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ABSTRACT Smart meters have been deployed worldwide in recent years that enable real-time commu-
nications and networking capabilities in power distribution systems. Problematically, recent reports have
revealed incidents of energy theft in which dishonest customers would lower their electricity bills (aka stealing
electricity) by tampering with their meters. The physical attack can be extended to a network attack by means
of false data injection (FDI). This paper is thus motivated to investigate the currently-studied FDI attack by
introducing the combination sum of energy profiles (CONSUMER) attack in a coordinated manner on a
number of customers’ smart meters, which results in a lower energy consumption reading for the attacker
and a higher reading for the others in a neighborhood. We propose a CONSUMER attack model that is
formulated into one type of coin change problems, which minimizes the number of compromised meters
subject to the equality of an aggregated load to evade detection. A hybrid detection framework is developed
to detect anomalous and malicious activities by incorporating our proposed grid sensor placement algorithm
with observability analysis to increase the detection rate. Our simulations have shown that the network
observability and detection accuracy can be improved by means of grid-placed sensor deployment.

INDEX TERMS Smart grid, cyber-physical security, state estimation, false data injection attack, energy
theft, intrusion detection, sensor placement, observability.

I. INTRODUCTION
Integration of state-of-the-art information and communica-
tions technology (ICT), control, and computing is a criti-
cal enabler to facilitate grid modernization and optimization
for the existing electric power systems. During the evolu-
tional movement in smart grid development, the conven-
tional critical infrastructure is gradually exposed to the public
such that part of the systems especially the distribution net-
works involving smart metering communications along with
controls of distributed generation and demand responses at
consumption sites will potentially pose a number of secu-
rity risks. Advanced Metering Infrastructure (AMI) in the
distribution network is essentially comprised of endpoint-
based home area networks (HANs), grid-based wireless
sensor networks (WSNs), and access point-based neigh-
borhood/field area networks (NANs and FANs) [1], [2].
Recently, amiddleware architecture design has been proposed

to consolidate heterogeneous quality of service/experience
(QoS/QoE)-oriented smart grid applications, such as spec-
trum efficiency, power scheduling, and security protection
[3], [4]. In the meantime, several surveys and tutorials have
elaborately addressed a number of security issues in terms of
confidentiality, integrity, and availability (CIA), from passive
attacks to active attacks [5]–[14], such as eavesdropping,
jamming, tampering, spoofing, altering, and other attacks
against the protocol stacks of the OSI model; these attacks
are foreseen inevitable and nontrivial within the context of
the cyber-physical smart grid. Among which some literatures
have emphasized the interrelationship between cyber and
physical securities [5], [6], [15].
There are two primary research directions in smart grid

security: 1) a breach of network availability: a power system
involves real-time models that perform state estimation to
observe the current state conditions in the power network by
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obtaining real-time measurement data from network meters
and devices—without these data, state estimation cannot be
effectively executed in real time, thus hampering the deci-
sion making of network operators—if the network com-
munications is intruded by denial of service (DoS) attacks
or other schemes against data availability, the services will
be interrupted in both communications and power systems;
and 2) a breach of measurement data confidentiality and
integrity: due to the cause-effect attribute, if measurement
data are further altered by intruders in a way that the attack
is hard to be detected, not only customer privacy may be
compromised, but the undetectability may also cause utilities
to lose revenues and potentially result in severe power outage
and equipment damages. Countermeasures relied on cryp-
tographic mechanisms, secure communications architecture
and network designs, device security, and intrusion detec-
tion systems (IDS) are anticipated options for securing the
future power system against malicious intrusions and attacks
from all perspectives in a complementary manner. The imple-
mentation of various strategic approaches will be based on
different smart grid applications as well as communications
requirements throughout the networks.

According to the Institute for Electric Efficiency (IEE)
[16], one-third of households in the U.S. have had a smart
meter (i.e., approximately 36 million smart meters) as of
May 2012, and approximately 65 million smart meters will
have been deployed by 2015.While the deployments continue
to rise, a few energy theft incidents have been discovered
that illegal customers intended to lower their electricity bills
via meter tampering, bypassing, or other unlawful schemes
regardless of traditional or smart meters in places such as
Ireland, Hong Kong, and Virginia U.S. [17]. Notably, energy
theft is one dominant component of non-technical losses,
which account for 10%–40% of energy distribution [18], e.g.,
$1–6 billion losses due to energy theft yearly for utilities in the
U.S.Moreover, the report [19] revealed that the current instal-
lations of smart meter communications protocols and associ-
ated infrastructure do not have sufficient security controls to
protect the electric power system against false data injection
attacks, not to mention older meters which were not designed
to adequately cope with such attacks. In addition to the physi-
cal attacks, network attacks by compromising meters can also
introduce malicious measurement data and cause degradation
of grid operation [20], [21]. While some protection schemes
against malicious network traffic have been proposed for
smart grid communications networks monitoring [22]–[24],
detection mechanisms and analyses for identifying malicious
measurement data and energy theft have been investigated
explicitly in [18] and [25]–[40]. The main contributions of
this paper are summarized in the following.

• The common DC (direct current) model for state estima-
tion in a power network and traditional techniques for
processing bad measurement data are reviewed. Mean-
while, a false data injection (FDI) attack and asso-
ciated impacts on the power network are illustrated,

followed by a discussion of existing countermeasures
and studies.

• An attack model related to FDI, combination sum of
energy profiles (CONSUMER) attack, is defined and
formulated into one type of coin change problems that
minimizes the number of compromised smart meters
without being revealed bymaintaining a cumulative load
at the aggregation point to which multiple households
are connected in today’s radial tree-like distribution net-
work.

• A hybrid anomaly intrusion detection system frame-
work, which incorporates power information and sen-
sor placement (POISE) along with grid-placed sensor
(GPS) algorithms using graph theory to provide network
observability, is proposed to validate the correctness of
customers’ energy usage by detecting anomaly activities
at the consumption level in the distribution network.

• Simulations for analyzing the proposed attack model as
well as grid sensor implementation in terms of network
observability and detection rate are conducted and dis-
cussed.

• Several potential research directions for furthering the
proposed framework in the smart grid context are pre-
sented.

The remainder of this paper is structured as follows: Section II
reviews the background and state-of-the-art studies related
to this work. Section III illustrates the system measurement
model prior to the discussion of the proposed detection
designs. Section IV presents the problem formulation, attack
model, and countermeasures. Section V analyzes the simu-
lation results of the proposed detection framework and dis-
cusses the findings. Finally, Section VI summarizes the focal
points, draws a conclusion, and presents the future works.

II. BACKGROUND AND RELATED WORKS
An electric power system is a feedback loop control sys-
tem that relies on measurement data obtained from network
measurement units such as meters and sensors. Based on
the available data, the control center executes a series of
tasks such as topology processing, network observability
analysis, state estimation, and bad measurement data pro-
cessing in order to identify the current status of the power
network [41]. Consequently, the decision-making processes
of controlling actuators, optimizing power flows, and analyz-
ing possible contingencies are performed to ensure network
stability and security, in accordance with what the system
observes or estimates. In reality, the measurement data may
not be always accurate because of errors in measurements,
failures in telemetry and equipment, noises in communica-
tions channels, and possibly breached integrity by intentional
intrusions or attacks. If the accuracy of measurement data is
not as precise as it gets, the decision making can be mistaken
in consequence of misguided state estimation.
For simplicity, the common formulation of the state esti-

mation problem is to consider a DC power flow model [41]:
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z = Hx+ e, where H is the m-by-n Jacobian matrix repre-
senting m independent network equations with n state vari-
ables related to the network topology, x is the n-vector (n ×
1 matrix) of the true states (unknown and to be estimated
for bad data detection), z is the m-vector of measurements
(observed by data collection; in this case, a macro grid power
generation reading and m − 1 household energy consump-
tion readings), and e is the m-vector of random errors. The
state estimate x̂ can be obtained by calculating G−1HTWz,
where G = HTWH is the state estimation gain matrix, (.)T

is the transpose of (.), and W is a diagonal matrix whose
entities are most commonly the reciprocals of the variance of
measurement errors based on historical statistics, which may
represent meter accuracy. In order to detect bad measurement
data, the measurement residual z − Hx̂ is computed and its
L2-norm ||z−Hx̂|| is compared with a predetermined thresh-
old δ; common techniques including normalized residuals
and hypothesis testing are sufficient to detect anomalies, e.g.,
||z−Hx̂|| > δ.
Nevertheless, a recent study [21] observed that the tra-

ditional detection is not able to differentiate between nat-
ural anomalies and malicious intrusions attributed to false
data injection (FDI) such that zb = z+ a and x̂b = x̂+ c,
where a = Hc is an m × 1 attack vector injected to the
system that is designed to be a linear combination of the
column vectors of H in order to bypass the detection, i.e.,
||zb −Hx̂b|| = ||z−Hx̂||≤ δ. The authors further showed
that the attacker is required to compromise a number ofmeters
(i.e., 30%–70% of meters in IEEE 9, 14, 30, 118, 300 bus
test systems) in order to bypass detection and takes less than
10 seconds. This type of attack is interchangeably called an
unobservable, undetectable, or stealth attack that needs to
be launched in a coordinated manner [5], [27], [42] with
knowledge of the network configuration matrix H while not
violating the physics of power flow. Having knowledge of H
by the attacker has been assumed in most of the current stud-
ies. Although a full knowledge of the entire system gained
by the attacker may be improbable, it is worth studying and
developing a detection framework to identify the malicious
attack in case of the attacker possibly having acquired partial
knowledge and considerable capability and resource. In fact,
the attacker being able to launch FDIwithout prior knowledge
ofH has been studied in [37], that is, if the network topology
remains static and the independent loads vary insignificantly
for a period of time, H can be inferred.

Several works have rigorously investigated the FDI attack
by proposing various detectors or analyzing the damage
effects on the power system. For examples, Kosut et al. [26]
proposed a detection scheme based on generalized likelihood
ratio test while comparing with other two detectors based on
the residual error r derived from the state estimation that uses
minimum mean square error technique. The authors studied
the outcomes of maximizing the residual error and minimiz-
ing the detection rate for the attack. Yuan et al. [32] identi-
fied the attack launched in two different time periods (i.e.,
immediate and delayed attack) in which the former may lead

the system to perform unnecessary load shedding whereas the
latter may cause power overflows on some transmission lines.
However, the authors only modeled the immediate attack
and showed that the attack leads to a high economic loss.
Lin et al. [31] studied the effectiveness of the attack in terms
of transmission cost and power outage rate by deceiving the
amount of energy request and supply as well as the status
of transmission lines by claiming a line is valid to deliver
a certain amount of power while it is not and vice versa.
Giani et al. [27] proposed countermeasures by utilizing
known-secure PMUs (phasor measurement units) placement
and illustrated that p + 1 PMUs are enough to detect
p k–sparse attacks for k ≤ 5 while assuming all lines are
metered. Qin et al. [30] illustrated a case where the attack is
detected but still unidentifiable in such a way that it is difficult
for operators to know which set of meters are truly compro-
mised. The authors proposed a three-step search process that
firstly identifies the meter with the largest residual (which
exceeds a predetermined threshold) after state estimation,
secondly locates a feasible attack region associated with the
meter, and finally checks a set of suspicious meters located in
the region by using a brute-force search.

Most of the existing works have focused on the cyber-
physical attacks at the transmission/distribution level,
and very few have analyzed the attack at the distribu-
tion/consumption level where smart meters are deployed,
e.g., [39], [40]. While motivated by [30], [40], to the best
of our knowledge, this is the first work to investigate the
CONSUMER attack in the distribution network where a
dishonest customer intends to lower his or her electricity bill
by compromising some of its neighbors’ smart meters in a
neighborhood. We will show that the attack can be neither
detectable nor identifiable at a certain period of time for
the defined scenario. This work can also be extended to
an aggressive collusion attack that compromises a group of
smart meters and intentionally causes service disruption or
equipment damages throughout the distribution network.

III. SYSTEM MEASUREMENT MODEL
AC (alternating current) and DC power flow models are
essentially used for studying state estimation. Nevertheless,
the DC power flow model is often assessed due to its inex-
pensive computation and simplicity [43]. Moreover, a DC
power grid is a foreseeable approach for the future distri-
bution network [44] because 1) many distributed generators
(e.g., household/neighborhood-based solar power systems)
supply DC power, 2) AC grid-connected inverters are not
needed, and 3) overall costs and power losses can be reduced.
The ability to perform state estimation relies on the suffi-
ciency of measurement data available in a network. In other
words, the observability of a network has to be analyzed
before state estimation can be processed.
Definition 1: A network is said to be observable [41]

if all flows in the network can be observed by obtaining
information in a set of sufficient measurement data such that
no power flows in the network for which Hx = 0, ∀P ∈ x
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(where P is an element of the state vector x); otherwise, there
is (are) unobservable state(s) where non-zero flows exist in
the network. In other words, whenever there is a non-zero
flow in the network, at least one of the measurements should
be nonzero.

FIGURE 1. Observability of a network comprised of generation
and load nodes (black circle), bus node (white circle), lines
(representing power connectivity), and meters/sensors (gray
rectangle) in three cases: (a) underdetermined and partially
observable, (b) observable and sufficient, and (c) observable
but overdetermined.

Consider a DC network model that has three state variables
as shown in Fig. 1: to ensure that the power network is
balanced, there is at least one state that acts as a generation or
load node, i.e., P1 + P2 + P3 = 0. Fig. 1(a) shows an under-
determined and partially observable case where only state P1
is observable, and one of the states P2, P3 is unobservable,
and another dependent state is indeterminate. Fig. 1(b) shows
an observable and sufficient case where both states P1 and
P2 are observable, and dependent state P3 can be computed
from the network model equation with the other two known
state variables. Fig. 1(c) shows that all states P1, P2, P3 are
observable and form an overdetermined system, but can be
solved as a least-squares problem. We will use this model to
study the proposed CONSUMER attack model as well as grid
sensor placement for the distribution network of smart grid in
this paper. Additionally, we also consider the characteristics
of the emerging smart grid network as follows.

• Nodes (e.g., smart meters, grid sensors) strategically
deployed throughout distribution grids are static; in
other words, grid operators have full knowledge of net-
work topologies in terms of geographical locations and
coordinates.

• Nodes are wire-powered while attached to power lines
and taking various measurements such as voltage, cur-
rent, frequency, and metering.

• The majority of data traffic generated at the nodes are
periodic for real-time monitoring and control.

• Each measurement data generated at the nodes (rep-
resenting individual customer energy consumption and
grid line conditions for state estimation) cannot be fused
at aggregation nodes as opposed to traditional sensor net-
work scenarios where data of sensors tracking their sur-
rounding environmental conditions (e.g., temperature)

are aggregated at cluster nodes to generalize the current
network status by determining the correlation of the
multiple obtained measurements.

FIGURE 2. A neighborhood distribution network (a) with loops,
and (b) without loops.

IV. PROBLEM DEFINITION AND FORMULATION
Most parts of the current distribution networks are char-
acterized by radial tree-like topologies, which may or
may not contain loops or cycles, as shown in Fig. 2.
The distribution network consists of four components:
1) a root aggregation node at which power PG is gener-
ated or delivered from other sources, such as macro grid or
neighboring distribution networks (see [45]), and that sup-
plies power PG to customers’ loads, 2) a grid sensor (GS)
node that constantly measures the generating power PG, 3)
a set of electric poles (EPs) or buses as intermediate nodes,
NEP = (1, 2, . . . , nEP) representing the indices of EPs, with
distribution lines/feeders, transformers and capacitors (not
shown) that construct a distribution grid and deliver power
to customers, and 4) a set of household smart meters (SMs),
NSM = (1, 2, . . . , nSM ) representing the indices of SMs,
that have two-way communications capability of reporting
household energy consumption to the utility control center
and receiving associate feedback messages in real time.
Notably, Fig. 2(a) shows a distribution network that has

loops found among some EP nodes, whereas Fig. 2(b) depicts
a network with no loops representing a spanning tree. Any
spanning tree G(VT ,ET ) from its originally connected graph
G(V ,E) can be computed by using various algorithms, e.g.,
Prim’s algorithm [46], where V is a collection of vertices,
E is a collection of edges, and VT = V . In other words,
any connected distribution network G(V ,E) can have at least
one spanning tree G(VT ,ET ) (composed of |VT | nodes and
|VT | − 1 edges; |.| is the cardinality) with the fewest edges
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among EP nodes1 while the four network properties must be
obeyed: 1) the network connectivity in terms of power and
communications operations is maintained, 2) the spanning
tree starts with the distribution head node, 3) the EP node
cannot be a leaf node, and 4) the SM node must be a leaf
node. Under these conditions, the spanning tree topology
as illustrated in Fig. 2(b) can be discovered, and therefore
considered in this study in order for us to determine the
minimum number of grid sensors to be placed on edges such
that the network is sufficiently observable (to be discussed in
Sec. IV-B.3).

We further assume that power flow is unidirectional (in a
traditional way) such that power is delivered from the root of
the tree to the end leaves. We consider a practical scenario
where utility operators currently have limited knowledge
about the real-time conditions of distribution networks (e.g.,
the difficulty of exactly knowing how and howmuch power is
delivered across feeders/lines as well as discovering how and
where faults are caused if erroneous activities are present) in
a geographically and temporally fine-grained manner due to
lack of grid sensors along with effective coordinated mon-
itoring. As shown in Fig. 2, for a power balance circum-
stance, a summation of individual loads must be equal to
the amount of measurement metered at the aggregation GS
node. If the aggregated load value exceeds or lessens the GS
measurement for a tolerable amount, an anomalous activity
is detected and alarmed, but somehow may not be identified
easily whether it is caused by natural errors or malicious
attacks.

A. THE CONSUMER ATTACK MODEL
In the CONSUMER attack model, we apply the FDI model
(introduced in [21]) to construct our attack scenario at the
smart meter level. The typical distribution network (shown
in Fig. 2) is characterized by its own network topology and
configuration matrix H and a set of observed measurements
z = [PG,P1,P2, . . . ,Pi]T ∈ Z, where PG ≤ 0 is the total
amount of generated power, Pi ≥ 0,∀i ∈ NSM indicates the
energy consumption of household i, and

∑
∀i∈NSM

Pi = PG
for a balanced system. We assume that no anomalies should
be detected by traditional bad measurement detectors (i.e.,
||z − Hx̂|| ≤ δ) under a normal condition such that smart
meters are functioning correctly and legitimately.

The attacker is assumed to have (partial) knowledge of
H and estimation error whether they are obtained illegally
or deduced by its own observation. By knowing them, the
attacker is able to construct the attack vector a and associated
z̄ such that ||zb −Hx̂b|| = ||z−Hx̂||≤ δ is satisfied in order
to bypass detection, where x̂b = x̂+ c and c is a non-zero
n × 1 vector designed to derive the vector a. The goal of the
attacker is to launch the CONSUMER attack by fabricating
z̄ = z + a = [P̄G, P̄1, P̄2, . . . , P̄i]T 6= 0 in which a =

1How to find such a spanning tree of the distribution network is beyond
the scope of this paper. Readers are referred to [47], [48] on how to compute
spanning trees for topology control.

[aG, a1, a2, . . . , ai]T ∈ Z and
∑
∀i∈NSM

ai = aG = 0.
There exists load alterations, i.e., ∃ai ∈ a, ai < 0 for which
the attacker compromises its meter i ∈ A, and ∃aj ∈ a,
aj > 0, j 6= i for which the attacker is able to compromise
the victim’s meter j ∈ B. Note that the elements of A
correspond a set of meters belonging to the attacker such that
1 ≤ |A| ≤ |NSM |−1 andA ⊂ NSM , whereas the elements of
B correspond a set of meters belonging to the victim such that
1 ≤ |B| ≤ |NSM |−1,B ⊂ NSM , and B∩A = ∅. The altered
linear combination in the vector a cannot be easily detected
by a traditional bad measurement detector. We consider a =
[aG, a1χ1, a2χ2, . . . , aiχi]T where the indicator χi represents
that the smart meter of household i is compromised if χi = 1;
otherwise, χi = 0.
The objective of the attacker is to lower the reading of

its own energy consumption level by raising others’. Owing
to constrained resources, the attacker tries to minimize the
number of compromised smart meters while achieving its
objective subject to the inviolability of a total stealing value,
Ps ∈ N. The minimization problem for such attack is formu-
lated as

min
nSM∑
i=1

χi

s.t.
nSM∑
i=1

aiχi = Ps, χi ∈ {0, 1}, ∀i ∈ B, (1)

ai ≥ Pmin
i (t + 1)− Pi(t), ∀i ∈ A, (2)

ai ≤ Pmax
i (t + 1)− Pi(t), ∀i ∈ B, (3)

Pi(t),Pmin
i (t + 1),Pmax

i (t + 1) ≥ 0, ∀i ∈ A,∈ B, (4)

where Ps = −
(∑
∀i∈A ai

)
≥ 0 is the total amount of

non-negative integer power that the attacker plans to steal,
Pi∈A(t) is the energy consumption value of the attacker’s
smart meter i at time t , Pi∈B(t) is the energy consumption
value of victim i at time t , Pmin

i∈A(t + 1) is the minimum
power value that the attacker with smart meter i is predicted
to consume at time t + 1, and Pmax

i∈B (t + 1) is the maximum
power value that the victim i is predicted to consume at
time t + 1.

This minimization problem is analogous to the coin change
problem, which is NP-hard [49]. Both problems aim to match
a given non-negative integer value (equality Constraint 1)
whileminimizing the number of components (Objective func-
tion) for the outcome. As opposed to the coin change problem,
the CONSUMER attack problem considers inequality Con-
straints 2, 3, and 4 that determine |A| + |B| sets of non-
negative integer power corresponding to households (the
attacker(s) and victim(s)) energy profiles at the present time
slot (i.e., Pi∈A(t) and Pi∈B(t)), as well as the sets of predicted
values of energy consumption at the next time slot (i.e.,
Pmin
i∈A(t + 1) and Pmax

i∈B (t + 1)). Given a set of ai belonging
to household i that are discovered under Constraints 2, 3,
and 4, the problem can be solved as a coin change problem.
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The total number of compromised smart meters is defined as
kSM = |A| + |B| ≤ |NSM |.

Theorem 1: A CONSUMER attack can be launched suc-
cessfully by compromising as few as two smart meters (one
for the attacker and one for the victim; kSM ≥ 2) in any
spanning tree of a distribution network (described in Sec. IV).

Proof: Consider a radial tree topology illustrated in
Fig. 2(b) where there is only one grid sensor available near
the supply node measuring the total amount of energy PG
consumed by end customers. We assume that the capacity of
each edge in the networkmay sustain at leastPG during power
transmission. A balanced system is maintained if PG + P1 +
P2 + · · · + Pi = 0,∀i ∈ NSM ,∀Pi,PG ∈ Z,Pi ≥ 0,PG ≤ 0.

There exists combinations of various sets to satisfy the
balance equation when Pi ≤ abs(PG), where abs(.) is
the absolute value of (.). To capitalize on this property, the
attacker may design a vector a such that PG + P1 + a1 +
P2 + a2 + · · · + Pi + ai = 0,∀i ∈ NSM ,∀ai ∈ Z. No
smart meter is compromised when ai = 0,∀i. However, if
∃ai : ai < 0, ai ∈ A, then ∃aj : aj > 0, j 6= i, aj ∈ B
without violating the balance equation. For abs(ai) = aj
and |A| = |B| = 1, only two meters are compromised by
the attacker; otherwise, more than two meters need to be
compromised in order to evade detection. Hence, kSM = 2
is the least number for the attacker to launch a successful
CONSUMER attack.

FIGURE 3. Impact of a CONSUMER attack on electricity reading
of household 1 (the attacker) and household 2 (the victim).

In an one-attacker-one-victim scenario (depicted in Fig. 3),
the attacker tries to decrease its consumption by increasing
the victim’s as much as it can. Under an unconstrained case
(which excludes Constraints 2 and 3), the attacker can pick
any arbitrary non-negative Ps and performs subtraction on its
consumption amount and addition on the victim’s to avoid
detection as long as Constraint 1 is held; the minimization
problem will be reduced to a simple linear programming
problem.

On the other hand under a constrained case (which
includes Constraints 2 and 3), the attacker cannot simply
pick any number but needs to determine appropriate Pmin

i∈A
and Pmax

i∈B in the next time slot in order to avoid detection as
anomalous activities. In fact, utilities might implement vari-
ous kinds of predictionmethods to predict andmonitor house-
holds’ energy consumption from time to time, and that would
complicate the problem. Any anomaly activity that deviates
from the correspondingly estimated regression lines beyond a
predetermined threshold will trigger an alarm in the intrusion
detection system. Unless the attacker had prior knowledge of
what the thresholds were, Pmin

i∈A and Pmax
i∈B could not be cho-

sen too aggressively. Therefore, implementing Constraints 2
and 3 in the attack model would affect the outcome of a CON-
SUMER attack. In addition to these constraints, the costs of
compromising smart meters via coordinated communications
on the spatial and temporal scales are challenges from the
attacker perspective.

FIGURE 4. POISE: a hybrid intrusion detection system.

B. COUNTERMEASURES FOR THE UTILITY DEFENDER
It is unlikely to have an one-size-fits-all solution for detecting
anomalous or malicious activities in smart grid. We develop
a framework that integrates the characteristics of power net-
work load consumption dynamics, communications network
traffic dynamics, and network observability analysis via grid
sensor placement for an evolutionary intrusion detection sys-
tem, as shown in Fig. 4. The last item of the proposed frame-
work is covered in this paper, and the first two items are
left for our future works. In a cyber-physical smart grid AMI
network, the uplink transmission from smart meters to control
centers as well as downlink transmission in an opposite way is
vulnerable to a breach of CIA.While a general FDI attack can
be launched on the two way links, the CONSUMER attack
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is specifically instigated in the uplink transmission causing
utility operators to make wrong decisions in consequence
of receiving falsified measurement data which are hardly
distinguishable from the legitimate ones. There are two fun-
damentally challenging questions in the context of the smart
grid intrusion detection system design.

1) What is an adequate threshold for defining an
anomaly activity, e.g., in the application of character-
izing customers energy consumption behavior while
they may be elusive to some extent? Does it even
exist?

2) How to effectively distinguish between (unintention-
ally) anomaly and (intentionally) malicious activities?

While these intriguing questions require further research in
the next few years, we provide some insights into the follow-
ing first two detection methods based on power and commu-
nications networks dynamics analyses, and then propose a
grid sensor placement mechanism to effectively enhance the
intrusion detection process.

1) POWER NETWORK INSPECTION
A power grid system obeys a series of control theories based
on laws of physics. Data measurement collection does not
only involve power loads but also voltage, current, power
factor elements. Observation of phase differences on the
transmission/distribution level studied in [27] can be further
evaluated on the distribution/consumption level. Another use-
ful metric for designing specification or rule-based anomaly
detection systems is to deeply understand different classes
of customer energy consumption patterns at different time
scales, e.g., usage trends on weekdays, weekends, monthly,
seasonal, and annual basis corresponding to individual activ-
ities and weather conditions. Many approaches for character-
izing household electricity demands including Fourier series,
Gaussian processes, neural networks, fuzzy logic, as well as
regression and autoregression have been studied [50]. Mean-
while, the existing scheme of detecting illegal customers
based on Support Vector Machine (SVM) learning and rule-
based algorithms has also been investigated in [18]. These
methods could be effectively incorporated in the intrusion
detection system at the application level to improve detection
accuracy. Computational intelligence [51] can also be readily
applied for intrusion detection.

2) COMMUNICATIONS NETWORK INSPECTION
Alongwith themethods of power dynamics inspection, exten-
sive studies on traditional low-power WSN attack scenar-
ios [10] at the physical, MAC, and network layer levels
are complementary intrusion detection tools to be integrated
into the smart grid communications security environment,
specifically the jamming, replay, and DoS attacks. Sev-
eral dominant metrics such as data sending rate, receiving
rate, packet loss rate, and signal strength will be tailored
to effectively facilitate the detection of anomaly activities
in smart grid communications in response to compromised
circumstance.

3) INTRUSION DETECTION SYSTEM WITH POWER
INFORMATION AND SENSOR PLACEMENT – IDS WITH
POISE
Smart meter deployment has been initiated worldwide in
the past few years. The rationale for replacing the tradi-
tional meters with smart meters is plentiful, but the funda-
mental one is to be able to monitor and control customer
energy consumption more efficiently in real time through
two-way communications by leveraging the state-of-the-art
wire/wireless and power line communications technologies.
By gaining knowledge of individual energy usage pat-
terns, utilities can deal with primary issues easily such as
peak demands alleviation, remote meter reading, and dis-
tributed renewable energy sources accommodation, in order
to increase energy efficiency and reduce greenhouse gas
emission. The entire smart grid AMI network consisting of
a number of control centers and hundreds of thousands of
smart meters is likely to operate using the IP Protocol with
IPv6 addresses assignment connected to the Internet [1].
Smart meters support multiple communications protocols
that facilitate smart energy management in HANs and mesh
routing in NAN. Many have considered utilizing the exist-
ing networks such as WiFi and wireless mesh networks to
communicate under unlicensed bands for economic reasons.
This strategy creates network uncertainties by exposing secu-
rity vulnerabilities of smart metering communications to the
public.
In the meantime, we propose grid sensor placement

across the distribution network in which these grid sen-
sors with simpler design (than smart meters) are owned
by utilities and construct grid sensor networks operating in
dedicated or licensed bands specified in IEEE 802.15.4g
Smart Utility Network (SUN), e.g., see [1], [2] for fur-
ther studies. The grid sensor network is much less vul-
nerable to malicious attacks and is designed as surveil-
lance guards in the distribution grid. Moreover, deploy-
ing grid sensors on lines/feeders (as low-voltage sensors)
brings utilities a number of potential benefits: 1) greater
transparency and stability can be achieved owing to the
substantial observability of power flow conditions on each
segment and portion of the network, 2) voltage fluctu-
ation due to varying input of renewable energy sources
(e.g., household/neighborhood-based PV solar systems) can
be effectively monitored, and 3) optimization in volt-var
control and optimal power flow operations can be intel-
ligently performed. Hence, utility operators will have a
full knowledge of their supervised network topologies in
terms of geographical locations with coordinates of grid
sensors as well as smart meters while monitoring the net-
work quality and ensuring cyber-physical security. At this
stage, we assume that all deployed grid sensors are intru-
sion resistant and their measurement data are trustworthy
(i.e., false alarm rate is zero) so that the measurement data
of smart meters can be compared with that of grid sensors to
detect and identify any falsified data by compromised smart
meters.
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FIGURE 5. A neighborhood distribution network deployed with a
number of grid sensors in (a) overdetermined case, and
(b) sufficient case.

As discussed in Sec. IV, the existing distribution grid
is not transparent to the utilities to a certain degree.
The design of sensor grid placement can help provide topo-
logical observability by deploying a sufficient number of grid
sensors to guarantee state estimation solvability. In Fig. 5(a),
every grid line is placed with a sensor that results in an
overdetermined system. In order to reduce the redundancy
to a sufficient number while observability is still satisfied, a
Grid-Placed Sensor (GPS) algorithm is proposed, as shown in
Alg. 1. For the spanning tree illustrated in Fig. 5(b), the
network graph G(VT ,ET ) with depth 1, 2, . . . , d ∈ DT is
constructed by a set of EP and SM nodes v1, v2, . . . , vn ∈ VT
and a set of edges ET , whereNSM ⊂ VT ,NEP ⊂ VT , |VT | =
|NSM | + |NEP|.

Algorithm 1 Grid-Placed Sensor (GPS) - Loop Free
Input: Given a connected, undirected spanning tree graph
G(VT ,ET ) and depth DT .
Output: A n × n observability indicator matrix IO that
represents observability status of each edge.
Place a GS node at the root node’s edge.
for i = 1 to d do
Determine the number of child u of v(d),∀v ∈ VT
if u = 1 then

No GS node is placed.
else if u > 1 then

A GS node is placed on any (u − 1) of the u edges
connected to the child, and mark 1 for the GS-placed
edges in IO.

end if
Repeat for other v if having the same d .

end for

At the beginning, the GS node v1 is directly placed on
the edge between the generation source and distribution
bus, i.e., v2. The algorithm then starts with EP node v2

and discovers that it has two children, which can be EP or
SM nodes. Either e(v2, v3) or e(v2, v16) placed with a GS
node v15 in between will make both edges become observ-
able, according to Def. 1 in Sec. III. Note that e(w, v) or
e(v,w) denotes the edge e that connects both node w and
v. Both edges becoming observable are then marked with
1 in IO. Repeat the process for the right branch, the algo-
rithm starts with EP node v16 and discovers that it also has
two children, and therefore, either e(v16, v19) or e(v16, v17)
placed with a GS node v18 will make both edges become
observable; again, the two observable edges are marked
with 1 in IO. Notably, although SM node v17 has meter-
ing capability to make e(v16, v17) observable already, the
GS node v18 is placed in order to later verify whether or
not the measurement data of SM node v17 is legitimate.
The process is repeated until it reaches the leaves with the
largest d .

Theorem 2: A spanning tree of a distribution network is
said to be (sufficiently) observable if Y (G) − IO = 0, where
Y (G) is the n × n adjacency matrix of G and the entry yi,j in
Y (G) is the number of edges from node i to node j.

Proof:While Y (G) represents the adjacency of edges
where yi,j = 1 if there exists an edge from node i to node j
(otherwise, yi,j = 0), the n × n matrix IO specifies the
observability of edges where the entry αi,j = 1 if yi,j = 1
is observable and αi,j = 0 otherwise according to the GPS
algorithm. Since both Y (G) and IO are determined by the sta-
tus of edges between node i and node j for n nodes (i.e., edge
existence/observability), both matrices are identical when the
two conditions are true, i.e., yi,j − αi,j = 0,∀i, j ∈ VT .

Theorem 3: In a spanning tree of a distribution net-
work, the number of GS nodes placed on edges for the
network to be observable is the same as the number of SM
nodes.

Proof: By performing a breadth-first search, one can
determine the number of childrenmi for every vi ∈ VT ;M =
(m1,m2, . . . ,mn) is thus a set of non-negative integers and∑
∀mi∈M mi = |VT | − 1 is the total number of edges. Since

the spanning tree imposes that the SM node must be a leaf
and the EP node cannot be a leaf, there are γ (< |VT |) SM
nodes (i.e., mi = 0 for a leaf node) while there are |VT | − γ
EP nodes (i.e., mi > 0).
According to the GPS algorithm, (mi − 1) of mi children

of the EP node i (at each depth and branch) are placed with a
GS node on the associated edges in order for the network to
be observable; this implies that one edge connecting the EP
node i and one of its associated children does not require a GS
node. Since there are totally |VT |−γ EP nodes with |VT |−γ
edges that do not need the GS nodes, the total number of GS
nodes is derived as (|VT | − 1)− (|VT | − γ )+ 1 = γ (which
equals the total number of SM nodes), where the third term, 1,
accounts for the GS node near the root.
Theorem IV-B.3 allows utility network operators to rapidly

discover the observability status of a distribution network
upon the collections of the adjacencymatrix Y (G) and observ-
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ability matrix IO. Theorem IV-B.3 helps operators realize
the total number of grid sensors required for a distribution
network to be observable given the total number of smart
meters.

V. NUMERICAL RESULTS AND ANALYSES
We conducted three types of simulations in this paper in order
to analyze the outcomes of the proposed CONSUMER attack
model as well as grid sensor placement for detecting the
attack.

A. DETERMINATION OF SUCCESSFUL CONSUMER
ATTACKS IN DIFFERENT CONSTRAINT SCENARIOS
In the first simulation, we set 5 kWh for the actual amount
of power that the attacker consumes at a certain time period,
and four different values (4 kWh, 3 kWh, 2 kWh, and 1 kWh)
to which the attacker aims to reduce and for which it actually
pays; this means that the difference in energy consumption
between the real and fabricated values has to be compensated
by a number of chosen neighboring victims in order to evade
detection. From Fig. 6, we consider three conditions in terms

FIGURE 6. Requirements for a successful CONSUMER attack
under different constraints.

of constraint level while the attacker performs such action.
In an unconstrained scenario, there are no boundaries for the
attacker to steal. As a result, it only needs to compromise as
low as one smart meter from the neighbors (in addition to its
own meter) for stealing the four different amounts of power.
In more practical cases where there are boundaries (predeter-
mined at utility control centers), we set an expected amount of
2 kWh that can be tolerated in fluctuation of customers energy
consumption for a loosely constrained case, and 1 kWh for a
strictly constrained case. From the results, we discover that
more smart meters need to be compromised to achieve the
targets while bypassing detection.

Remarkably, compromising a large number of smart meters
is believed to be an improbable scenario because the attacker

needs to know the upper and lower bounds for the victims’
and its energy consumption patterns upon which the utility
control center constantly monitors. However, a probable case
should be emphasized, that is, the attacker may change its
strategy to launch a p–cluster k–sparse attack throughout
the network and still, without being detected, where p is
the number of clustered attacks and k is a set of distinct
element values that represent the number of compromised
smart meters consisted in one of p clusters. Such attack is
studied in the next subsection, and note that the term sparse
introduced here somewhat differs from that in [27].

B. STUDY OF p–CLUSTER k–SPARSE CONSUMER
ATTACK
In the second simulation, we study how the multiple CON-
SUMER attacks, referred to as a multi-CONSUMER attack,
may be potentially launched by designating p number of
clustered attacks in which each cluster may be composed of a
number of compromised smart meters based on any unique
value in the set k = {2, 3, . . . , kSM }. Conditionally, each
cluster must contain at least two meters: one for the attacker
and one for the victim (see Theorem IV-A). If all p clusters
are composed of two meters (i.e., k = {2}), a combination of
C = (2, 2, . . . , 2) is formed where |C| = p ≤ b kSM2 c. Note
that the order in C does not matter and the summation of all
element values in C equals kSM . Given kSM and k, one can
determine a number of possible combinations C’s involved in
a multi-CONSUMER attack.
Suppose there were six smart meters in a distribution net-

work and the attacker was able to compromise all six meters.
Originally, one attack cluster with all six meters could be
formed as a single CONSUMER attack, namely, a 1–cluster
{6}–sparse attack with the combination of C = (6). Alter-
natively, there might be two other possibilities of launching
a multi-CONSUMER attack: 1) two attack clusters and three
meters in each cluster—a 2–cluster {3}–sparse attack with the
combination of C = (3, 3), and 2) three attack clusters and
twometers in each cluster—a 3–cluster {2}–sparse attackwith
the combination of C = (2, 2, 2). Similarly, if the attacker
was to compromise eight meters with k = {2, 3, 4}, a total
of four cluster combinations can be generated: 1) p = 4,
C = (2, 2, 2, 2), 2) p = 3, C = (2, 3, 3), 3) p = 3,
C = (2, 2, 4), and 4) p = 2, C = (4, 4). Again, the order
in C does not mater.
We set kSM = 50, 100, and 300. In Table 1, 14 sets of

element values in k for producing different sizes of clusters
are discovered under a multi-CONSUMER attack scenario,
while k contains a set of values ranging from 2 to 5. Take
kSM = 50 as an example, in order for the attacker to main-
tain 2 compromised smart meters in each attack cluster, 25
clusters can be launched at once. On the contrary, when the
attacker launches a multi-CONSUMER attack that is col-
lectively formed by 2, 3, 4, and/or 5 compromised meters,
the number of combinations of cluster formation can be as
high as 258; this can also be solved as a coin change prob-
lem. As more different sizes of clusters are involved in the
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TABLE 1. Number of Ways of Forming A Multi-CONSUMER
Attack.

FIGURE 7. Distribution of cluster quantities for launching a
multi-cluster attack for different total number of compromised
smart meters as (a) 50, (b) 100, and (c) 300.

attack, more combinations are generated. This outcome may
complicate the detection performance for utility operators
because p–cluster attack may instigate p CONSUMER attack
problems at the same time.

More explicitly, Fig. 7(a) shows that there can be
10–25 clusters formed for k = {2, 3, 4, 5} and kSM = 50
in which the average number of clusters is 16.29 with vari-
ance 8.48; also 10–25 clusters formed for k = {2, 4, 5} but
16.31 averaged number of clusters with 14.66 variance; and
10–16 clusters formed for k = {3, 4, 5} and 13.08 averaged
number of clusters with 2.47 variance. It is worth noting that
the value of elements as well as quantity of elements in kwill
determine the number of combinations, which may increase
dramatically when the total number of compromised meters
increases, as depicted in Fig. 7(b) and 7(c).

C. ANALYSIS OF NETWORK OBSERVABILITY AND
CORRESPONDING DETECTION RATES
In the last simulation, we investigate how the detection rate
varies with different levels of network observability in terms
of the number of grid sensors placed in the network. From
an attacker point of view, it can have

(
|NSM |
kSM

)
of ways to

compromise kSM out of |NSM | smart meters. Similarly, from
a utility defender point of view, the operator has to determine(nGS
kGS

)
of possible ways that kGS out of nGS grid sensors may

become unavailable and cause partial unobservability of the
network when nGS is a sufficient number for the network to
be observable. In the worst case, the detection rate can be as
low as zero when compromised smart meters are next to each
other (whether they are connected to the same parent node
or connected to their parents whose edge is shared by each
other) andwhere exactly the grid sensor becomes unavailable.
Two examples may be depicted from Fig. 5(b): 1) the worst
undetectable and unidentifiable cases: consider the case that
SM nodes v27 and v28 are compromised and at the same
time GS node v26 is unavailable, thus causing unobservability
on e(v25, v27) and e(v25, v28) – the CONSUMER attack on
these two smart meters is undetected; also consider the case
that SM nodes v17 and v20 are compromised, in which case
the unavailability of GS node v18 can cause e(v16, v17) and
e(v19, v20) to be unobservable, and hence undetectable on SM
nodes v17 and v20; and 2) the unidentifiable but detectable
case: consider the case that SM nodes v17 and v23 are compro-
mised and GS node v18 becomes unavailable, in which case
SM node v23 is detected as an attacked node by observing
GS nodes v21 and v24 but SM nodes v17 and v20 cannot be
identified whether one or all of the smart meters are attacked.
Hence, SM nodes v17 and v20 must be further inspected by the
utility and considered as a detected case.

FIGURE 8. Detection rate versus the quantity of GS nodes
installation.

Fig. 8 shows how the average rate of detecting the CON-
SUMER attack(s) can be improved by increasing the num-
ber of grid sensors. Since the number of smart meters and
grid sensors are identical (proven in Theorem IV-B.3), at
the same time the number of times the smart meters to be
attacked and the number of times the grid sensors to become
unavailable are equally likely, the outcomes of the detection
rate and grid sensor availability shown in Fig. 8 exhibit a
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linear relationship. From the results, we notice that the slope
of the detection rate is steeper when the number of grid
sensors (as well as smart meters) is smaller. On the other
hand, the slope of the detection rate declines when the
number of grid sensors increases. This means that a smaller
network with a smaller number of sufficient nGS deployed
is more vulnerable to unobservability as compared to a
larger network with the same number of GS nodes becoming
unavailable.

VI. CONCLUSION AND FUTURE WORKS
In this paper, we have investigated a breach of data integrity
attributed to false data injection attacks for the future power
grid environment. We have formulated an attack model
(CONSUMER) to illustrate that by compromising smart
meters, an illegal customer ‘‘can steal’’ electricity by lower-
ing the reading of its energy consumption and raising others’
in a neighborhood distribution network. A novel hybrid intru-
sion detection system framework that incorporates power
information and sensor placement has been developed to
detectmalicious activities such as CONSUMER attackswhile
the traditional bad measurement detectors cannot. An algo-
rithm for placing grid sensors on lines or feeders strategi-
cally throughout a spanning-tree distribution network is pro-
posed to provide sufficient network observability to enhance
detection performance. We have shown that compromising
a large number of smart meters may be improbable and
indicated that the attack may be turned into multiple clustered
attacks with a few compromised smart meters. We have also
shown that while the detection rate can be improved by the
proposed grid sensor placement with sufficient observabil-
ity, it can be degraded by the unavailability of grid sensors
as well.

Intrusion detection for the smart grid system (deployed
with a large number of smart meters and grid sensors) will
attract further investigation for the coming years. Mean-
while, we provide a few insights into some potential research
topics associated with the proposed intrusion detection
framework:

• Grid sensors in this paper are considered fully trustable.
For practical scenarios, trustworthiness of meters and
sensors can be explored to determine possible impacts on
the proposed intrusion detection framework by address-
ing uncertainties of network dynamics in the context
of smart grid security, e.g., the attacker can launch an
observability attack by compromising or disabling some
of the grid sensors, thus making intrusion detection more
challenging.

• Grid sensor localization and associated observability
studies can be further extended to grid isolation designs.
For example, grid isolation may be employed to prevent
catastrophic failures from cyber-physical attacks, but the
grid in islanded mode must remain observable as well.

• The proposed CONSUMER attack design, which is cur-
rently limited to a one-player attack, can be extended to

multi-player CONSUMERwarfare where more than one
attacker tries to steal electricity at the same time period.
The attack can be redesigned as a (non)cooperative game
based on the CONSUMER attack model to broadly
explore its variants against the integrity of the power
distribution grid system.

• The complementary detection methods of utilizing
power and communications networks inspection incor-
porated in the proposed framework can be developed
elaborately to improve detection performance.

• Further development of effective and efficient counter-
measures are desired to cope with variants of the CON-
SUMER attack.
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