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ABSTRACT

Automatic modulation classification (AMC) is applied as the intermediate step between signal detection and demodu-
lation to identify modulation schemes. AMC is a challenging task, especially in a non-cooperative environment, owing
to the lack of prior information on the transmitted signal at the receiver. The proposed modulation classification scheme
based on multi-sensor signal fusion makes the premise that the combined signal from multiple sensors provides a more
accurate description than any one of the individual signals alone. Multi-sensor signal fusion offers increased reliability
and huge processing gains in overall performance as compared with the single sensor, thus making AMC of weak signals
in non-cooperative communication environment more reliable and successful. Signal-to-noise ratio improvement through
multi-sensor signal fusion is studied by using second-order and fourth-order moments method. The classification perfor-
mance based on multi-sensor signal fusion is investigated in the additive white Gaussian noise channel as well as the flat
fading channel and is evaluated in terms of correct classification probability by taking the effects of timing synchroniza-
tion, phase jitter, phase offset, and frequency offset into consideration, respectively. Through Monte Carlo simulations,
we demonstrate that the proposed multi-sensor signal fusion-based AMC algorithm can greatly outperform other existing
AMC methods. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Automatic modulation classification (AMC) of digital
modulation formats is deployed, as the intermediate step
between signal detection and demodulation, to classify
the modulation schemes of the transmitted signals. Once
a signal has been detected, the AMC algorithm identi-
fies the modulation format from a pool of possible candi-
dates. AMC has been widely studied, and many approaches
have been proposed. However, AMC is still a challenging
task, especially in a non-cooperative environment, owing
to the lack of prior information on the transmitted signal at
the receiver.

In general, typical AMC techniques can be divided into
two groups: likelihood-based algorithms [1-5] and feature-
based algorithms [6—15]. The likelihood-based algorithms
are based on the likelihood functions (LFs) of the received
signal to make modulation format decisions by testing

Copyright © 2013 John Wiley & Sons, Ltd.

likelihood ratios under multiple hypotheses. The typi-
cal likelihood-based algorithms include average likeli-
hood ratio test (ALRT) [1,2], generalized likelihood ratio
test [3], hybrid likelihood ratio test (HLRT) [4,5], and
quasi-HLRT (QHLRT) [4]. The likelihood-based modu-
lation decisions are optimal in the Bayesian sense, and
likelihood-based classifiers have been demonstrated suc-
cessfully to recognize M-ary linear digital modulation
schemes, but the optimal solutions suffer from compu-
tational complexity. On the other hand, in feature-based
algorithm, the decisions are made by observing the features
extracted from the received signals, such as the correla-
tion between the in-phase and quadrature signal compo-
nents [6], the variance of the centered normalized signal
amplitude, phase and frequency [7], the phase probabil-
ity density function (PDF) [8], the variance of the zero-
crossing interval [9], moments [10], cumulants [11-13],
cyclic cumulants [14,15], cyclic spectrum [16], and signal
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cyclostationarity [17,18]. As compared with the likelihood-
based algorithms, the feature-based algorithms may not
make optimal decisions, but they are usually simple to
implement and can provide near-optimal performance if
designed properly. A general discussion of these AMC
methods based on a single sensor can be found in the
survey paper [19].

Wireless sensor networks (WSNs) have been utilized for
decentralized signal detection and localization [20,21] as
well as estimation and classification schemes [16,22-25],
primarily owing to their inherent merits, such as easy
deployment and high resilience. Distributed statistical
feature-based modulation classification has been discussed
by using WSNs [16,22]. In the distributed cyclic spec-
trum feature-based AMC scheme [16], local classifica-
tion decisions are made by the local radios based on the
extracted cyclic spectrum features of the received signals.
These local decisions are then transmitted to a fusion cen-
ter, where an optimum decision rule is applied to gen-
erate the global modulation classification decision based
on these local decisions and its local signal observations.
The scheme proposed in [22] uses spatially distributed
sensors to extract all relevant features cooperatively. The
major idea behind this scheme is that individual sen-
sors may not be able to extract all relevant features to
reach a reliable classification decision; however, the coop-
erative in-network approach enables high classification
rates at reduced overhead, even when features are noisy
and/or missing. In particular, the method of multiplier [26]
is employed for distributed cumulant feature extraction
because of its resilience to noise and its fast convergence.
Furthermore, based on the symbols collected by the WSN,
a distributed clustering approach, namely method of mul-
tipliers k-means, is adopted to estimate the location of the
constellation symbols. Finally, Bayesian information cri-
terion [27] is used to determine the modulation format.
One LF-based modulation classification in bandwidth con-
straint sensor networks has been proposed recently [23]
by using WSNs. Signals are collected at each local sen-
sor, and modulation classification decisions are made based
on local received signals; the local decisions are then sent
to the sensor network center to perform decision fusion
to obtain the final classification result. The method pro-
posed in [23] is currently limited to classify between two
modulation schemes. Reference [24] extended this likeli-
hood ratio test decision fusion-based modulation classifi-
cation between two modulation schemes [23] to multiple
modulation schemes with three different fusion algorithms,
namely single selection combining, maximal-ratio combin-
ing, and equal-gain combining.

An initial study of using sensor networks for signal sens-
ing was reported in [25]. Specially, it proposes several
different types of sensor network signal sensing scenarios,
including distributed sensor decision fusion, centralized
synchronous signal sensing, and centralized asynchronous
signal sensing. However, the classification performance of
different sensing scenarios was not investigated. In this
paper, we describe a novel multi-sensor signal fusion-based
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modulation classification scheme and perform simulations
to investigate the effects of timing synchronization, phase
jitter, phase offset, and frequency offset to the modula-
tion classification performance of the signal fusion-based
AMC scheme. One of the main advantages of the proposed
AMC scheme is that the properly combined signal from
multiple sensors provides a more accurate description than
any one of the individual signals alone. Through Monte
Carlo simulations, we demonstrate that the proposed multi-
sensor signal fusion-based AMC scheme can surpass some
other existing algorithms greatly. Other advantages of the
proposed AMC scheme include the low deployment cost
and basic elementary requirements on wireless sensors as
compared with other modulation classification schemes by
using WSNs [16,22-25]. The capacities of sensors used
for modulation classification can be categorized into two
types. One type of capacities is used for signal detection
and transmission; this is required for all wireless sensors
used for modulation classification using WSNs. The other
one is used for generating modulation classification deci-
sions, and thus, the wireless sensors are equipped with
the computational, memory, and power capacity to per-
form this task. The capacities of wireless sensors required
in the proposed signal fusion-based modulation classifi-
cation scheme are simpler than other modulation classifi-
cation schemes by using WSNs because the sensors used
in the proposed modulation classifier only require the first
basic elementary type of capacities to detect the signals,
preprocess the signals simply, and transmit them to the
fusion center, and do not need to generate local decisions.
While in other modulation classification schemes by using
WSNs [16,22-25], either some specific signal feature or
local decision is made at each local sensor. Therefore, the
wireless sensors deployed in the proposed signal fusion-
based modulation classification scheme require less com-
putational and memory capacity, which will reduce the
deployment cost greatly. Moreover, as compared with other
modulation classification schemes by using multiple sen-
sors, the proposed AMC scheme consumes more power
in signal transmission and less power in computations for
feature extraction and local decision generation, because
all the detected signals instead of the local decisions are
transmitted to the fusion center.

The remainder of this paper is organized as follows. The
multi-sensor signal fusion-based AMC scheme and the sig-
nal model are presented in Section 2. Three modulation
classifiers, the cumulants-based modulation classifier, the
ALRT-based modulation classifier, and the QHLRT, are
described in Section 3. The numerical evaluations through
Monte Carlo trials in the additive white Gaussian noise
(AWGN) channel and the flat fading channel are presented
in Section 4. Signal improvements through multi-sensor
signal fusion are studied first. Then, modulation classifi-
cation performance through multi-sensor signal fusion is
investigated in terms of correct classification probability by
considering the effects of timing synchronization, phase jit-
ter, phase offset, and frequency offset. Section 5 concludes
the paper.
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2. MULTI-SENSOR SIGNAL
FUSION-BASED MODULATION
CLASSIFICATION FRAMEWORK

In this section, we describe the multi-sensor signal fusion-
based modulation classification framework using a WSN.
We assume a set of Ny possible modulation formats M =
{ My, M3, ,Mp,, } All considered modulation formats
are assumed to be zero mean with unit average energy, and
each of them has the same opportunity to modulate the sig-
nal to be transmitted. The goal of the modulation classifier
is to determine the modulation scheme among these Ny
possible modulation formats, M = {Ml My, -, MNM },
based on the observed signal.

2.1. System model

As shown in Figure 1, a signal fusion-based AMC archi-
tecture by using a WSN can be modeled as a signal
fusion center and a set of Ng distributed sensors
(J :={J1.J2.-++ . INg})- A sequence of Ngyp, unknown
linearly modulated signals {sl,sz,--- ,stym} is broad-

cast by a transmitter, where 53 denotes the k™ transmitted
symbol, which is modulated by one unknown modulation
scheme among the possible modulation format set, M =
{M],Mz,--- ,MNM}.

The sensors are tuned to a specified frequency to
collect transmitted signals. Owing to the effect of dif-
ferent propagations and transmission environments, Ng
independent channels are assumed to connect the trans-
mitter to these sensors, and therefore, different signals
are generally observed at different receiving sensors.
At each sensor Ji(Jr € J), the signals rp =
{rk(l), e (2),--- rk(Nsym)} are collected and fed to the
signal fusion center. The links between individual sen-
sors and the signal fusion center are considered error free
with sufficiently powerful error correcting codes. Thus,
Ng signal vectors, {rl, rp,ce. ,rNS}, each of which has
Nsym symbols, will be received, processed, and fused
at the signal fusion center. The combined signal is then
fed to an automatic modulation classifier for classifying
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the modulation format. Based on the estimated modulation
scheme, the received signal is demodulated.

2.2. Signal model

After preprocessing, which involves carrier frequency and
phase offset estimation and timing recovery, the received
baseband signal at the sensor Jy,, (m =1,2,---, Ng) can
be expressed as

L—1
rm(n) = Z hm(k)s(n —k — Dy + &m)
k=0 M

+ gm(n), (” =12, 7Nsym)

where {s (n)},llv;ylm is the transmitted symbol sequence with
Nsym total number of the observed symbols and mod-
ulated by some unknown modulation scheme among a
pool of modulation scheme M = {Ml, My, --- ,MNM },

{rm (n)},]:,:sy1 " is the received signal sequence at the sensor

Jm»> {8&m (n)}fy:s{m is AWGN sequence with a zero mean
and a variance of 62, h(k)(k =0,1,--- , L — 1) represents
the fading channel coefficient vector with length L Dy,is
the transmission delay, and €, € [0, 1] is the timing errors
parameter. Both parameters, Dy, and &, are different at
every sensor. The AWGN channel and the flat fading chan-
nel can be modeled as a special case of fading channel with
L=1as

rm(n)
s(m— Dy +em) + gm(n)

ame’9ns (n— Dy +&m) + gm(n) (flat fading)

@3]
where oy, and ¢, are the channel amplitude and the
phase offset in the slowly varying flat fading channel.
¢m 1is assumed uniformly varying within the interval
[-7, m]. Based on the aforementioned definitions, the
combined signal through multi-sensor signal fusion can
be described as
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Figure 1. Multi-sensor signal fusion automatic modulation classification framework.
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where {rr (n)}flvi){ "™ is the combined signal sequence and
bm is the normalization factor satisfying bjo; = brop =
<+ = bygong = 0 and by + by + -+ byg = 15
om (m = 1,2,--- , Ng) is the standard deviation of the
Gaussian noise received at the sensor J;. Thus, the com-
bined signal is a weighted sum-up of all signals collected
at different sensors with more weights given to the signals
with higher signal-to-noise ratios (SNRs). A Dy, and Aegy,
denote the transmission delay difference and time synchro-
nization difference between the m?” sensor and first SEensor,
respectively, and &, and ¢, are the estimated channel
amplitude and the phase offset in the slowly varying flat
fading channel. In the AWGN channel, the SNR ratio of
the fused signal to the signal collected at the sensor j; can
be expressed as

2\ Nsym
Ns
E ( bms(n+ADm+Aem))
SNRp m=1 el
SNR; N 2\ Nsym
E (Z bmgm(n))
m=1
n=1
E[(brg1n)?] |

E [(bls(n + ADp + Aem))z} Ngb?

“
Assume by is the minimum normalization factor, by =
min(by, b2, -+ ,byg). Because by + by + -+ + by >
Nsbpr and by + by +--- + byg = 1, by < 1/Ng.
Also, byjoy; = bpoy = -+ = by,ong = 0, and hence,
(bpr,opr) are the parameters corresponding to the signal
with the minimum SNR. Therefore, we obtain SNRr >
Ng SN Rpin, implying that the SNR of the fused signal can
be improved by increasing the number of the fusion sen-
sors. In the flat fading channel, the SNR improvement of
the fused signal is affected by channel estimation as shown
in Equation (3).

3. TYPICAL SINGLE
SENSOR-BASED MODULATION
CLASSIFIERS

To demonstrate modulation classification performance
improvement by using multi-sensor signal fusion, three
kinds of single sensor-based modulation classifiers are
simulated: the fourth-order cumulant-based classifier [11],
the ALRT-based classifier [1,2], and the QHLRT-based
classifier [4].

3.1. Cumulant-based classifier

The cumulant-based AMC schemes [11] have been suc-
cessfully tested to classify pulse-amplitude modulation
(PAM), phase-shift keying (PSK), quadrature amplitude
modulation (QAM), and other modulation schemes. For
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a complex stationary random process r(n), the p’ h order
qth conjugate cumulants Cpq is defined as Cpq =
Cum [rP~4 (r*)?], where * denotes complex conjugation.
For p = 2, the second-order moments are defined in two

different ways:

Coo = Cum(r(n),r(n)) = E [rz(n):|

5)
Car = Cum(r(n). r* () = E [Ir ()]
Similarly, forp = 4, the fourth-order cumulants are
denoted as
Cao = Cum[r(n),r(n),r(n),r(n)] ©)

Caz = Cum|[r(n),r(n),r*(n),r*n)]

The cumulants defined in Equations (5) and (6) can be
estimated from the sample estimates by replacing expecta-
tions with the sample averages over the received symbols.
The sample estimates of the second-order cumulants can
be written as

Nsym
Coo = > rim
sym k=1
1 Nsym
Cor=5 D Irm)? (7)
SV k=1

The normalized sample estimates of the fourth-order
cumulants can also be written as

A 1 Nsym R 2 R
Cao= N Z r4(n)—3(C20) /(C21)2
sym k=1
. 1 Nsym 4 . 2 R 5 . 2
Can= ~ Z Ir(n)] —‘Czo‘ =2(C21)" | /(C2y)
sym k=1

®)

3.2. Average likelihood ratio test-based
classifier

The ALRT-based classifier [1,2] treats every unknown
parameter as a random variable with a certain known PDF,
and the LF is calculated by averaging over the unknown

parameters. Assume that a series of Ny, received sym-
bols {rn},llviylm is received at a single sensor. The con-
ditional PDF p (rn ‘E,H,-) of the received symbol ry
under hypothesis H; with the unknown parameter vec-
tor # and the unknown transmitted symbol s,(,i) from the

constellation of modulationM; can be defined as
)

©))

p(rn |ﬁ, Hi) = (mNo) L exp (—N(;1 ‘rn —otej“’s,(,i)
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where # is the unknown parameter vector and can be shown
asu = (Ng, o, ). Ng, a, ¢ denote the noise power, the sig-
nal amplitude, and the phase offset, respectively. By aver-
aging the conditional PDF p (ry |ii, H; ) over constellation
of the modulation M;, the conditional LF I" (rn ’ﬁ , Hi)
of the received symbol r, under hypothesis H; with the
unknown parameter vector u can be calculated as follows

|M; |
- 1 _
T (rp i, H; ) = oA E (mNo) Lexp
k=1

X (—NO_1 ’rn —aej‘ps](cl)

2
) (10)

where s,(cl) is the k'” complex symbol belonging to the
modulation scheme M; that has |M;| constellation sym-
bols,k =1,2,--- ,|M];.

Then, the LF of r, under hypothesis H; is calculated
by averaging over the unknown parameters and symbol
constellation as follows:

r(rn|H,-)=/Sr(rn i Hy) p(Gi |Hy)di (1)

where p (i |H;) is the a priori PDF of the unknown
parameter vector 1 under the modulation scheme H; and
S is the three dimensional space for the three parameters
in the unknown parameter vector i.

Under the assumption of statistically independent
received symbols and given a series of Ny, received sym-
bols, the LF under hypothesis H; using the ALRT-based
modulation classifier can be written as the product of LFs
of each received symbol T (r, | H; ) as follows:

Nsym
T(RIH;)= [] TCalH:) (12)
n=1
Finally, the maximum likelihood criterion, i = arg max

(T(R|H;)).i = 1,---,Np where i is the index of
the estimated modulation scheme of the transmitted sig-
nal, is applied to determine the modulation scheme of the
received signal sequence.

3.3. Quasi-hybrid likelihood ratio
test-based classifier

Using the ALRT AMC classifier, the unknown parameters
are treated as random variables, and the LF is calculated by
averaging over the unknown parameters and the unknown
signal constellation points, while the QHLRT-based mod-
ulation classifier employs method of moments (MOMs) to
estimate the unknown parameters, and the LF is computed
by averaging over the unknown signal constellation points.
With the QHLRT-based classifier, the LF becomes

Wirel. Commun. Mob. Comput. (2013) © 2013 John Wiley & Sons, Ltd.
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nym ‘M1|

1 1
Tourrr(RIH) = [] A Zﬁexp
n=1 Ml N
1 ~G) i@ ()]?
X{_I\?(i) rn—a®el? S/Etl) }

13)

where ¢, (,?J(i), and N@ are the unknown parameter
estimates under hypothesis H;.

The decision rule on the modulation format of the
received signal for the QHLRT-based classifier is also
based on the maximum likelihood criterion, i =
argmax(Iorrr(R|H;)), i = 1,---, Npg, where i is the
index of the estimated modulation scheme.

4. SIMULATION RESULTS
AND ANALYSES

In order to demonstrate the advantages of the proposed
multi-sensor signal fusion-based AMC scheme, the clas-
sification performance of multi-sensor signal fusion-based
AMC is conducted in the AWGN channel and the flat
fading channel, respectively. The overall classification per-
formance is represented in terms of the average correct
classification probability. All of these classification perfor-
mance analyses are based on 1000 Monte Carlo simulation
trials.

4.1. Additive white Gaussian
noise channel

In the AWGN channel, two modulation classification sce-
narios of different modulation candidate sets are consid-
ered, namely (i) {B-PSK, 4-PAM, 16-QAM, and 8-PSK}
and (ii) {16-PSK and 16-QAM}. Signal improvements
using multi-sensor signal fusion are studied first. By
using the second-order and fourth-order moments (MaMg)
method [28] to estimate the signal SNR, the SNR improve-
ments of the combined quadrature PSK (Q-PSK) sig-
nal using 10-sensor signal fusion are presented. Then,
the modulation classification performance based on multi-
sensor signal fusion in the AWGN channel is investigated.
The advantages of the proposed multi-sensor signal fusion-
based modulation classifier in the AWGN channel are
proved by performance comparison between the proposed
multi-sensor signal fusion-based modulation classifier and
single sensor cumulant-based classifier and also between
the proposed AMC scheme and ALRT-based single sensor
modulation classifier.

4.1.1. Signal enhancement.

To demonstrate signal enhancement through multi-
sensor signal fusion, simulations are conducted by com-
bining signals received from 100 receiving sensors with
matched filters. Figure 2(a) shows the 16-QAM signal
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(a) 16-QAM modulation constellation comparison
through single sensor versus multi-sensor with Ns= 100
sensors in the AWGN channel.
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Figure 2. Signal improvement with multi-sensor signal fusion.
(a) 16-QAM modulation constellation comparison through single
sensor versus multi-sensor with Ng = 100 sensors in the
AWGN channel. (b) Q-PSK signals SNR improvement with
10-sensor signal fusion in the AWGN channel.

symbol constellation with 512 samples, which are cor-
rupted by additive white noise with SNR = 0 dB and
fused from multiple sensors with the matched filters at
each single sensor. The blue circle dots in Figure 2(a) are
the received signal symbols at a single sensor, while the
red dots in this figure are the recovered symbols through
multi-sensor signal fusion. From this figure, we can see
that the received signal collected with a signal sensor is
very noisy, while the combined signal through multi-sensor
signal fusion shows a clear 16-QAM cluster constellation
pattern. Constellation improvement is proved obviously by
this comparison. Moreover, by using the moment-based
Mj>My method [28], which utilizes the My M4 to estimate
the signal SNR, the SNR estimations of the combined Q-
PSK signal through 10-sensor signal fusion are presented
in Figure 2(b). From this figure, we can see that about
10 dB SNR improvement can be achieved with 10-sensor
signal fusion for Q-PSK modulated signals under differ-
ent channel noise conditions from —5 to 10 dB. This also
conforms the theoretical analysis in Equation (4).
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4.1.2. Ideal conditions.

Two experiments are implemented to verify the per-
formance improvement of modulation classification by
using WSNs in the AWGN channel under ideal conditions,
implying that signals are only corrupted by the Gaussian
white noise. The first experiment is based on the normal-
ized fourth-order cumulant modulation classifier proposed
in [11]. The classification performance of 10-sensor signal
fusion-based fourth-order cumulant classifier is evaluated
in Figure 3. The classification is carried out to distin-
guish among binary PSK (B-PSK), 4-PAM, 16-QAM, and
8-PSK with Ngy 5, = 100, 250, and 500 symbols, respec-
tively. In comparison with the classification performed by
a single receiver, the average probability of correct clas-
sification is improved greatly with the multi-sensor sig-
nal fusion-based modulation classifier. More improvement
can be obtained with the increase of the number of sen-
sors, especially under low SNR conditions. As shown in
Figure 3, considering the Gaussian noise only, 10-sensor
signal fusion-based modulation classifier provides more
than 30% improvement over the classifier with a single
sensor in terms of the average correct classification prob-
ability in distinguishing the modulation formats among
{B-PSK, 4-PAM, 16-QAM, and 8-PSK} under the AWGN
channel in the SNR range from —5 to 0 dB. We can
see from this figure that the achieved average probabil-
ity of correct classification in multi-sensor signal fusion-
based modulation classifier with 10 sensors at —5 dB SNR
point is almost the same as that of the single sensor-based
classifier at 3 dB SNR point.

The performance of the multi-sensor signal fusion-
based ALRT modulation classifier [1,2] is evaluated in
the framework comprising different numbers of sensors.
The detectors implemented for local sensors are identi-
cal. The classification is carried out to distinguish between
16-PSK and square-shaped 16-QAM signals in situations

Single Rx N=100

Single Rx N=250

Single Rx N=500

-=%-- Multiple Rx N=100 (10 Sensors)

032~/ - mm - --©-- Multiple Rx N=250 (10 Sensors) ||

===~ Multiple Rx N=500 (10 Sensors)
1

Average Probability Correct Classification
o
(]

‘ |
1 |

5 0 5 10 15 20

SNR (dB)

Figure 3. B-PSK, 4-PAM, 16-QAM, and 8-PSK modulation clas-

sification performance comparison of cumulant-based classifier

and multi-sensor signal fusion-based classifier with Ns = 10

sensors and Ng,,m = 100, 250, and 500, respectively, in the
AWGN channel.
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Figure 4. 16-PSK and 16-QAM modulation classification per-

formance comparison of distributed decision ratio-based AMC

classifier and multi-sensor signal fusion-based classifier with

Ns = 3, 5, and 10 sensors and Ns,, = 100 in the AWGN
channel.

where the carrier phase offset is unknown to all of the sen-
sors. Each emitted symbol is corrupted by additive white
noise. The theoretical counterpart derived for the single
receiver is plotted here for comparison purposes. In com-
parison with the classification performance achieved by a
single sensor, the average probabilities of correct classi-
fication with multi-sensor signal fusion-based modulation
classifier, which is presented with the curves named “SF
WSN” in Figure 4, exhibit great improvements. At 0 dB,
more than 10%, 20%, and 30% improvement of the aver-
age probabilities of correct classification can be achieved
with signal fusion-based modulation classifier with 3 sen-
sors, 5 sensors, and 10 sensors than the single sensor-based
ALRT classifier, respectively. The achieved average proba-
bilities of correct classification in signal fusion-based mod-
ulation classifier with 3 sensors, 5 sensors, and 10 sensors
at 0 dB are almost the same as those with the single sensor-
based ALRT classifier at 2, 3, and 8 dB, respectively. We
also compare the performance of the proposed multi-sensor
signal fusion-based modulation classification scheme with
the distributed decision ratio-based modulation classifier
using WSNs proposed in Reference [23], the simulation
results of which are denoted as “DDR WSN” in Figure 4.
As compared with the classification performance with
distributed decision ratio-based classifier, about 5% and
10% correct classification probability improvements can be
achieved at low SNR with three sensors and five sensors
signal fusion-based modulation classifier, respectively.
The performance improvement in the low SNR range
in these two simulations under the ideal AWGN chan-
nel conditions is due to the SNR improvement of the
combined signal. As shown in Equation (4), the SNR of
the fused signal under ideal condition can be improved
by increasing the number of the sensors, as validated
in Figures 3 and 4. Moreover, as shown in Figure 2(b),
the estimated SNR by using the 512 samples of the

Wirel. Commun. Mob. Comput. (2013) © 2013 John Wiley & Sons, Ltd.
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combined signal sequences collected with 10 sensors
can be improved by around 8 dB under the ideal
condition. The modulation classifier with a single sen-
sor can almost correctly distinguish the modulation for-
mats among {B-PSK, 4-PAM, 16-QAM, and 8-PSK} and
{16-PSK and 16-QAM} under 3 and 8 dB SNR channel
conditions, as indicated in the green curve and the blue
solid dot curve in Figures 3 and 4, respectively. Hence, the
signal fusion-based modulation classifier with 10 sensors
can almost identify the modulation formats at —5 and 0 dB
in these two evaluations, shown in the green square curve
and the red star curve in Figures 3 and 4, respectively.

4.1.3. Timing synchronization.

Because all the signal sequences collected at differ-
ent sensors need to be transmitted to the signal fusion
center to perform signal fusion and modulation classifica-
tion, the proposed multi-sensor signal fusion-based mod-
ulation classifier is a centralized modulation classification
scheme. As shown in Equation (3), the combined signal
through multi-sensor signal fusion is a weighted sum-up of
the signal sequences collected at different sensors. Hence,
the proposed multi-sensor signal fusion-based modulation
classification scheme suffers from two types of timing syn-
chronization. One is the timing synchronization between
the unknown transmitter and each local sensor, and the
other one is the synchronization between different sensors.
On the contrary, the distributed modulation classification
schemes with multiple sensors only suffer from the former
type of timing synchronization because the local decisions,
which are made based on the collected signal sequence
at each local sensor, are transmitted to the fusion cen-
ter. Thus, the distributed modulation classification schemes
with multiple sensors do not suffer from the timing syn-
chronization between different sensors. In this part, we
study the effects of timing synchronization on the perfor-
mance of the proposed modulation classification scheme.
With S = 10 sensors and SNR = 10 dB, B-PSK, 4-PAM,
16-QAM, and 8-PSK multi-sensor signal fusion cumulant-
based modulation classification performance P. against
timing errors e is plotted in Figure 5, with Ny, = 100,
250, and 500 symbols, respectively, in the AWGN chan-
nel. With square timing-based blind delay recovery [29]
at each local sensor and synchronization between sensors,
classification performance can be maintained with timing
errors [—0.27,0.27]. Notice that over 94% correct clas-
sification probability can still be obtained even with 0.2T
timing errors.

4.1.4. Phase jitter.

To study the robustness of multi-sensor signal fusion-
based modulation classification scheme to phase jit-
ter, classification performance P, among {B-PSK,
4-PAM, 16-QAM, and 8-PSK} is plotted against ® in Fig-
ure 6, with N = 200 samples and SNR = 12 dB for single

and 10 sensors in the AWGN channel. The phase wl(m)

is assumed to be uniformly distributed over [—®, ®] and
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Figure 5. B-PSK, 4-PAM, 16-QAM, and 8-PSK modulation clas-

sification performance comparison of cumulant-based classifier

and multi-sensor signal fusion-based classifier with Ns = 10

sensors and Ng,,m = 100, 250, and 500, respectively, in the
AWGN channel.
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Figure 6. Average correct classification probability P, versus

® for {B-PSK, 4-PAM, 16-QAM, and 8-PSK}, the /" symbol's

phase jitter at m" sensor 0/('") is uniformly distributed over
[-®,®] and Ngym = 200, SNR = 12 dB in the AWGN channel.

varies from sensor to sensor and from symbol to symbol.
Performance degradation caused by phase jitter of single
sensor cumulant-based modulation classifier has been stud-
ied in Reference [11]. For comparison, the results are also
shown as the red curve in Figure 6. For a single sensor,
acceptable performance is obtained for ® < 30°; as @ is
greater than 30°, P, drops very sharply. With 10-sensor
signal fusion-based modulation classifier, the performance
is still acceptable even with large .

4.1.5. Phase offset.
How performance is affected by phase offset of sin-
gle sensor cumulant-based modulation classifier has been
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Single Rx with no phase offset ||
-=3%-= 10 Rx with no phase offset
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Figure 7. Average correct classification probability P, versus

SNR for {B-PSK, 4-PAM, 16-QAM, and 8-PSK}, phase offset at

mt sensor @, varies randomly over [—, 7r] from realization to
realization, and Nsy,» = 200 in the AWGN channel.

studied in Reference [11]. According to their investiga-
tions, there is no obvious degradation in classification per-
formance with the effects of phase offset by using single
receiver cumulant-based classifier. Phase offset varies ran-
domly over the range [—, 7] in one realization. The aver-
age correct classification probability P, is plotted against
SNR in Figure 7, with N = 200 samples for single and
10 sensors in the AWGN channel among B-PSK, 4-PAM,
16-QAM, and 8-PSK modulation schemes. The existence
of phase offset causes the signal constellation to rotate by
an angle of phase offset, and therefore, before the signal
fusion, phase offset needs to be removed. The M-Power
method [30] is used for carrier phase recovery, which is a
non-data-aided method. In the multiple-receiver scheme,
phase offset ¢, is different at each local receiver but
fixed at one local receiver over a realization. Note that in
Figure 7, there is almost no degradation in classification
performance with high SNR. With low SNR, classification
performance is degraded by about 5% because of phase
recovery error. Performance improvement of multi-sensor
signal fusion-based modulation classification scheme is
degraded by phase offset recovery at low SNR; however,
the whole classification performance is still improved as
compared with the single sensor classifier.

4.1.6. Frequency offset.

Frequency offset influences on the classification perfor-
mance are further studied. Like phase offset, frequency
offset also causes the rotation of the signal constellations;
thus, frequency offset needs to be removed before the
signal fusion. Performance degradation of single sensor
cumulant-based modulation classifier by frequency offset
has been studied in Reference [11]. The average correct
classification probability P, is plotted against the normal-
ized frequency offset fq in Figure 8. The same simulation
condition is assumed as in [11]: The number of sym-
bols is N = 250, SNR = 12 dB, and the normalized

Wirel. Commun. Mob. Comput. (2013) © 2013 John Wiley & Sons, Ltd.
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Figure 8. Average probability of correct classification P, versus

frequency offset fy for {B-PSK, 4-PAM, 16-QAM, and 8-PSK}

modulation classification with Ngy, = 250 symbols and SNR =
12 dB in the AWGN channel without frequency offset.

frequency offset fo varies from 0 to 0.001 (corresponding
to a maximum rotation of 90°). According to their results,
acceptable performance for single sensor cumulant-based
modulation classifier is obtained for fo < 0.6 x 1073, As
compared with single sensor, there is more than 10% clas-
sification performance improvement with the normalized
frequency offset fg in the range of [0.6,0.75] x 1073, but
under high frequency offset condition, there is no improve-
ment on the classification performance even with more
sensors signal fusion; so, some kind of frequency offset
recovery technique is required to improve the classification
performance further.

4.1.7. Noise variance.

In practice, sensors at different locations will experi-
ence different noise levels, implying that the SNR value
at different sensors should be different. In order to inves-
tigate the effects of noise variance to signal fusion-based
AMC scheme, a further experiment is performed in the
AWGN channel to classify among {B-PSK, 4-PAM, 16-
QAM, and 8-PSK} modulation schemes with 100, 250,
and 500 symbols, SNR varying in the range of [—5 dB,
0 dB], and the number of sensors varying from 1 to 10.
Signals with very low SNR (smaller than —5 dB) can be
singly discarded from signal fusion. The average correct
classification probability P, is plotted against the number
of sensors in Figure 9. No timing issue, phase jitter, phase
offset, and frequency offset are considered here. The results
in Figure 9 show that the correct classification probability
is within some range of the average value (< £0.05), and
therefore, multi-sensor signal fusion-based AMC scheme
is tolerant to noise variance at different sensor locations.

4.2. Flat fading channel
In the flat fading channel, the performance of the proposed

scheme is compared with the QHLRT-based modulation
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Figure 10. B-PSK, Q-PSK, 8-PSK, and 16-PSK modulation clas-

sification performance comparison of QLRT-based classifier and

multi-sensor signal fusion-based classifier in the flat Rayleigh

fading channel with N ¢ = 10 sensors, Ny, = 100 and 1000
symbols, respectively.

classifier with the MOM estimator and the ALRT-based
classifier with the perfect unknown parameters estima-
tor. In Figure 10, the classification performance for the
ALRT-based classifier under the assumption of perfect esti-
mations of unknown channel amplitude and phase offset
parameters, the QHLRT-based classifier with the MOM
estimator, and the proposed multi-sensor signal fusion-
based classifier with MOM estimations of unknown param-
eters in the flat Rayleigh fading is presented, with 100
and 1000 symbols, respectively. The classification is car-
ried out to distinguish among B-PSK, Q-PSK, 8-PSK, and
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16-PSK modulation formats in the situations where the car-
rier phase offset is unknown to all of the sensors. Each
emitted symbol is rotated by a randomly generated car-
rier phase, which is a constant value across Ngyp, sym-
bols over the flat Rayleigh fading channel and corrupted
by white noise. Therefore, signal constellation rotations
have to be removed before signal fusion. For comparison,
classification performances with a single receiving sensor
by the ALRT-based classifier with perfect estimation of
unknown parameters and the QHLRT-based classifier with
MOM unknown parameter estimates are also presented.
From Figure 10, we can see that with perfect unknown
parameter estimates, more than 15% of the average prob-
ability of correct classification can be achieved at 0 dB
with 10-sensor signal fusion-based classifier than a single
sensor-based ALRT classifier, while by using MOM-based
unknown parameter estimates, more than 10% of the aver-
age probability of correct classification can be achieved
at 0 dB with 10-sensor signal fusion-based classifier than
a single sensor-based QHLRT classifier. It can also be
noticed that the average probabilities of correct classifi-
cation with MOM estimates are smaller than that with
perfect unknown parameter estimates due to the unknown
parameter estimation errors.

5. CONCLUSION AND
FUTURE WORK

In this paper, we have proposed and studied WSNs-based
multi-sensor signal fusion to automatically detect modu-
lation schemes in the AWGN channel and the flat fading
channel. The AMC of weak signals in non-cooperative
communication environment becomes more reliable and
successful by using multi-sensor signal fusion. The clas-
sification performance of the proposed scheme is evalu-
ated in terms of correct classification probability. Through
Monte Carlo simulations, we demonstrate that the pro-
posed multi-sensor signal fusion-based AMC scheme can
surpass other existing algorithms greatly in the AWGN
channel and the flat fading channel. However, the clas-
sification performance of the proposed modulation clas-
sification scheme based on multi-sensor signal fusion
in multipath fading channel needs further investigations.
Also, because all the signal sequences need to be transmit-
ted to the signal fusion center to perform signal fusion and
modulation classification, wireless bandwidth constraint is
an issue to be considered in the signal fusion-based mod-
ulation classification scheme. As compared with the signal
fusion-based AMC scheme, decision fusion-based modula-
tion classification schemes can alleviate the bandwidth bur-
den because only the local decisions, which consume much
less bandwidth than the received signal sequences, will be
transmitted to the fusion center. However, the deployment
cost of decision fusion-based AMC scheme is much higher
than that of signal fusion-based AMC method because
more capable wireless sensors are required to make local
decisions in the decision fusion-based AMC scheme, while

Y. Zhang, N. Ansari and W. Su

the operations of wireless sensors in the signal fusion-
based modulation classification scheme are quite simple
and no decision fusion is made at the local sensor. More-
over, the distributed fusion-based AMC scheme, which
takes advantages of both signal fusion and decision fusion,
is also worth further investigation.
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