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Abstract—In this paper, we present a novel capacity-aware 

spectrum allocation model for cognitive radio networks. First, we 

model interference constraints based on the interference 

temperature model, and let the secondary users (SUs) increase 

their transmission power until the interference temperature on 

one of their neighbors exceeds its interference temperature 

threshold. Then, knowing the SINR and bandwidth of potential 

links, we calculate the link capacity based on the Shannon 

formula, and model the co-channel interference between 

potential links on each channel by using an interference graph. 

Next, we formulate the spectrum assignment problem in the form 

of a binary integer linear programming (BILP) to find the 

optimal feasible set of simultaneously active links among all the 

potential links in the sense of maximizing the overall network 

capacity. We also propose a new radix tree based algorithm that, 

by removing the sparse areas in the search space, leads to a 

considerable decrease in time complexity of solving the spectrum 

allocation problem as compared to the BILP algorithm. The 

simulation results have shown that this proposed model leads to a 

considerable improvement in overall network capacity as 

compared to genetic algorithm, and leads to a considerable 

decrease in time duration needed to find the optimal solution as 

compared to the BILP algorithm. 

 
Index Terms—Cognitive Radio; Spectrum Allocation; Network 

Capacity; Interference Constraints; Cognitive Cycle. 

I. INTRODUCTION AND RELATED WORKS 

Y the advent of cognitive radio (CR) technology and 

transition from traditional fixed spectrum assignment 
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paradigms toward new spectrum access techniques [1]-[8], 

numerous algorithms for spectrum access in CR networks 

have been proposed. All of these works aim to improve 

spectrum efficiency by provisioning dynamic and 

opportunistic spectrum access for secondary users (SUs). 

Attributed to the two important capabilities and features of CR 

nodes, namely, cognition and reconfigurability, most of these 

spectrum allocation techniques comprise two general phases. 

During the first phase, through sensing the spectral 

environment, CR users capture information of spectrum bands 

and classify available channels in terms of their quality level. 

The second phase of these methods usually comprises a 

spectrum allocation algorithm that, apart from satisfying 

interference constraints, allocates available channels to SUs 

such that spectrum efficiency is maximized. Some of these 

works like ‎[3]‎[9], disregarding QoS parameters of available 

channels such as their SINR and capacity, simply try to 

maximize the number of active links between SUs as their 

objective function by using a binary integer linear 

programming (BILP) formulation. These types of works 

usually rely on an unrealistic assumption that all the available 

channels are homogeneous in terms of their QoS parameters. 

For example, Rezagah et al. ‎[10] showed that under some 

conditions, provisioning a smaller number of simultaneous 

communications links among SUs but each with a higher rate 

can result in a higher total capacity.  In some other works, the 

heterogeneity of potential links in terms of their QoS 

parameters has been considered in a coarse manner. For 

example, Chen et al. ‎[4] introduced a three-step method for 

identifying the available spectrum, in which after computing 

the maximum allowable received power of receiving nodes 

and the actual transmission power at transmitting nodes, the 

identified available spectrum between SUs will be classified 

into two categories for high-power and low-power 

transmissions. Although the heterogeneity of available 

channels has been taken into account in this work, it has just 

classified them into two general categories according to their 

allowed transmission power, and does not capture the exact 

capacity of links in its context. Moreover, in some other 
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works ‎[11]‎[12]‎[13], interference models based on interference 

range have been used, but they are not accurate enough. These 

models usually define an interference range around the 

receiver in which no other transmission is allowed. As will be 

discussed further in the next section, the conservative nature 

of these models will degrade the level of spectrum reuse in the 

CR network, and may lead to a considerable degradation in 

spectrum utilization.  

In this work, unlike the conventional spectrum allocation 

models, we propose a new link capacity aware spectrum 

allocation algorithm to maximize the overall network capacity 

that not only satisfies interference constraints based on the 

more realistic interference temperature model ‎[14], but also 

takes‎ channels’‎ QoS parameters, like their SINR and 

bandwidth, into consideration, and calculates channel 

capacities according to the Shannon model. Then, after 

modeling co-channel interference among all the potential links 

on each channel by using an interference graph, we formulate 

the spectrum allocation problem in the form of the BILP 

formulation to find the optimal feasible set of simultaneously 

active links, among all the potential links in the interference 

graph, such that the overall network capacity is maximized. To 

alleviate the high time complexity of the BILP problem, we 

propose to reduce the search space of this problem by 

mapping the solution space into a radix tree (trie2) structure in 

which the sparse parts of the solution space have been 

removed. Then, we formulate this problem in the form of a 

radix tree search to find the capacity-optimized set of non-

interfering potential links in the interference graph. 

The rest of the paper is organized as follows. Section II 

includes a brief introduction to interference modeling 

techniques in CR networks. Then, a short review of the radix-

tree structure and its compression methods is presented in 

Section III. Next, we describe our proposed model for 

spectrum allocation in CR networks in Section IV. After 

presenting the simulation results and verifying the impact of 

the new proposed model on the overall network capacity in 

Section V, we draw the conclusion in Section VI. 

 

II. CHOOSING A PROPER INTERFERENCE MODEL 

Usually, interference models represent different abstractions 

at various details with respect to their primary goals of a 

specific application ‎[15]‎[16]‎[17]‎[18]. The first step in 

designing a suitable interference model in CR networks is to 

determine a channel propagation model based on the 

propagation environment. Three important propagation effects 

that are usually considered in channel models are deterministic 

path loss, large-scale fading and smallscale fading. In this 

work, assuming that there are not many obstacles in the 

environment and to make the problem tractable, we disregard 

the fading effects and only consider deterministic path loss 

effects in our channel model. The second step of designing a 

suitable interference model is to determine a transmission 

channel model, which demonstrates how interference disturbs 

 
2 Radix tree and trie are used interchangeably in this paper.

 

the reception of a desired signal at the reciever. Early works 

within this context based on the collision channel model ‎[19] 

assume that if two or more terminals transmit to a receiver 

simultaneously, all of their signals would be lost at the 

reciever due to the collision, regardless of their transmission 

powers. In a more realistic class of models such as the recently 

proposed capture channel model, if one of the contending 

received signals is sufficiently stronger than other signals, that 

signal would be successfully decoded by the reciever. Two 

models in this category readily found in literature are the 

vulnerability circle capture model and power capture model. 

Based on the vulnerability circle capture model, the condition 

for successful reception of the ith transmitter signal at a given 

receiver is that the received power level of this signal at the 

receiver, Pr,i, must be larger than the power of any other 

received signal by a ratio of βν with 1 ≤ βν < ∞: 

 , ,/                1,2, , ; r i r jP P for j n j i            (1)  

Considering a simple deterministic path-loss channel model 

and the same transmit power level for all transmitters, the 

above condition leads to the definition of the vulnerability 

circle of radius rν = βν
1 η⁄ . r centered at the receiver. 
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Fig. 1. Vulnerability circle model. ‎[20] 

As illustrated in Fig. 1 ‎[20], transmission from a transmitter 

which is located within the vulnerability circle around receiver 

R1 is considered to interfere with the successful reception of 

the transmitted signal from the active transmitter T1 located at 

a distance r from this receiver according to the vulnerability 

circle capturre model. So, this model is a rather conservative 

model that incurs huge restrictions on transmitters around a 

reciever and results in spectrum efficiency degradation. For 

example, in the presented scenario in Fig. 1, if we assume that 

transmitters have the capability of power control, the 

transmitter node T2 can convey its signal to its intended 

receiver R2 without imposing any significant interference on 

the receiver R1. However, in accordance with more realistic 

power capture models, a signal can be successflly received if 

its received power at the receiver exceeds the power of 

aggregated signal from all other received signals by a given 

threshold, here denoted as βP ‎[21]. In other words, the signal-
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to-interference ratio of the intended signal shoud meet the 

condition below: 

, ,( / ) r i r j P

j i

SIR P P 


              (2) 

where Pr,i is the received power of transmitted signal i at the 

receiver. Assuming the deterministic path-loss channel model 

and considering the additive noise effect on the receiver, here 

denoted as  σ2, we can rewrite the above condition as follows: 
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
      (3) 

where |xi − xR(i)| represents the distance between transmitter i 

and its receiver, here denoted as R(i), and Pt,i denotes the 

transmission power of this transmitter. Based on this model, 

the bandwidth of a given link (Ti, Ri) is equal to a constant 

rate Wi if the SINR of that link exceeds a given threshold for 

reliable transmission; otherwise, it equals to zero. In 

accordance with the Shannon formula for link capacity, the 

highest data rate Wi on a given link (Ti, Ri) is a function of 

SINR and the bandwidth of the channel that is used for that 

link: 
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                


(4) 

where 𝐵 denotes the channel bandwidth and 𝑁0 is the noise 

spectral density. 

III. RADIX TREE STRUCTURE AND ITS COMPRESSION 

METHODS 

Radix tree is a kind of retrieval tree, in which an edge is 

associated with a bit and a node denotes a string (bitmap) that 

represents the bits of the path from the root to that node ‎[22]. 

The‎ left‎ child‎ of‎ each‎ node‎ adds‎ a‎ ‘0’‎ to‎ its‎ string,‎ and‎ the‎

right‎child‎adds‎a‎ ‘1’.‎Fig.‎2(a)‎shows‎a‎simple‎trie‎with‎four‎

prefixes: P1: 00*, P2: 01*, P3: 10* and P4: 11*, in which 

P1:00* stands for all binary strings started with 00 and 

likewise for the other prefixes ‎[23]. In the trie structure, for w 

bit strings, the worst case time complexity for search and 

update is O(w), and the memory complexity is O(nw), in 

which n represents the number of nodes in the tree. Although 

it is simple and easy to implement a radix tree, the memory 

access complexity of O(w) for search and update is relatively 

high. After the introduction of trie, some improvements like 

level compressed trie (LC-trie) have been proposed to reduce 

its search and update complexity. LC-trie is a kind of multi-bit 

tries, in which the necessity for processing one bit on each 

level has been removed; as a result, we can process more than 

one bit at each level of a trie. For example, if we transform a 

trie with the height of w into a multi-bit trie, in which we  

 
Fig. 2. Level compressed trie: (a) a simple trie with four prefixes, and (b) the 

corresponding level compressed trie ‎[23]. 

process k bits on each stride, the height of the new trie will 

be w/k, and as a result the search and update complexity will 

be reduced to O(w/k). In fact, each stride comprises 2k 

different possibilities, for each of which there is a child 

representing its related string. Fig. 2(b) represents the LC-trie 

derived from the simple trie in Fig. 2(a) ‎[23]. Moreover, null 

pointers of the intermediate nodes of the trie that have only 

one child can lead to a waste in memory space, especially 

when they are not representing any potential solution, and they 

are just intermediate to those nodes which are representing 

potential solutions at the lower levels of the trie. Path 

compression is a proposed technique for solving this problem. 

In a path compressed trie, by removing the constraint of 

sequential processing of bits of a string, the intermediate 

nodes that are not representing any potential solution will be 

removed from the path, and, in their parents, the index of the 

next bit that should be processed on each of its left and right 

children will be saved. In fact, in this situation, each node 

should comprise these informational components: (s, p, next), 
in which s dentoes the string associated with the path from the 

root to this current node, p represents the prefix ID, and next 
determines the next bit that should be processed on this node 

to continue the path toward the lower levels of the trie. Unlike 

the trie presented in Fig. 2(a), the path compression techniques 

are particularly important when many nodes have only one 

child in the trie. For example, Fig. 3(b) represents the path 

compressed trie derived by applying the path compression 

technique on the simple trie in Fig. 3(a), in which the nodes 

with one child have been removed, and each node represents 

the currently processed bits, the prefix ID included in that 

node, and the index of the next bit of the key string which 

should be processed ‎[23].  

 
Fig. 3. Path compressed trie: (a) a simple trie with four prefixes: 10*, 111*, 

1010*, 10101*, and (b) the corresponding path compressed trie. ‎[23] 
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IV. PROPOSED MODEL FOR SPECTRUM ALLOCATION 

A. Cognitive Cycle 

We propose an extended cognitive cycle, as shown in Fig. 

4 ‎[23], for spectrum assignment, based on a basic model 

presented in ‎[24]; it comprises five phases. We use this 

extended version to distinguish between different functions 

included in the basic Cognitive Cycle. It is called Cognitive 

Cycle to highlight the cognition capability of CR nodes that 

enables them to capture the information of their spectral 

environment and dynamically adapt themselves to the current 

state of the environment. Based on this cycle, in the spectrum 

sensing phase, SUs monitor their operational frequency 

channels to capture the information related to the physical 

layer of the channels, like their noise and interference level. 

Then, SUs, knowing the position and interference temperature 

threshold of PUs, determine their maximum allowable 

transmission power on each channel in a way that all PUs 

interference constraints still remain satisfied. In fact, in the 

second phase, we let SUs raise their transmission power on 

each channel provided that the interference temperature on all 

affected PUs on that channel does not exceed their acceptable 

threshold. In the next step, regarding the transmission power 

of SUs on each channel and their positions, we can identify all 

the potential links between SUs on each channel and calculate 

their capacities based on their SINR and bandwidth according 

to the Shannon model. Then, in the third phase, since all the 

potential links between SUs on each channel cannot be 

activated simultaneously, we first capture the co-channel 

interference between them by using an interference graph, and 

then by applying an optimization technique, in the network 

capacity optimization phase, we identify a feasible set of 

simultaneously active links among all the potential links such 

that the total network capacity is maximized. Three different 

algorithms for executing the network capacity optimization 

phase are presented in Subsections IV.C, IV.D and IV.E, 

respectively. Finally, in the channel assignment phase, after 

having selected a set of non-interfering links that maximizes 

the network capacity, the available channels will be assigned 

to SUs accordingly.  

           

Fig. 4. Cognitive cycle for CR users. ‎[23] 

Note that we have two phases for interference control in our 

cognitive cycle. In the second phase of this cycle, knowing the 

PUs activity, we determine the maximum allowable 

transmission power for SUs to ensure that interference 

temperature on PUs will remain below their acceptable 

threshold for interference. Then, in the third phase, we model 

the co-channel interferences between secondary users to 

ensure that interfering links between SUs on each channel will 

not be activated simultaneously. Also, note that the maximum 

allowable transmission power is just an upper bound of the 

transmission power of SUs, and SUs may be assigned a power 

level less than this threshold after having performed the 

optimization as long as the SINRs of their links are higher 

than the minimum SINR needed to ensure reliable 

transmission. In fact,  we will do the joint channel assignment 

and power allocation for SUs by using the BILP algorithm 

presented in Section IV.C, and the actual transmission power 

for each SU will be determined after having performed the 

optimization. 

B. System Model and Problem Statement 

Here, we present an extended model for spectrum 

allocation based on the general spectrum allocation model 

presented in ‎[25]. We have assumed that we have M primary 

users in the environment transmitting to each other through C 

channels, and N secondary users competing for opportunistic 

access to these channels. The link availability matrix on the 

given channel c, Fc, is a binary matrix representing the 

potential links between SUs on this channel: 

, , , ,{  |   {0,1}}c i j c i j cF f f                   (5) 

where fi,j,c = 1 if both the secondary users i and j sense the 

channel c as a free channel; otherwise, fi,j,c = 0 . To determine 

whether the channel c is free or not for any SU, each SU 

compares its perceived interference on this channel with the 

interference temperature threshold for this channel, Ic, which 

is the maximum acceptable interference level for this channel. 

Indeed, the given SU i senses the channel c as a free channel if 

the following condition is met: 

, , c

1,

1 ,1 c CI               
M

ri k c c

k k i

i NP N
 

             (6) 

where Pri,k,c is the received power at SU i of a signal 

transmitted from PU k on channel c, and Nc represents the 

noise on channel c. After determining the potential links for 

each user on each channel, we assign a weight to each of these 

links; since our goal is to maximize the total network capacity, 

we assign to each link its link capacity as its weight. In order 

to compute the link capacity, we first determine the maximum 

allowable transmission power on each channel that SUs may 

use. We let the given secondary user i raise its transmission 

power on the given channel c without violating interference 

constraints on receivers of its surrounding primary users. In 

fact, the maximum allowable transmission power of a given 

secondary user i on channel c, Pmaxi,c, is the value such that if 

a secondary user i transmits its signal with a power level 

higher than this value, then there will be at least one primary 

user receiver, r, around it such that its received interference on 

channel c, Ir,c, exceeds the interference temperature threshold 
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for this channel, Ic. In other words, for a given small ℰ, 

Pmaxi,cis the maximum positive value which satisfies the 

following constraint: 

,

,

max

m

, , c

, ca, x

if             then   r :    I     1 

if  ( )   then  r :    I 0

i c

i c

i c r c

i c r c

P p I r M

P p I 

     


    
          

    (7) 

Also,‎there‎is‎a‎minimum‎bound‎for‎each‎SU’s‎transmission‎

power on each channel to guarantee that its transmission will 

satisfy the minimum acceptable SINR needed to have a 

reliable transmission. For each SU i, if Pmaxi,c and Pmini,c 

denote its maximum and minimum allowable transmission 

powers on channel c, respectively, then the transmission 

power of SU i on channel c, Pi,c, can just be chosen from the 

set {P1,..., Pmax} ∈ [Pmini,c , Pmaxi,c], unless we choose to keep 

it silent on this channel, i.e., Pi,c = 0. 

After determining the transmission power of any secondary 

user i on its available channels, we calculate the weight of 

each potential link on these channels, i.e., its link capacity. We 

use a matrix Rc = { ri,j,c| ri,j,c ≥  0 } to denote the weight 

matrix for channel c in which the weight of the link between 

transmitter i and receiver j on channel c can be calculated as 

follows: 

, , 2 , , 1  , ,1 log (1 )    i j c i j c i j N c Cr W SINR        (8) 

where W denotes the bandwidth of channel c and SINRi,j,c 

represents the SINR  of the link between transmitter i and 

receiver j on channel c. According to the above formula, to 

calculate the reward value of potential links, we should first 

calculate the SINR of all potential links between SUs on each 

channel. The SINR of a link between transmitter i and 

receiver j on channel c is: 

 
, ,

, ,

, ,1, 

     
 

j i c

i j c K

c j m cm m i

Pr
SINR

N Pr
 




          (9) 

where  Prj,i,c is the  power received by receiver j  from 

transmitter i  on channel c, Nc is the level of background noise 

on channel c, and K is the total number of active transmitters 

on channel c. To control the co-channel interference between 

the potential links on each channel, we use the conflict (C) 

matrix for each channel: 

 
, , , , , ,

{ |  {0,1}}
i j m n i j m nc ccC C C            (10) 

where Cci,j,m,n = 1 if and only if the link between transmitter i 

and receiver j interferes with the link between transmitter m 

and receiver n on channel c; otherwise, Cci,j,m,n = 0. Two 

links are considered to be interfering with each other if 

concurrent transmissions on that two links make the SINR of 

at least one of them to drop below a minimum SINR needed to 

have a reliable transmission. In the conflict-free channel 

assignment matrix for channel c, Ac = {ai,j,c| ai,j,c ∈ {0,1}}, 

there are no link conflicts. In this binary matrix, ai,j,c = 1 if 

the link between transmitter i and receiver j on channel c exists 

in the final simultaneously active set of links for this channel; 

otherwise, ai,j,c = 0. To avoid all of the link conflicts on the 

given channel c, the following condition should be satisfied in 

a conflict-free channel assignment matrix for this channel: 

, , ,, , , , 1       1 ,      1  ,  , ,  
i j m ni j c m n c ca a if C i j m n N      (11) 

Having the conflict-free spectrum assignment matrix Ac for 

all channels, we can calculate the network capacity as the total 

reward of each feasible solution based on the following 

objective function: 

1

       
C

c c

c

S Sum A R


 
  

 
                   (12) 

where Rc is the reward matrix for the channel c , Rc =

{ri,j,c| ri,j,c ≥ 0 }, which contains the capacity of each of the 

potential links on this channel, Sum is the operator that returns 

the summation of all entries of a matrix, and S represents the 

total network capacity of the conflict-free spectrum 

assignment solution. Note that Ac and Rc are two matrices 

with the same dimension, and the result of ∑ Ac ×
C
c=1 Rc is 

another matrix with the same dimension on which we apply 

the SUM operator to find the total network capacity. Now, the 

above can be formulated as an optimization problem from 

which the optimal or suboptimal solution can be derived. 

C. BILP Formulation 

Note that there are many possible solutions to the above 

spectrum allocation problem, each of which leads to a 

different network capacity; we shall explore all the possible 

solutions in the solution space to find the optimal one. This 

problem can be formulated as a binary integer linear 

programming (BILP) problem as follows: 

    
,

1

max  
c c

C

c c
A R

c

Sum A R


  
  

  
                  (13) 

Subject to: 

 , , , ,0,1   ,  0       (1 , ,1  )i j c i j ca r i j N c C          (14) 

                                          (1 )c cA F c C             (15) 

, , ,, , , , 1     1    (1 ,  , , )
i j m ni j c m n cca a if C i j m n N       (16) 

k, k,min , max ,   P       0       (1 ) 
c c kk cc if P k NP P          (17) 

, , ,

1

                                   (1 ) 
N

i k c i c

k

P P i M


         (18) 

where ai,j,c  and ri,j,c represent an entry of matrices Ac and 

Rc, respectively. Also, Pi,k,c denotes the power received by 

primary user i from secondary user k on channel c, and P̅i,c is 

the maximum acceptable interference power for primary user 

i on channel c. The last constraint guarantees that for any 

primary user i, the total received power of the aggregated 

interference signal on any given channel c will remain below 

its maximum acceptable threshold for interference on this 

channel. Note that in this optimization problem, aside from Ac 
which is the channel assignment variabe, Rc is also an 

optimization variable representing the potential link capacities 

whose values depend on the level of available noise and 

interference‎ on‎ the‎ SUs’‎ operational‎ frequencies‎ and‎ the‎
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transmission power of each SU on these channels. The Max 

operator here is over Ac and Rc, and (Sum( ∑ Ac ×
C
c=1 Rc)) is 

the total network capacity that can be achieved by using Ac as 

the channel assignment matrix and Rc as the matrix which 

includes the potetial link capacities. The channels assigned to 

each SU and the optimal transmission power of each SU on 

each channel will be known after having executed the 

optimization. Here, our goal is to find the values of Ac and Rc 
that maximize the network capacity, which is our objective 

function. This can be solved by using the AIMMS 

software ‎[26]. 

D. Genetic Algorithm Formulation 

Owing to the high complexity of the BILP algorithm on one 

hand, and high dynamics and instability of available spectrum 

in CR networks on the other hand, many researchers have 

resorted to evolutionary algorithms to solve the spectrum 

allocation problem in cognitive radio networks ‎[27]‎[28]‎[29]. 

The main purpose is to approximate BILP and radix tree 

algorithms by a heuristic algorithm with lower complexity to 

find a sub-optimal solution. For this purpose, among various 

heuristic algorithms, Genetic Algorithm has been proven 

effective in solving optimization problems ‎[30]‎[30]‎[31] and is 

thus applied here. Instead of drilling into the details of GA, we 

only highlight some important parameters in the GA 

formulation; readers are referred to ‎[31] for the fundamentals 

of GA. In our GA formulation, each chromosome represents a 

valid solution in the search space. Indeed, the chromosomes 

are formed by sequentially placing the rows of the assignment 

matrices (Ac) of different channels next to each other to form a 

single binary string. For example, if we have N secondary 

users with C operating frequency channels, then each 

chromosome will be a binary string with C. N2 bits of length in 

which its first N2 bits are associated with frequency channel 1 

and its last N2 bits are associated with frequency channel C. 

Let L1, L2 and L3 matrixes represent the available links on 

channels 1, 2 and 3, respectively: 

𝐿1 = [
0 1 1
0 0 0
1 0 0

] , 𝐿2 = [
0 1 0
1 0 0
0 1 0

] , 𝐿3 = [
0 0 1
1 0 0
1 0 0

]  

where Lcij = 1 if and only if there is a link between secondary 

users i and j on channel c. So, we can sequentially map these 

availability matrices into a binary string with 27 bits of length 

to form the first chromosome as: 

 

Fig. 5. Sample chromosome in GA formulation. 

However, if the links L112 and L113 are assumed to conflict 

on channel 1, the chromosome represented in Fig. 5 will not 

be a valid chromosome as it includes both of these conflicting 

links. To remove these link conflicts in the next generation 

chromosomes, we should apply a function on them to 

guarantee that each chromosome does not include more than 

one link of each set of conflicting links. Also, because our 

goal is to maximize the network capacity, the fitness value of 

each chromosome reflects the capacity of a viable network 

configuration, i.e., each chromosome is assigned the fitness 

value of Sum( ∑ Ac ×
C
c=1 Rc) corresponding to the mapped 

network configuration of the chromosome. In fact, in each of 

the iterations of GA, we will sort the chromosomes in terms of 

their fitness values, and select those with better fitness to 

produce the next generation. Also, as shown in Fig. 5, we put 

the crossover points on the boundaries between the links 

which are associated with different channels. Putting the 

crossover points at these boundaries will ensure that the 

removed co-channel link conflicts in previous chromosomes 

will‎ not‎ appear‎ (will‎ remain‎ “removed”)‎ in‎ the‎ next‎

generation. 

E. Radix Tree Based Formulation 

Experiments have proven that in the environments with 

relatively high level of interference, the link availability 

matrix for secondary users is a sparse matrix, in which many 

of the entries have a value of 0. So, on one hand, a BILP 

formulation needs to explore all the binary search space 

involving these sparse areas to find the optimal solution, 

leading to a considerable amount of search in time. On the 

other hand, the GA formulation does not explore all the search 

space; it just explores the limited areas of the search space 

using the mutation and crossover operators, and it usually 

finds a solution that may not be optimal or accurate enough 

owing to the limited number of iterations. To mitigate this 

problem, we propose a novel radix-tree based formulation for 

the spectrum allocation problem. In this method, we remove 

the sparse areas of the search space and just map the solution 

space into a radix tree structure. Here, we define a solution 

space as the areas of the search space that comprise valid 

solutions only. Then, using a path and level compression 

techniques as described in Section III, we compress this trie to 

find the optimal solution in less time as compared to the BILP 

formulation. To achieve this, we construct a trie for each 

channel, and associate each level of a trie with a potential link 

on its related channel. Then, starting from the root, if we pass 

the right child in each level of trie, we add its associated link 

to the set of active links, and remove its conflicting links from 

the list of potential links for that channel. Note that the set of 

active links is empty in the trie root, and the set of potential 

links comprises all the potential links on the trie related 

channel. This way, each node on the trie is associated with a 

set of active links such that the path from the root to that node 

has passed from a right child on their associated level in the 

trie. Therefore, we can define the node fitness as the sum of 

the capacities of the links in the set of active links. We explore 

all the possible paths from the root to the lower level nodes 

until all potential links in the set of potential links have been 

exhausted. Consequently, we have a complete solution 

associated with each leaf of the trie; by comparing their 

equivalent network capacities, we can find the optimal 

solution for the spectrum allocation problem. Considering the 

example provided in the last section, Fig. 6 represents the 

radix tree associated with channel 1 links included in the L1 
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matrix in which we have three links: L12, L13 and L31. As we 

can see in this figure, each node is represented by a table with 

two rows. The first row of this table represents the available 

links for this node, and the second row includes a binary string 

which represents the selected links of the path from the root to 

this node. Note that each path from the root to the leaf nodes 

should not include any conflicting links. That is why we have 

pruned the right child of node C, because the links L12 and L13 

are conflicting on channel 1, and should not be simultaneously 

active on this channel. After constructing a radix tree for each 

channel, and calculating the fitness of each node which is the 

summation of the capacities of its selected links, the best 

solution will be extracted. In this example, if we assume that 

L12, L13 and L31 link capacities are 32 Kb, 64 Kb and 128 Kb, 

respectively, the node L represents the optimal solution which 

includes L13 and L31 links which are not conflicting, and have 

a total capacity of 192 Kb. In this example, owing to the fact 

that all the potential solutions are in the last row of the tree, 

we can easily do the level compression by letting nodes G, H, 

K, L, M and N to be the direct children of the root node with 

000, 001, 010, 011, 100, and 101 labels, respectively. Also, by 

applying the path compression, the intermediate node C can be 

removed as it only has one child and does not include any 

potential solution.  

 

Fig. 6. Sample radix tree for channel 1. 

Suppose we have N secondary users with C operating 

frequency channels and L potential links on each channel, then 

the time complexity of BILP will be O(2N
2
. C) while the time 

complexity of the proposed radix tree based solution will be 

O(2L. C), which is considerably smaller. In fact, supposing that 

α fraction of frequency channels are not available, and β 

fraction of available channels do not satisfy the minimum 

requirements needed for a reliable transmission (0 ≤ m, n ≤
1), then the number of potential links on each channel will be 

(1 − α). (1 − β). N2, resulting in the time complexity of BILP 

being 2(1−(1−α)(1−β))N
2
times as high as that of the proposed 

radix tree based formulation. 

V. SIMULATION RESULTS 

We consider a scenario in which 16 SUs and 4 PUs have 

been normally distributed in the area of 32 𝑚 × 32 𝑚 as 

shown in Fig. 7(a). Next, we apply the cognitive cycle phases 

to this scenario assuming that the SUs have 6 operational  

 

Fig. 7. The scenario with 16 SUs and 4 PUs: (a) spatial distribution of SUs 

and PUs; (b) interference graph for channel 1. 

channels, the interference temperature threshold on each 

channel is 8 dB, and the minimum SINR for a reliable 

transmission is 1. After having identified all the potential links 

between SUs and calculated their SINRs and capacities, we 

ignore the links with SINR less than 1 in the list of potential 

links. Then, we construct an interference graph for each 

channel. Fig. 7(b) represents the interference graph for 

channel 1 in which each pair of interfering links on channel 1 

has been connected through an edge. Next, we apply both 

capacity aware BILP and GA algorithms to find the optimal 

and sub-optimal solutions for this scenario, respectively. We 

also implement two other algorithms to compare the results. 

The greedy algorithm is a recursive algorithm in which each 

iteration simply selects the link with the maximum capacity 

and removes its interfering links in the interference graph; this 

procedure continues until no other link remains in the 

interference graph. Also, we implement the BILP algorithm in 

which the objective function is to maximize the number of 

active links between SUs regardless of their capacities as 

in ‎[3]. We compare the results of these algorithms as shown in 

Fig. 8. Note that both capacity aware GA and BILP algorithms 

lead to a higher network capacity than greedy and capacity 

unaware BILP algorithms. Fig. 8 shows that the capacity 

aware GA algorithm is converging to the optimal solution 

resulted from the capacity-aware BILP algorithm as the 

number of iterations increases. 

 
Fig. 8. Comparing the results of different algorithms. 
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Fig. 9. Performance comparison: (a) network capacities; (b) time complexities. 

 Also, we can see that maximizing the spectrum efficiency in 

terms of the number of active links, regardless of their 

capacities, leads to a considerable degradation in the overall 

network capacity. In fact, our simulation results show that 

maximizing the number of active links between SUs does not 

necessarily maximize the network capacity unless we assume 

that the capacities of all links are equal; this is not realistic. 

 In another scenario in which 25 SUs and 5 PUs have 

been normally distributed in the area of 50 𝑚 × 50 𝑚, we 

apply both capacity-aware BILP and radix tree based 

algorithms to find the optimal solution for this scenario. 

Again, for better comparison of the results, we implement the 

capacity-aware GA algorithm to find a suboptimal solution for 

this scenario in less time, and the capacity-unaware BILP 

algorithm which purely aims to maximize the number of 

active links between SUs regardless of their heterogeneity in 

QoS parameters. We compare the results of these algorithms 

in Fig. 9(a). First, by comparing the results of the capacity-

aware and capacity-unaware BILP algorithms, we can see 

again that maximizing the number of active links as our 

objective function does not necessarily optimize the network 

capacity‎ due‎ to‎ the‎ heterogeneity‎ of‎ potential‎ links’‎ QoS‎

parameters like their capacities. Moreover, as expected, Fig. 

9(a) shows that the network capacity provisioned by the 

capacity-aware trie based algorithm is surpassing that 

provisioned by the GA algorithm as the number of iterations 

increases, and converges to the optimal solution, resulted from 

the capacity-aware BILP algorithm. Also, by tracing the 

results of the GA algorithm, we can see that due to the random 

nature of GA operators, like crossover and mutation, 

increasing the number of GA iterations does not necessarily 

guarantee that an optimal solution will be found, and we can 

only observe some sporadic improvements in its new 

generations. 

In addition, we compare the time complexity of the 

capacity-aware BILP and radix tree based algorithms. We can 

see the time duration needed by these two algorithms to reach 

the optimal solutions for the six different scenarios (with 

different numbers of link conflicts) in Fig. 9(b). As we can see 

in this figure, removing the sparse areas of the search space in 

the proposed radix tree based algorithm leads to a considerable 

decrease in the time duration needed to find the optimal 

solution to the spectrum assignment problem in these 

scenarios; however, by increasing the number of link conflicts 

in these scenarios, the differences of time duration between 

these algorithms become smaller because of the decrease in 

the size of the sparse areas. 

We also evaluate the effects of spatial distribution of SUs 

on the network capacity in our proposed model. As shown in 

Fig. 10(a), we consider two different scenarios in which the 

SUs are either positioned in accordance with a grid structure 

in the environment, or have been randomly distributed in the 

environment. Fig. 10(b) shows the network capacity resulted 

from the scenario in which SUs are randomly distributed in 

the environment; it is much higher than the network capacity 

of the former scenario. Grid positioning of SUs will decrease 

the heterogeneity of the physical distribution of SUs as well as 

the number of link conflicts between SUs, in the case that SUs 

transmit only with a fixed transmission power. However, in 

our model when nodes are randomly distributed, due to the 

power control feature which enables SUs to control their 

transmission power, decreasing the physical distance between 

SUs in the dense areas leads to a considerable increase in the 

link SINR. Moreover, the number of potential links that satisfy 

the minimum SINR needed for a reliable transmission will be 

increased, thus enhancing the network capacity considerably.  
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Fig. 10. Effects of spatial distribution of SUs: (a) different spatial distributions;  (b) associated network capacities. 

VI. CONCLUSION 

Cognitive radio is a promising technology that provides 

opportunistic access‎ to‎“free”‎channels‎ for‎ the‎SUs,‎and‎ thus‎

enhances the spectrum efficiency. Spectrum allocation in CR 

networks usually involves optimization of various parameters. 

In this work, we have proposed a new interference constraint 

capacity-aware spectrum allocation model to maximize the 

network capacity of CR networks. Simulation results have 

shown that we can achieve a higher network capacity by using 

the proposed model than that of other approaches for spectrum 

allocation. Moreover, we have demonstrated that removing the 

sparse areas in the search space and mapping the solution 

space into a radix tree in our proposed model leads to a 

considerable decrease in the time complexity of the spectrum 

allocation algorithm as compared to the BILP solutions for the 

same problem. Also, our simulation results show that 

maximizing the number of active links between SUs does not 

necessarily maximize the network capacity unless we assume 

that the capacity of all links are equal, which is not a realistic 

assumption. Finally, we show that in scenarios in which SUs 

are equipped with power control capability, we can achieve a 

higher network capacity in the case that SUs are non-

uniformly distributed in the environment as compared to the 

case that SUs are positioned in accordance with a grid 

structure. 
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