabbit, was proposed in [87]
to provide ideal power-proportionality for large-scale cluster-
based storage and data-intensive computing systems by using
a new cluster-based storage data layout. Rabbit can maintain
near ideal power proportionality even with node failures.

C. Green Network Equipment

A power measurement study of a variety of networking gear,
e.g., switches, routers, wireless access points, was performed
in [88] to quantify power saving schemes. A typical network-
ing router power consumption can be divided among four main
components: chassis, switching fabric, line cards, and ports.
The chassis alone consumes 25% to 50% of the total router
power in a typical configuration [89]. Furthermore, power
characteristics of current routers are not energy-proportional;
even worse, they consume around 90% of their maximum
power consumption [89]. Prompted by the poor energy charac-
teristics of modern routers, active research is being conducted
in reducing power consumption of networking equipment, and

researchers have suggested a few techniques to save energy
[90], [91], e.g., sleeping and rate-adaption. With a low power
“sleep” mode, network equipment can stay in two states, a
sleeping state and an active state. Network equipment transits
into the low-power “sleep” mode when no transmission is
needed, and returns back to the active mode when transmission
is requested. However, the transition time overhead putting
device in and out the sleep mode may reduce energy efficiency
significantly [92], and so Reviriego et al. [93] explored the use
of burst transmission to improve energy efficiency. Another
technique to save power is to adapt the transmission rate of
network operation to the offered workload [91], based on
the fact that the lower the line speed is, the less power the
devices consume. Speed negotiation is required in the rate-
adaption scheme for two transmission ends. Speed negotiation
requires from a few hundred milliseconds to a few seconds;
this is excessive for many applications. The effectiveness of
power management schemes to reduce energy consumption of
networks based on sleeping and rate adaption was evaluated
in [94]. It was shown that sleeping or rate-adaptation can offer
substantial savings.

Several schemes have been proposed to reduce power
consumption of network switches in [95], including Time
Window Prediction (TWP), Power Save Mode (PSM), and
Lightweight Alternative. The theme of these schemes is to
trade off some performance, latency and packet-loss, to reduce
power consumption. TWP and PSM schemes concentrate on
intelligently putting ports to sleep during idle periods. In TWP,
switches monitor the number of packets crossing a port in a
sliding time window and predict the traffic in the next sliding
window. If the number of packets in the current sliding time
window is below a pre-defined threshold, the switch powers
off the port for some time. Packets that arrive at the port in the
low power state are buffered. Adaptive sleep time is used in
TWP based on the prediction of the traffic for the next sliding
window and latency requirements. The performance of TWP
relies on the accuracy of the prediction function. The more
accurate the prediction function, the less latency it may cause.
PSM is a special case of the TWP where the sleep happens
with regularity instead of depending on the traffic flow. PSM
is more of a policy-based scheme to power off ports and
naturally causes more latency than TWP does. By observing a
clear diurnal variation in the traffic patterns, lightweight alter-
native switches have been proposed. Lightweight alternative
switches are low-power integrated switches with lower packet
processing speed and line speeds. At low traffic load, only the
lightweight alternative switches are powered on to provide the
connection. An analytical framework, which can effectively
be adopted to dynamically optimize power consumption of
a network device while maintaining an expected forwarding
performance level, was proposed in [96].

D. Networking

With servers becoming more energy proportional, the net-
work power cannot be ignored. In a recent work, a network-
wide power manager, ElasticTree [97], was proposed to dy-
namically adjust the set of active network elements, links
and switches, to satisfy changing data center traffic loads.
ElasticTree optimizes a DCN by finding the power-optimal

60 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013

network subset to route the traffic. It essentially extends the
idea of power proportionality into the network domain, as
described in [44]. Chabarek et al. [89] used mixed integer
programming to optimize router power in a wide area network,
by choosing the chassis and line card configuration to best
meet the expected demand. Mahadeva et al. [98] proposed
a network wide energy monitoring tool, Urja, which can be
integrated into network management operations to collect con-
figuration and traffic information from live network switches
and accurately predict their power consumption. By analyzing
real network traces, several techniques, including disabling
unused ports, port rate adaptation, maximizing active ports on
a line card and using fewer switches, were proposed to near-
proportional power consumption with non power proportional
devices.

In [99], three schemes, namely, link state adaption (LSA),
network traffic consolidation (NTC), and server load consoli-
dation (SLC), were proposed to reduce the energy consumed
by networking equipment in any network with a single ad-
ministrative control domain. In LSA, the power control uses
traffic information on each link to adapt its state accordingly.
Typically, each link can operate at the disabled state when
there is no traffic on the link, or operate at a different link
rate based on the traffic load. In NTC, traffic is routed and
consolidated on fewer links and switches, while some of the
non-utilized links and switches can be disabled. This approach
reduces energy consumption significantly by removing all
redundancy in the networks. The energy consumed is the
minimum required to support the offered network load, but
it comes at a great cost to reliability as there are no redundant
paths in the topology. The SLC scheme migrates jobs, and
so fewer number of servers are being used. In the SLC
scheme, server resources such as CPU and memory should
be adequate to handle the assigned jobs. The energy savings
of all of these three schemes come at the cost of availability
and reliability. To mitigate the performance degradation, one
constraint is applied to ensure that each link’s utilization
never exceeds a certain threshold before adapting its rate. The
authors suggested to incorporate service level awareness by
adding constraints to ensure a minimum performance.

The energy-saving problem in DCNs was solved from a
routing perspective in [100]. They established the model of
energy-aware routing, in which the objective is to find a route
for a given traffic matrix that minimizes the total number
of switches. They proved that the proposed energy-aware
routing model is NP-hard, and designed a heuristic algorithm
to solve the energy-aware routing problem. Vasi¢ et al. [101]
proposed Energy-Proportional Networks (EPNs), which use
the minimum amount of energy to carry the required traffic.
In EPN, three sets of routing tables, alwayson, on-demand
and failover, are calculated. It uses an energy-aware traffic
engineering algorithm to activate/de-activate network elements
to achieve the goal of energy-proportionality.

E. Network Architecture

Intel Research proposed and evaluated the proxy architec-
ture which uses a minimal set of servers to support different
forms of idle-time behavior for saving energy [102]. Abts et
al. [16] proposed a new high-performance DCN architecture,

called energy proportional datacenter networks and showed
that a flattened butterfly DCN topology is inherently more
power efficient than the other commonly proposed topology
for high-performance DCNs. GreenCloud [103] enables com-
prehensive online monitoring, live virtual machine migration,
and virtual machine placement optimization to reduce DCN
power consumption while guaranteeing the performance goals.

F. Smart Power Delivery and Cooling

Some smart power delivery and cooling technologies have
been investigated and verified to be effective in saving energy.
Early works on power delivery and cooling techniques for
DCNs focused on computational fluid dynamic models to
analyze and design server racks and data center configurations
to optimize the delivery of cold air to minimize cooling costs
[104], [105]. Distributing the workload onto those servers
that are more efficient to cool than others was proposed
and verified to reduce power consumption of data centers
[106], [107]. Parolini et al. [108] proposed a coordinated
cooling and load management strategy to reduce data center
energy consumption, and formulated the energy management
problem as a constrained Markov decision process, which
can be solved by linear programming to generate the optimal
strategies for power management. Vasic et al. [109] proposed
a thermodynamic model of a data center and designed a novel
model-based temperature control strategy, by combining air
flow control for long time-scale decisions and thermal-aware
scheduling for short time-scale workload fluctuations. Load
distribution in a thermal-aware manner incurs the development
of fast and accurate estimation techniques for temperature
distribution of a data center [110], [111]. Several proposals
have been made to reduce power consumption in data centers
by keeping as many servers as necessarily active and putting
the rest into the low-power sleep mode. However, these
proposals may cause hot spots in data centers, thus increasing
the cooling power and degrading response time due to sleep-
to-active transition delays. In order to solve these problems,
PowerTrade [112], a novel joint optimization of idle power
and cooling power, was proposed to reduce the total power
of data centers. Furthermore, Ahmad and Vijaykumar [112]
proposed a two-tier scheme, SurgeGuard, to address response
time degradation by using over-provisioning at coarse time
granularity to absorb common and smooth load increases, and
to provide a fine-grain replenishment of the over-provisioned
reserves at fine time granularity to handle abrupt loading
surges.

G. Green Energy Supply

Besides the strategies discussed above to reduce the power
consumption in data centers, “green” energy has been partially
or completely initiated for data center power supply [113],
[114]. Solar and wind energy are the most promising clean
energy technologies as they do not create big issues such as
environmental problems caused by hydroelectric energy and
the waste storage problem of nuclear energy. How to maximize
the usage of green energy across multiple datacenters have
been discussed in [115]-[118]. In [115], a framework for
request distribution policies based on time zones, variable

ZHANG and ANSARI: ON ARCHITECTURE DESIGN, CONGESTION NOTIFICATION, TCP INCAST AND POWER CONSUMPTION IN DATA CENTERS 61

electricity prices, and green energy has been investigated
for multi-datacenter Internet services. The evaluation results
demonstrated that datacenters powered with “green” energy
can reduce “brown” energy consumption, which is produced
by carbon-intensive means such as coal-fired power plants,
with a small cost increase. Another request distribution policy
based on capping the “brown” energy consumption was pro-
posed in [116]. Stewart and Shen [117] discussed renewable
energy management across multiple datacenters for cloud-
computing Internet services. They showed some promising
preliminary results for request-level power/energy profiling,
with which the energy consumption type of the request was
considered in the workload distribution. Thus, more energy-
hungry requests should be forwarded to datacenters with
excess green energy. Similar observations have been reported
in [118] that geographical load balancing can encourage the
use of “green” energy and reduce the use of “brown” energy.
“Green” energy management has also been explored within
a single datacenter. Goiri et al. [119] proposed GreenSlot,
a parallel batch job scheduler for a single DCN partially
powered by solar energy, to maximize the usage of green
energy in a datacenter based on the availability prediction of
the solar energy.

VII. CONCLUSION

In this survey, we have reviewed most recent research
activities in DCNs, with a specific emphasis on the topics
of network architecture design, congestion notification, TCP
Incast, and power consumption. We have introduced the tree-
based hierarchical topology of conventional DCNs, detailed
the major problems of tree-based hierarchical topology, and
presented requirements for new DCN architectures. Some of
the recently proposed architectures have been discussed and
compared. In addition, we have summarized and compared the
pros and cons of the major congestion notification algorithms
proposed for DCNs. TCP Incast potentially arises in many
datacenter applications. We have presented a brief overview
of the TCP Incast problem and previously proposed solutions
to mitigate TCP Incast. Furthermore, the energy cost of servers
and DCNs have spurred great interest in improving data center
energy efficiency, aiming to build energy proportional DCNs.
We have reviewed the solutions to build energy efficient
data centers from various aspects including energy-efficient
servers, networking equipment, power management in server
and storage clusters, smart power delivery and cooling, energy-
efficient network architecture design, and network-wide power
management. Readers are referred to the respective references
on some other research topics on DCNSs, not covered in this
survey, such as traffic characteristics [14], [50], [120], [121],
TCP protocol specific suitable for high-bandwidth low-latency
DCNs [122], routing [9], forwarding and switching algorithms
[123]-[126], flow management/scheduling [127], [128], load
balancing [129], and data center modeling and simulation
[130]-[136].

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 2943,
2003.

(21

(31

(4]

(51

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]
[23]

[24]

[25]

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A Distributed
Storage System for Structured Data,” ACM Trans. Computer Systems,
vol. 26, no. 2, pp. 1-26, 2008.

J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107-113, 2008.

T. Hoff, “Google Architecture,”
google-architecture, Nov. 2008.

F. Machida, D. S. Kim, J. S. Park, and K. Trivedi, “Toward optimal
virtual machine placement and rejuvenation scheduling in a virtualized
data center,” in Proc. IEEE International Conference on Software
Reliability Engineering Workshops, Nov. 2008, pp. 1 -3.

M. Mishra and A. Sahoo, “On theory of vm placement: Anomalies
in existing methodologies and their mitigation using a novel vector
based approach,” in Proc. IEEE International Conference on Cloud
Computing, July 2011, pp. 275 —-282.

H. Liu, H. Jin, X. Liao, C. Yu, and C. Xu, “Live virtual machine
migration via asynchronous replication and state synchronization,”
IEEE Trans. Parallel Distrib. Syst.,, vol. PP, no. 99, March 2011.

V. Shrivastava, P. Zerfos, K. won Lee, H. Jamjoom, Y.-H. Liu,
and S. Banerjee, “Application-aware virtual machine migration in
data centers,” in Proc. IEEE International Conference on Computer
Communications, Shanghai, China, April 10-15, 2011, pp. 66-70.

K. Chen, C. Hu, X. Zhang, K. Zheng, Y. Chen, and A. Vasilakos,
“Survey on routing in data centers: insights and future directions,”
IEEE Network, vol. 25, no. 4, pp. 6 —10, July-August 2011.

Cisco Data Center Infrastructure 2.5 Design Guide,
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c649/
ccemi\newlinegration\underline\ space09186a008073377d.pdf.

A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The Cost
of a Cloud: Research Problems in Data Center Networks,” Sigcomm
Computer Communication Review, vol. 39, no. 1, pp. 68-73, 2009.
M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture,” in Proc. ACM SIGCOMM, Seattle,
WA, USA, August 17-22, 2008, pp. 63-74.

A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta,
“Towards a Next Generation Data Center Architecture: Scalability and
Commoditization,” in Proc. ACM workshop on Programmable Routers

http://highscalability.com/

for Extensible Services of Tomorrow, Seattle, WA, USA, August 22,

2008, pp. 57-62.

A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a Scalable and Flexible
Data Center Network,” in Proc. ACM SIGCOMM, Barcelona, Spain,
August 17-21, 2009, pp. 51-62.

R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “PortLand: a Scal-
able Fault-Tolerant Layer 2 Data Center Network Fabric,” in Proc.
ACM SIGCOMM, Barcelona, Spain, August 17-21, 2009, pp. 39-50.

D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy
Proportional Datacenter Networks,” in Proc. 5th international confer-
ence on Emerging Networking Experiments and Technologies, Saint-
Malo, France, June 19-23, 2010, pp. 338-347.

J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul, “SPAIN:
COTS Data-Center Ethernet for Multipathing over Arbitrary Topolo-
gies,” in Proc. 7th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’10), San Jose, CA, April 2010.

J. Hamilton, “An Architecture for Modular Data Centers?” in Proc.
of the 3rd Biennial Conference on Innovative Data Systems Research
(CIDR ’07), Asilomar, California, USA, January 7-10, 2007, pp. 3-10.
K. V. Vishwanath, A. Greenberg, and D. A. Reed, “Modular Data
Centers: How to design Them?” in Proc. 1st ACM workshop on Large-
Scale System and Application Performance, (LSAP ’09), Garching,
Germany, 2009, pp. 3-10.

IBM, http://www-935.ibm.com/services/us/its/pdf/smdc-eb-sfe03001\
newline-usen-00-022708.pdf.

R. Systems, http://www.rackable.com/products/icecube.aspx.

V. Systems, http://www.cirrascale.com/forest\ _specifications.asp.

M. Mitchell Waldrop, “Data Center in a Box,” Scientific American,
Aug. 2007.

C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “DCell: a Scalable
and Fault-Tolerant Network Structure for Data Centers,” in Proc. ACM
SIGCOMM, Seattle, WA, August 17-22, 2008, pp. 75-86.

C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “BCube: a High Performance, Server-Centric Network
Architecture for Modular Data Centers,” in Proc. ACM SIGCOMM,
Barcelona, Spain, August 17-21, 2009, pp. 63-74.

62

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013

H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang, “MDCube: a High
Performance Network Structure for Modular Data Center Interconnec-
tion,” in Proc. 5th international conference on Emerging Networking
Experiments and Technologies, Rome, Italy, Dec. 2009, pp. 25-36.
D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, and S. Lu, “FiConn: Using
Backup Port for Server Interconnection in Data Centers,” in Proc. IEEE
International Conference on Computer Communications, April 19-25,
2009, pp. 2276 —2285.

D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, S. Lu, and J. Wu, “Scalable
and Cost-Effective Interconnection of Data-Center Servers Using Dual
Server Ports,” IEEE/ACM Trans. Netw., vol. PP, no. 99, 2010.

Y. Liao, D. Yin, and L. Gao, “DPillar: Scalable Dual-Port Server
Interconnection for Data Center Networks,” in Proc. 19th International
Conference on Computer Communications and Networks, Zurich,
Switzerland, Aug. 2-5, 2010.

P. Costa, T. Zahn, A. Rowstron, G. O’Shea, and S. Schubert, “Why
Should We Integrate Services, Servers, and Networking in a Data
Center?” in Proc. 1st ACM workshop on Research on Enterprise
Networking, Barcelona, Spain, Aug. 21, 2009, pp. 111-118.

P. Costa, A. Donnelly, G. O’Shea, and A. Rowstron, “CamCube: A
Key-based Data Center,” Microsoft Research, Tech. Rep. MSR TR-
2010-74, 2010.

D. Bergamasco and R. Pan, “Backward Congestion Notification Ver-
sion 2.0,” in [EEE 802.1 Meeting, September 2005.

D. Bergamasco, “Ethernet Congestion Manager,” in IEEE 802.1Qau
Meeting, March 13 2007.

J. Jiang, R. Jain and C. So-In, “An Explicit Rate Control Framework
for Lossless Etherent Operation,” in Proc. ICC, Beijing, China, May
19-23, 2008, pp. 5914 — 5918.

C. So-In, R. Jain and J. Jiang, “Enhanced Forward Explicit Congestion
Notification (E-FECN) Scheme for Datacenter Ethernet Networks,”
in Proc. Symposium on Performance Evaluation of Computer and
Telecommunication Systems, Edinburgh, UK, Jun. 2008, pp. 542 — 546.
M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. Pan,
B. Prabhakar, and M. Seaman, “Data Center Transport Mechanisms:
Congestion Control Theory and IEEE Standardization,” in Proc. 46th
Annual Allerton Conference on Communication, Control, and Comput-
ing, Allerton House, UIUC, Illinois, Sep. 2008, pp. 1270-1277.

Y. Zhang and N. Ansari, “On Mitigating TCP Incast in Data Center
Networks,” in Proc. IEEE International Conference on Computer
Communications, Shanghai, China, Apr. 10-15, 2011.

A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R.
Ganger, G. A. Gibson, and S. Seshan, “Measurement and Analysis of
TCP Throughput Collapse in Cluster-based Storage Systems,” in Proc.
USENIX Conference on File and Storage Technologies, San Jose, Feb.
2008, pp. 1-14.

Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Understand-
ing TCP Incast Throughput Collapse in Datacenter Networks,” in Proc.
ACM workshop on Research on Enterprise Networking, Barcelona,
Spain, August 21, 2009, pp. 73-82.

V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe and Effective Fine-
grained TCP Retransmissions for Datacenter Communication,” in Proc.
ACM SIGCOMM, Barcelona, Spain, August 21, 2009, pp. 303-314.
D. Nagle, D. Serenyi, and A. Matthews, “The Panasas ActiveScale
Storage Cluster: Delivering Scalable High Bandwidth Storage,” in
Proc. conference on Supercomputing, Washington, 2004, pp. 53-53.
U.S. Environmental Protection Agency, “Environmental Protection
Agency, Report to Congress on Server and Data Center Energy
Efficiency Public Law 109-431,” ENERGY STAR Program, Aug. 2007.
P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. Mc-
Dowell, and R. Rajamony, “The Case for Power Management in Web
Servers,” Power Aware Computing, pp. 261-289, 2002.

Luiz André Barroso and Urs Holzle, “The Case for Energy-
Proportional Computing,” Computer, vol. 40, no. 12, pp. 33-37, Dec.
2007.

S. Dawson-Haggerty, A. Krioukov, and D. Culler, “Power Optimization
- a Reality Check,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2009-140, Oct. 2009.

A. Bianzino, C. Chaudet, D. Rossi, and J. Rougier, “A Survey of Green
Networking Research,” IEEE Commun. Surveys Tutorials, vol. PP,
no. 99, pp. 1 —18, 2010.

Z. Hasan, H. Boostanimehr, and V. K. Bhargava, “Green Cellular
Networks: A Survey, Some Research Issues and Challenges,” IEEE
Commun. Surveys Tutorials, vol. 13, no. 4, pp. 524 -540, 2011.

Y. Zhang, P. Chowdhury, M. Tornatore, and B. Mukherjee, “Energy
Efficiency in Telecom Optical Networks,” IEEE Commun. Surveys
Tutorials, vol. 12, no. 4, pp. 441 —458, 2010.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[571

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti, “Energy Efficiency
in the Future Internet: A Survey of Existing Approaches and Trends in
Energy-Aware Fixed Network Infrastructures,” IEEE Commun. Surveys
Tutorials, vol. 13, no. 2, pp. 223 -244, 2011.

T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding Data
Center Traffic Characteristics,” in Proc. ACM workshop on Research
on Enterprise Networking, Barcelona, Spain, Aug. 2009, pp. 65-72.
C. Clos, “A Study of Non-Blocking Switching Networks,” The Bell
System Technical Journal, vol. 32, no. 2, pp. 406-424, March 1953.
C. E. Leiserson, “Fat-Trees: Universal Networks for Hardware-Efficient
Supercomputing,” IEEE Trans. Computer, vol. 34, no. 10, pp. 892-901,
Oct. 1985.

M. Kodialam, T. V. Lakshman, and S. Sengupta, “Efficient and Robust
Routing of Highly Variable Traffic,” in Proc. 3rd Workshop on Hot
Topics in Networks, San Diego, CA, USA, November 15-16, 2004.
D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web,” in Proc. 29th
annual symposium on Theory of Computing, El Paso, USA, 1997, pp.
654-663.

J. Kim, W. J. Dally, and D. Abts, “Flattened Butterfly: a Cost-Efficient
Topology for High-Radix Networks,” in Proc. 34th annual Symposium
on Computer Architecture, May 2007, pp. 126-137.

F. T. Leighton, Introduction to Parallel Algorithms and Architec-
tures:Arrays, Trees, Hypercubes. Morgan Kaufmann, 1992.

B. Parhami, Introduction to Parallel Processing: Algorithms and Ar-
chitectures. Kluwer Academic, 2002.

D. Loguinov, J. Casas, and X. Wang, “Graph-Theoretic Analysis of
Structured Peer-to-Peer Systems: Routing Distances and Fault Re-
silience,” IEEE/ACM Transactions on Networking, vol. 13, no. 5, pp.
1107 - 1120, Oct. 2005.

“Address resolution for massive numbers of hosts in the data center
(armd),” http://datatracker.ietf.org/wg/armd/.

“Data Center Bridging Task Group,” http://www.ieee802.org/1/pages/
dcbridges.html.

J. Jiang and R. Jain, “Analysis of Backward Congestion Notification
(BCN) for Ethernet In Datacenter Applications,” in Proc. IEEE Interna-
tional Conference on Computer Communications, Anchorage, Alaska,
USA, May 6-12, 2007, Anchorage, Alaska, USA, pp. 2456 — 2460.
“Ethernet Flow Control,” http://en.wikipedia.org/wiki/Ethernet_flow'
_control.

A. Vishwanath, V. Sivaraman, and M. Thottan, “Perspectives on Router
Buffer Sizing: Recent Results and Open Problems,” ACM SIGCOMM
Computer Communication Review, vol. 39, no. 2, pp. 34-39, 2009.
N. Rasmussen, “Apc white paper #113, electrical efficiency
modeling for data centers,” http://www.apcmedia.com/salestools/
SADE-5TNRLG_R5_EN.pdf, 2007.

M. Ton, B. Fortenbery, and W. Tschudi, “DC Power for Im-
proved Data Center Efficiency,” http://hightech.lbl.gov/documents/
DATA_CENTERS/DCDemoFinalReport.pdf, March 2008.

Google Data Centers, http://www.google.com/corporate/datacenter/
efficient-computing/measurement.html.

S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A Comparison of High-
Level Full-System Power Models,” in Proc. 2008 Conference on Power
aware Computing and Systems, San Diego, California, 2008.

T. Pering, T. Burd, and R. Brodersen, “Dynamic Voltage Scaling and
the Design of a Low-Power Microprocessor System,” in Proc. Power
Driven Microarchitecture Workshop 1998, June 1998.

G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi,
S. Dwarkadas, and M. Scott, “Energy-efficient Processor Design Us-
ing Multiple Clock Domains with Dynamic Voltage and Frequency
Scaling,” in Proc. 8th International Symposium on High-Performance
Computer Architecture 2002., Feb. 2002, pp. 29 — 40.

W. Felter, K. Rajamani, T. Keller, and C. Rusu, “A Performance-
Conserving Approach for Reducing Peak Power Consumption in Server
Systems,” in Proc. 19th International Conference on Supercomputing
(ICS ’05), Cambridge, Massachusetts, 2005, pp. 293-302.

B. Diniz, D. Guedes, W. Meira, Jr,, and R. Bianchini, “Limiting
the Power Consumption of Main Memory,” in Proc. 34th annual
Symposium on Computer Architecture, San Diego, 2007, pp. 290-301.
H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu, “Mini-
rank: Adaptive DRAM Architecture for Improving Memory Power
Efficiency,” in Proc. 41st annual IEEE/ACM International Symposium
on Microarchitecture, Washington, 2008, pp. 210-221.

S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Franke,
“DRPM: Dynamic Speed Control for Power Management in Server
Class Disks,” in Proc. 30th annual International Symposium on Com-
puter Architecture, San Diego, California, Jun. 2003, pp. 169-181.

ZHANG and ANSARI: ON ARCHITECTURE DESIGN, CONGESTION NOTIFICATION, TCP INCAST AND POWER CONSUMPTION IN DATA CENTERS 63

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathan, and X.
Zhu, “Delivering Energy Proportionality with Non Energy-Proportional
Systems-Optimizing the Ensemble,” in Proc. First Workshop on Power
Aware Computing and Systems, San Diego, CA, Dec. 7, 2008.

D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap: Eliminating
Server Idle Power,” in Proc. 14th international conference on Archi-
tectural support for programming languages and operating systems
(ASPLOS ’09), Washington, DC, USA, 2009, pp. 205-216.

G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and
F. Zhao, “Energy-aware Server Provisioning and Load Dispatching for
Connection-Intensive Internet Services,” in Proc. USENIX Symposium
on Networked Systems Design and Implementation, San Francisco,
USA, 2008, pp. 337-350.

D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and G. Jiang, “Power
and Performance Management of Virtualized Computing Environments
Via Lookahead Control,” in Proc. International Conference on Auto-
nomic Computing, Jun. 2008, pp. 3 —12.

P. Bodik, R. Griffith, C. Sutton, A. Fox, M. Jordan, and D. Patterson,
“Statistical Machine Learning Makes Automatic Control Practical for
Internet Datacenters,” in Proc. conference on Hot topics in cloud
computing, San Diego, California, 2009, San Diego, California.

A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and R. H.
Katz, “NapSAC: Design and Implementation of a Power-Proportional
Web Cluster,” in Proc. first ACM SIGCOMM workshop on Green
networking, New Delhi, India, Aug. 30 - Sep.3 2010, pp. 15-22.

X. Zheng and Y. Cai, “Achieving Energy Proportionality In Server
Clusters,” International Journal of Computer Networks (IJCN), vol. 1,
no. 2, pp. 21-35, 2010.

S. Srikantaiah, A. Kansal and F. Zhao, “Energy Aware Consolidation
for Cloud Computing,” in Proc. Conference on Power Aware Comput-
ing and Systems, San Diego, CA, Dec. 2008.

A. Kansal and F. Zhao, “Fine-Grained Energy Profiling for Power-
Aware Application Design,” SIGMETRICS Performance Evaluation
Review, vol. 36, no. 2, pp. 26-31, 2008.

Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes,
“Hibernator: Helping Disk Arrays Sleep Through the Winter,” in Proc.
twentieth ACM Symposium on Operating Systems Principles (SOSP
’05), Brighton, UK, 2005, pp. 177-190.

A. Verma, R. Koller, L. Useche, and R. Rangaswami, “SRCMap:
Energy Proportional Storage Using Dynamic Consolidation,” in Proc.
8th USENIX conference on File and storage technologies (FAST’10),
San Jose, CA, 2010.

L. Ganesh, H. Weatherspoon, M. Balakrishnan, and K. Birman, “Op-
timizing Power Consumption in Large Scale Storage Systems,” in
Proc. 11th USENIX workshop on Hot topics in operating systems
(HOTOS’07), San Diego, CA, 2007, pp. 1-6.

E. Thereska, A. Donnelly, and D. Narayanan, “Sierra: a Power-
Proportional, Distributed Storage System,” Microsoft Research Ltd.,
Tech. Rep. MSR-TR-2009-153, Nov. 2009.

H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and
K. Schwan, “Robust and Flexible Power-Proportional Storage,” in ACM
Symposium on Cloud Computing, Indianapolis, Indiana, Jun. 2010.

P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, “A
Power Benchmarking Framework for Network Devices,” in Proc. 8th
International IFIP-TC 6 Networking Conference, Aachen, Germany,
2009, pp. 795-808.

J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and
S. Wright, “Power Awareness in Network Design and Routing,” in
Proc. IEEE International Conference on Computer Communications,
Phoenix, USA, April 13-18, 2008, Phoenix, USA, pp. 457-465.
“IEEE P802.3az Energy Efficient Ethernet Task Force,” http://grouper.
ieee.org/groups/802/3/az/public/index.html.

C. Gunaratne, K. Christensen, B. Nordman, and S. Suen, “Reducing
the Energy Consumption of Ethernet with Adaptive Link Rate (ALR),”
IEEE Trans. Computers, vol. 57, no. 4, pp. 448-461, Apr. 2008.

P. Reviriego, J. Hernandez, D. Larrabeiti, and J. Maestro, “Performance
Evaluation of Energy Efficient Ethernet,” IEEE Commun. Lett., vol. 13,
no. 9, pp. 697 699, Sep. 2009.

P. Reviriego, J. Maestro, J. Herndndndez, and D. Larrabeiti, “Burst
Transmission for Energy-Efficient Ethernet,” IEEE Internet Computing,
vol. 14, no. 4, pp. 50 =57, Jul. 2010.

S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and D. Wetherall,
“Reducing Network Energy Consumption via Sleeping and Rate-
Adaptation,” in Proc. USENIX Symposium on Networked Systems
Design and Implementation, San Francisco, USA, 2008, pp. 323-336.
G. Ananthanarayanan and R. H. Katz, “Greening the Switch,” in Proc.
Power Aware Computing and Systems Conference, San Diego, CA,
Dec. 2008.

[96]

[971

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

R. Bolla, R. Bruschi, F. Davoli, and A. Ranieri, “Performance Con-
strained Power Consumption Optimization in Distributed Network
Equipment,” in Proc. International Conference on Communications,
Dresden, Germany, Jun.14-18 2009, pp. 1-6.

B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S.
Banerjee and N. McKeown, “ElasticTree: Saving Energy in Data Cen-
ter Networks,” in Proc. 7th ACM/USENIX Symposium on Networked
Systems Design and Implementation, San Jose, CA, April 2010, pp.
249-264.

P. Mahadevan, S. Banerjee, and P. Sharma, “Energy Proportionality of
an Enterprise Network,” in Proc. ACM SIGCOMM, New Delhi, India,
Aug. 30 - Sep.3 2010.

P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, “Energy
Aware Network Operations,” in Proc. IEEE IEEE International Con-
ference on Computer Communications, Rio de Janeiro, Brazil, April
19-25, 2009, Rio de Janeiro, Brazil, pp. 1-6.

Y. Shang, D. Li, and M. Xu, “Energy-Aware Routing in Data Center
Network,” in Proc. first ACM SIGCOMM workshop on Green network-
ing, New Delhi, India, Aug. 30 - Sep.3 2010, pp. 1-8.

N. Vasié, D. Novakovié, S. Shekhar, P. Bhurat, M. Canini, and
D. Kosti¢, “Responsive, Energy-Proportional Networks,” EPFL, Tech.
Rep. EPFL-REPORT-149959, 2010.

S. Nedevschi, J. Chandrashekar, J. Liu, B. Nordman, S. Ratnasamy,
and N. Taft, “Skilled in the art of being idle: reducing energy waste
in networked systems,” in Proc. USENIX symposium on Networked
systems design and implementation, Boston, 2009, pp. 381-394.

L. Liu, H. Wang, X. Liu, X. Jin, W. B. He, Q. B. Wang, and
Y. Chen, “GreenCloud: a New Architecture for Green Data Center,”
in Proc. 6th International Conference on Autonomic Computing and
Communications Industry Session, Barcelona, Spain, 2009, pp. 29-38.
C. Patel, R. Sharma, C. Bash, and A. Beitelmal, “Thermal Consider-
ations in Cooling Large Scale High Compute Density Data Centers,”
in Proc. Conference on Thermal and Thermomechanical Phenomena
in Electronic Systems, 2002, pp. 767 — 776.

C. Patel, C. Bash, R. Sharma, M. Beitelmam, and R. Friedrich, “Smart
Cooling of Data Centers,” in Proc. InterPack, July 2003.

C. Bash and G. Forman, “Cool Job Allocation: Measuring the Power
Savings of Placing Jobs at Cooling-Efficient Locations in the Data
Center,” HP Laboratories, Tech. Rep. HPL-2007-62, 2007.

J. Moore, J. Chase, P. Ranganathan, and R. Sharma, “Making schedul-
ing “cool”: Temperature-Aware Workload Placement in Data Centers,”
in Proc. USENIX Annual Technical Conference, 2005, pp. 61-75.

L. Parolini, B. Sinopoli, and B. H. Krogh, “Reducing Data Center
Energy Consumption via Coordinated Cooling and Load management,”
in Proc. Power Aware Computing and Systems, San Diego, 2008.

N. Vasic, T. Scherer, and W. Schott, “Thermal-Aware Workload
Scheduling for Energy Efficient Data Centers,” in Proc. 7th Interna-
tional Conference on Autonomic Computing (ICAC ’10), Washington,
DC, USA, 2010, pp. 169-174.

Q. Tang, T. Mukherjee, S. Gupta, and P. Cayton, “Sensor-Based Fast
Thermal Evaluation Model For Energy Efficient High-Performance
Datacenters,” in Proc. 4th International Conference on Intelligent
Sensing and Information Processing, Oct. 2006, pp. 203 —208.

C.-J. M. Liang, J. Liu, L. Luo, A. Terzis, and F. Zhao, “RACNet: a
High-Fidelity Data Center Sensing Network,” in Proc. 7th ACM Con-
ference on Embedded Networked Sensor Systems, Berkeley, California,
2009, pp. 15-28.

F. Ahmad and T. N. Vijaykumar, “Joint Optimization of Idle and
Cooling Power in Data Centers While Maintaining Response Time,” in
Proc. ASPLOS on Architectural Support for Programming Languages
and Operating Systems, Pittsburgh, USA, 2010, pp. 243-256.
“IBM tries running data centers on solar
http://www.eetimes.com/electronics-news/4230811/

IBM- tries-running-datacenters-on-solar-power.

“Apple hopes to turn green with solar power data
centre,” http://www.guardian.co.uk/environment/2011/nov/23/
apple-green-solar-data-centre.

K. Le, R. Bianchini, M. Martonosi, and T. D. Nguyen, “Cost- and
Energy-Aware Load Distribution Across Data Centers,” in Proc. Work-
shop on Power Aware Computing and Systems, October 10, 2009, Big
Sky, MT.

K. Le, O. Bilgir, R. Bianchini, M. Martonosi, and T. D. Nguyen,
“Capping the Brown Energy Consumption of Internet Services at Low
Cost,” in Proc. International Green Computing Conference, August
2010.

C. Stewart and K. Shen, “Some Joules Are More Precious Than Others:
Managing Renewable Energy in the Datacenter,” in Proc. Workshop on
Power Aware Computing and Systems, October 10, 2009, Big Sky, MT.

power,”

64

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013

Z. Liu, M. Lin, A. Wierman, S. Low, and L. Andrew, “Greening
Geographical Load Balancing,” in Proc. ACM SIGMETRICS joint
International Conference on Measurement and Modeling of Computer
Systems, San Jose, California, USA, June 7-11, 2011, pp. 233-244.

1. Goiri, K. Le, M.E. Haque, R. Beauchea, T.D. Nguyen, J. Guitart, J.
Torres, and R. Bianchini, “GreenSlot: Scheduling Energy Consumption
in Green Datacenters,” in Proc. 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’11),
Seattle, Washington, 2011, pp. 20:1-20:11.

S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
Nature of Data Center Traffic: Measurements & Analysis,” in Proc.
ACM SIGCOMM, Chicago, Illinois, 2009, pp. 202-208.

X. Meng, V. Pappas, and L. Zhang, “Improving the Scalability of Data
Center Networks with Traffic-aware Virtual Machine Placement,” in
Proc. IEEE International Conference on Computer Communications,
San Diego, CA, USA, March 15-19, 2010, pp. 1154-1162.

M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),”
in Proc. ACM SIGCOMM, New Delhi, India, Aug. 30 - Sep.3 2010,
pp. 63-74.

H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and A. Donnelly,
“Symbiotic Routing in Future Data Centers,” in Proc. ACM SIG-
COMM, New Delhi, India, Aug. 30 - Sep.3 2010, pp. 51-62.

D. A. Joseph, A. Tavakoli, and I. Stoica, “A Policy-Aware Switching
Layer for Data Centers,” in Proc. ACM SIGCOMM, Seattle, WA,
August 17-22, 2008, pp. 51-62.

G. Lu, Y. Shi, C. Guo, and Y. Zhang, “CAFE: a Configurable
Packet Forwarding Engine for Data Center Networks,” in Proc. ACM
SIGCOMM, Barcelona, Spain, 2009, pp. 25-30.

C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving Datacenter Performance and Robustness with
Multipath TCP,” in Proc. ACM SIGCOMM, August 15-19, 2011,
Toronto, Ontario, Canada.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vah-
dat, “Hedera: Dynamic Flow Scheduling for Data Center Networks,”
in Proc. 7th ACM/USENIX Symposium on Networked Systems Design
and Implementation, San Jose, CA, Apr. 2010.

A. R. Curtis, J. C. Mogul, J. Tourrilhes, and P. Yalagandula, “De-
voFlow: Scaling Flow Management for High-Performance Networks,”
in Proc. SIGCOMM, August 15-19, 2011, Toronto, Ontario, Canada.
L. Han, J. Wang, and C. Wang, “A Novel Multipath Load Balancing
Algorithm in Fat-Tree Data Center,” in Proc. Ist International Confer-
ence on Cloud Computing, Beijing, China, 2009, pp. 405-412.

S. Lim, B. Sharma, G. Nam, E. K. Kim, C. R. Das, “MDCSim:
A Multi-tier Data Center Simulation Platform,” in Proc. Cluster
Computing and Workshops CLUSTER, 2009.

R. N. Calheiros, R. Ranjan, C. De Rose, and R. Buyya, “CloudSim: A
Novel Framework for Modeling and Simulation of Cloud Computing
Infrastructures and Services,” Grid Computing and Distributed Systems
Laboratory, University of Melbourne, Australia, Tech. Rep. GRIDS-
TR-2009-1, 2009.

D. Meisner and T. F. Wenisch, “Stochastic Queuing Simulation for
Data Center Workloads,” in Proc. Workshop on Exascale Evaluation
and Research Techniques, Pittsburg, March 2010.

Z. Tan, K. Asanovi, and D. Patterson, “Datacenter-Scale Network
Research on FPGAs,” in Proc. Workshop on Exascale Evaluation and
Research Techniques, Newport Beach, CA, March 2011.

Data Center Specialist Group, “DCSG Simulator Software Project,”
http://dcsg.bes.org/welcome-dcsg-simulator.

[135] C. Beckmann, O. Khan, S. Parthasarathy, A. Klimkin, M. Gambhir,
B. Slechta, and K. Rangan,, “Multithreaded Simulation to Increase
Performance Modeling Throughput on Large Compute Grids,” in Proc.
Workshop on Exascale Evaluation and Research Techniques (EXERT),
Pittsburg, March 2010.

[136] IBM, “Venus - Interconnection Network Simulation,” https://researcher.
ibm.com/researcher/view_project.php?id=1071.

Yan Zhang (S’10) received the B.E. and M.E.
degrees in Electrical Engineering from Shandong
University, China, in 2001 and 2004, respectively.
She is currently pursuing her Ph.D. degree in Com-
puter Engineering in the Department of Electrical
and Computer Engineering at the New Jersey In-
stitute of Technology (NJIT), Newark, New Jersey.
Her research interests include congestion control and
energy optimization in data center networks, content
delivery acceleration over wide area networks, and
energy efficient networking.

Nirwan Ansari (S’78-M’83-SM’94-F’09) received
the B.S.E.E. (summa cum laude with a perfect GPA)
from the New Jersey Institute of Technology (NJIT),
Newark, in 1982, the M.S.E.E. degree from Univer-
sity of Michigan, Ann Arbor, in 1983, and the Ph.D
degree from Purdue University, West Lafayette, IN,
in 1988.

He joined NJIT’s Department of Electrical and
Computer Engineering as Assistant Professor in
1988, became tenured Associate Professor in 1993,
and has been Full Professor since 1997. He has also
assumed various administrative positions at NJIT. He was Visiting (Chair)
Professor at several universities. He authored Computational Intelligence for
Optimization (Springer, 1997, translated into Chinese in 2000) with E. S. H.
Hou, and edited Neural Networks in Telecommunications (Springer, 1994)
with B. Yuhas. He has also contributed over 400 technical papers, over one
third of which were published in widely cited refereed journals/magazines. He
has also guest-edited a number of special issues, covering various emerging
topics in communications and networking. His current research focuses on
various aspects of broadband networks and multimedia communications.

Prof. Ansari has served on the Editorial Board and Advisory Board of eight
journals, including as a Senior Technical Editor of the I[EEE Communications
Magazine (2006-2009). He has served the IEEE in various capacities such as
Chair of the IEEE North Jersey Communications Society (COMSOC) Chapter,
Chair of the IEEE North Jersey Section, Member of the IEEE Region 1 Board
of Governors, Chair of the IEEE COMSOC Networking Technical Committee
Cluster, Chair of the IEEE COMSOC Technical Committee on Ad Hoc and
Sensor Networks, and Chair/Technical Program Committee Chair of several
conferences/symposia. Some of his recent recognitions include a 2007 IEEE
Leadership Award from the Central Jersey/Princeton Section, NJIT Excellence
in Teaching Award in Outstanding Professional Development in 2008, a 2008
IEEE MGA Leadership Award, the 2009 NCE Excellence in Teaching Award,
a couple of best paper awards (IC-NIDC 2009 and IEEE GLOBECOM 2010),
a 2010 Thomas Alva Edison Patent Award, and designation as an IEEE
Communications Society Distinguished Lecturer (2006-2009, two terms).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

