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Abstract—Matrix inversion is a fundamental operation for
solving linear equations for many computational applications,
especially for various emerging big data applications. However,
it is a challenging task to invert large-scale matrices of ex-
tremely high order (several thousands or millions), which are
common in most web-scale systems such as social networks
and recommendation systems. In this paper, we present a LU
decomposition-based block-recursive algorithm for large-scale
matrix inversion. We present its well-designed implementation
with optimized data structure, reduction of space complexity and
effective matrix multiplication on the Spark parallel computing
platform. The experimental evaluation results show that the
proposed algorithm is efficient to invert large-scale matrices
on a cluster composed of commodity servers and is scalable
for inverting even larger matrices. The proposed algorithm and
implementation will become a solid foundation for building a
high-performance linear algebra library on Spark for big data
processing and applications.

Index Terms—matrix inversion, LU decomposition, linear al-
gebra, parallel algorithm, distributed computing, Spark

I. INTRODUCTION

Theoretically, a set of linear equations can be represented
as Ax = b, where A is an n × n matrix, x and b are n × 1
vectors. This equation can be solved by computing the inverse
of the matrix A, denoted by A−1, to get x = A−1 × b.
Therefore, matrix inversion is an essential computation task
in many data scientific applications, such as signal processing,
complex network analysis and collaborative recommendation.
For general matrices, there exist some commonly available
matrix inversion algorithms like Gaussian elimination, Gauss-
Jordan [1], Cholesky decomposition [2] and LU Decomposi-
tion [3]. However, these algorithms are computation-intensive
that require a cubic number of operations. Therefore, they
are not applicable to invert large-scale matrices of dimen-
sion in the order of thousands or millions, often required
in emerging big data applications. For example, in real-life
social networks (like Facebook and Twitter), e-commerce
websites (like Amazon and Ebay) and online-video service
providers (like Youtube and Netflix), various types of matrices,
including following matrices, transaction matrices and rating
matrices, contain millions of distinct users and items. Inver-
sion of these large-scale matrices is a fundamental operation
for proximity measurement, link prediction and personalized
recommendation tasks. This calls for the application of parallel
computing techniques in the inversion of large-scale matrices.
Message Passing Interface (MPI) is proved to be an effective
programming model to support parallel matrix inversion jobs

[4]. In recent years, a number of new distributed computing
technologies have emerged as platforms for data intensive
computing tasks. MapReduce [5] and Spark [6] are two
most popular ones owing to their outstanding scalability and
fault-tolerance capabilities. Xiang, et al. [7] proposed and
implemented a scalable matrix inversion algorithm based on
MapReduce. As compared to MapReduce, Spark provides
a novel data abstraction called resilient distributed datasets
(RDDs) based on distributed memory for efficient data reuse,
which improves the performance of iterative computing jobs.
However, Spark only supports relatively coarse-grained trans-
formation on RDDs. It leads to challenges in the design and
implementation of complex matrix operation algorithms, and
thus calls for new ideas and solutions.

In this paper, we present a LU decomposition based algo-
rithm for large-scale matrix inversion and its implementation
on Spark. We carry out a block-recursive approach to break
down the huge inversion computation on the original large-
scale matrix into a set of small tasks, which can be executed
as a pipeline of Spark tasks on a cluster. The Spark implemen-
tation of the proposed algorithm as well as the MapReduce-
based algorithm proposed in [7] and an MPI-based program
are evaluated on clusters with different configurations. The
comparison with the MapReduce-based algorithm shows that
our algorithm achieves remarkable performance improvement,
and that to the MPI-based program demonstrates that the
Spark implementation is more robust on heterogenous and
unreliable clusters. However, it is noted that this paper is
not trying to prove that Spark is fundamentally superior to
MPI or MapReduce. Our goal is to introduce: 1) a novel
matrix inversion algorithm along with its well-designed Spark
implementation, which will become a fundamental compu-
tational component to build a linear algebra library for big
data science, 2) the underlying mathematical principles for
high-performance matrix inversion like block-oriented data
structure for efficient accessing matrix elements and solving
L−1 and U−1 instead of L and U to reduce the computation
and space complexity, and 3) the experimental performance
evaluation and analysis of Spark-based, MapReduce-based and
MPI-based matrix inversion algorithms on local clusters com-
posed of commodity servers under different scenarios. This
paper is an elaborated and extended version of a conference
paper presented at IEEE INFOCOM 2016 workshop of Big
Data Sciences, Technologies and Applications [8]. The key
additions of this version include: (1) we propose and illustrate
the theories and pseudo-codes of optimized algorithms in
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Section II, (2) we detail the key points of implementation on
Spark in Section III, (3) we perform an additional experiment
on an extra large-scale matrix sized 102400 and present the
execution times on two clusters in Section IV, and (4) we
extend the survey of related works including the researches
of using Graphics Processing Unit to accelerate the matrix
computation in Section V.

The rest of this paper is structured as follows. In Section
II, we present the basic and the optimized LU decomposition
based block-recursive matrix inversion algorithm. Section III
introduces the key points of its implementation on Spark. We
demonstrate the performance and the scalability of the pro-
posed algorithm, substantiated with experimental evaluation
results, in Section IV. The related work is discussed in Section
V. In Section VI, we conclude and point out future works.

II. RELATED WORK

Owing to its fundamental role in scientific computing,
matrix inversion is widely supported in several numerical
analysis softwares like Matlab, R, LINPACK [9] and LA-
PACK [10]. Although these softwares provide basic matrix
inversion capabilities for solving linear equations, they have
performance issue when the order of the matrix to be inverted
becomes huge. Therefore, developing parallel algorithms for
inverting large-scale matrix is always an important issue in
data science research community.

Lau et al. [11] proposed two algorithms based on Gaussian
elimination to invert sparse, symmetric and positive definite
matrices on parallel computers, and implemented these two
algorithms on SIMD and MIMD computers. However, these
algorithms do not work for general matrices. ScaLAPACK
[4] extended LAPACK to perform large-scale dense matrix
computation on shared-memory supercomputers. It achieved
the goal of scalability to keep the computing task efficient
when the number of processors increases, but it does not
provision fault-tolerance capability. Bientinesi et al. [12] pro-
posed an algorithm to invert a symmetric positive definite
matrix based on Cholesky factorization. Although the experi-
mental evaluation results showed that the proposed algorithm
outperforms ScaLAPACK by improving load-balance on a
distributed memory environment, this algorithm cannot be
used to invert general matrices. Agullo, et al. [13] proposed
an efficient and scalable tile algorithm to invert a symmetric
positive definite matrix. They used a dynamic scheduler to
orchestrate the tasks in the process of inverting a matrix for
fine granularity parallelism and asynchronous scheduling, but
it does not work for general matrices. Dongarra, et al. [14]
designed a LU factorization based algorithm for inverting gen-
eral square matrices on multicore computer architecture. The
implementation shows good performance, but it is not suitable
for clusters. Yang, et al. [15] proposed a parallel algorithm
for matrix inversion based on Gauss-Jordan elimination with
pivoting. However, the implementation relies on some specific
DSP hardware, which limits its applications.

In recent years, Graphics Processing Unit (GPU) has been
proved having potentials to perform computationally intensive
tasks. Peter et al. [16] proposed to accelerate the computation

of matrix inversion by connecting a GPU to general-purpose
multi-core processors and implemented a matrix inversion
algorithm based on Gauss-Jordan elimination on a hybrid
architecture consisting of one (or more) multi-core general
processors connected to several GPUs. The evaluation results
showed that the proposed architecture can achieve remarkable
high performance. Sharma et al. [17] modified the Gauss-
Jordan algorithm for matrix inversion by leveraging the large
scale parallelization capability of a massively multithreaded
GPU. The algorithm was implemented on a Computer Unified
Device Architecture (CUDA) platform. Although the above
works have demonstrated that GPU can considerably reduce
the computational time of matrix inversion, they are non-
scalable centralized methods and need special hardwares.

To break the resource limitation of single server, Caron and
Utard [18] designed a LU factorization based parallel out-of-
core algorithm to invert huge matrices and implemented the
algorithm based on the ScaLAPACK library in cluster envi-
ronment. However, owing to the heavy communications and
I/O overheads, the algorithm is slow to invert huge matrices.
For example, it needs 3 days to invert a matrix of order 10,000
on a cluster of 16 servers. As cloud computing technologies
emerges, several new data processing platforms have been
developed for large-scale data processing. MapReduce and
Spark are two outstanding technologies, which have been
proved to be efficient for big data processing on clusters
composed of commodity servers with scalability and fault-
tolerance [19]. Building linear algebra functionality on these
platforms becomes a problem of great interest. HAMA [20]
and linalg [21] are such kind of efficient matrix compu-
tation software packages based on MapReduce and Spark,
respectively. However, they do not provide matrix inversion
function. The work of [7] was the first MapReduce-based
matrix inversion algorithm, but the inefficient hard disk based
intermediated data mechanism limits its performance.

III. ALGORITHM DESIGN AND OPTIMIZATION

A. Matrix Inversion based on LU Decomposition

The inverse of a square matrix A = [aij ]16i,j6n is denoted
as A−1 such that AA−1 = In, where In is the identity matrix
of dimension n×n. The LU decomposition method computes
the inverse of a matrix A by factorizing the original matrix
into two matrices L = [lij ]16i,j6n and U = [uij ]16i,j6n such
that A = LU , where L is a lower triangular matrix (i.e., lij =
0 for 1 6 i < j 6 n) and U is an upper triangular matrix
(i.e., uij = 0 for 1 6 j < i 6 n). From this decomposition,
the equation AA−1 = In can be transformed to LUA−1 =
In, and the inverse matrix A−1 can be simply computed by
A−1 = U−1L−1.

In some cases, the LU factorization of the original matrix
may fail to materialize. In order to make the factorization
numerically stable, the LU decomposition is always computed
using partial pivoting in practice, which decomposes the row
permuted matrix PA instead of the original matrix A. P is a
square binary matrix that has exactly one entry of 1 in each
row and each column, and 0s elsewhere. Then, we can solve
the inverse matrix A−1 by computing U−1L−1P . Algorithm
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Algorithm 1 : LU decomposition on a single node
Input:

A = [aij ]16i,j6n → The input matrix
Output:

L → L
U → U
P → The pivot matrix

1: function LUDecompose(A)
2: n = rows(A)
3: for k = 1 to n do
4: (j, k) = argmax(|Ak,k|, |Ak+1,k|, ..., |An,k|)
5: add j to P
6: swap i-th row with j-th row
7: for i = k + 1 to n do
8: Ai,k = Ai,k/Ak,k

9: for j = k + 1 to n do
10: Ai,j = Ai,j −Ai,kAk,j

11: end for
12: end for
13: end for
14: return (A,P ) /*(L,U ,P )*/
15: end function

1 shows the pseudo-code of the in-place LU decomposition
by the partial pivoting method, which is only workable for a
small matrix that can be loaded into the memory of a single
server. Return values are matrix A and matrix P . The upper
triangular portion of A resembles U whereas the lower one
resembles L.

B. Basic Block-recursive Matrix Inversion Algorithm

We develop a block-recursive algorithm based on LU de-
composition to compute the inverse of a large-scale matrix
that cannot be loaded into the memory of a single server. To
illustrate the basic idea of the proposed algorithm, we take
a matrix with 16 blocks, which is shown as the first matrix
composed by B11−B44 in Figure 1, as an example to show the
overall process. Each block is a square matrix of dimension
b × b. The order of the block, b, is around 103 or less, and
thus the block is small enough to fit in the memory of a
computing server and be decomposed efficiently. Matrix M
denotes the input matrix of the algorithm, and M (i) denotes
the input matrix of the i-th step. The steps to invert the sample
matrix are as follows:

Step 1: Take the original matrix A as the input of computing
M (1). If the input matrix M (1) is not small enough, e.g.,
cannot be decomposed on a single server very quickly, M (1)

is partitioned into 4 small sub-matrices. The first sub-matrix,
the matrix composed by B11, B12, B21, andB22 at the top-left
corner, is selected as the new input matrix M (2).

Step 2: The input matrix M (2) is examined again to check if
it is small enough. If not, M (2) is recursively partitioned into
4 small sub-matrices. The sub-matrix at the top-left corner is
selected as the new input matrix M (3).

Step 3: Now M (3) is small enough, i.e., only the sub-matrix
B11 is left in this example. It could be efficiently decomposed

Fig. 1. Process of the proposed algorithm

on a single server. Unlike the traditional LU decomposition
algorithm, we calculate the L−1, U−1 and P instead of L, U
and P for further processes. We will explain how this approach
can improve the performance in following sections.

Step 4: The results of L−1, U−1 and P calculated in the
function in the second round of recursion are returned to the
caller in the first round of recursion. They are used together
with the input matrix M (2) to solve the L−1, U−1 and P in
the first round of recursion.

Step 5: The results of L−1, U−1 and P calculated in the
first round of recursion are returned to the caller, and are used
together with the original input matrix M (1) to compute the
final L−1, U−1 and P .

For a single block, L−1, U−1 and P can be easily calculated
by Algorithm 1 on a single server. So, the key point of the
proposed algorithm to achieve high performance is how to
calculate L−1, U−1 and P when the input matrix is too big to
be computed on a single server. We introduce a block-based
approach to decompose the matrices M , L, U and P such that
PM = LU . Without loss of generality, we assume the order
of the square matrix M is 2kb, where k is a natural number
and b is the order of the block matrix that can be decomposed
on a single server. We will describe how to handle the matrices
that do not meet this criterion at the end of this section. Let
the matrices M , L, U and P be partitioned as blocks with
equal size:(

P1 O
O P2

)(
M1 M2

M3 M4

)
=

(
L1 O
L2 L3

)(
U1 U2

O U3

)
.

Performing the matrix multiplication in the above equation
results in(

P1M1 P1M2

P2M3 P2M4

)
=

(
L1U1 L1U2

L2U1 L2U2 + L3U3

)
.

This leads us to the following equations:

L1U1 = P1M1 (1)

L1U2 = P1M2 (2)
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Algorithm 2 : Basic Block-based LU Decomposition
Input:

M = [mij ]16i,j6n → The input matrix
Output:

L−1 → Inverse of L
U−1 → Inverse of U
P → The pivot matrix

1: function BlockLUDecompose(M )
2: if M is small enough then
3: (L,U, P ) = LUDecompose(M)
4: L−1 = Inverse(L)
5: U−1 = Inverse(U)
6: else
7:

(
M1 M2

M3 M4

)
= M

8: (L−1
1 , U−1

1 , P1) = BlockLUDecompose(M1)
9: U2 = L−1

1 (P1M2)
10: L̃2 = M3U

−1
1

11: M̃ = M4 − L̃2U2

12: (L−1
3 , U−1

3 , P2) = BlockLUDecompose(M̃)
13: L2 = P2L̃2

14: L−1 =

(
L−1
1 O

−L−1
3 L2L

−1
1 L−1

3

)
15: U−1 =

(
U−1
1 −U−1

1 U2U
−1
3

O U−1
3

)
16: P =

(
P1 O
O P2

)
17: end if
18: return (L−1, U−1, P )
19: end function

L2U1 = P2M3 (3)

L2U2 + L3U3 = P2M4. (4)

If M1 is small enough, i.e., it can be efficiently calculated
on a single server, we can decompose M1 to get L1, U1 and
P1 from Eq. (1) by Algorithm 1:

(L1, U1, P1) = LUDecompose(M1). (5)

We can get L−1
1 by inverting the small matrix L1. From Eq.

(2), we have

U2 = L−1
1 P1M2. (6)

If we define

L̃2U1 = M3, (7)

we can get

L̃2 = M3U
−1
1 , (8)

where U−1
1 is the inverse of small matrix U1. Considering both

Eqs. (3) and (8), we have

L2 = P2L̃2. (9)

Algorithm 3 : Basic Block-recursive Matrix Inversion
Input:

A = [aij ]16i,j6n → The input matrix
Output:

A−1 → Inverse Matrix of A
1: function BlockInverse(A)
2: (L−1, U−1, P ) = BlockLUDecompose(A)
3: A−1=U−1L−1P
4: return (A−1)
5: end function

Then, by substituting Eq. (9) into Eq. (4), we get

L3U3 = P2M4 − L2U2 = P2(M4 − L̃2U2).

Let M̃ = M4 − L̃2U2. If M̃ is small enough, we can get
L3, U3 and P2 by decomposing M̃ :

(L3, U3, P2) = LUDecompose(M̃). (10)

After obtaining P2, we can get L2 by substituting P2 and
Eq. (8) into Eq. (9):

L2 = P2L̃2 = P2M3U
−1
1 . (11)

Thus far, we get all L1, L2, L3, U1, U2, U3, P1 and P2

from Eqs. (5), (6), (10) and (11). So, we finally have:

L−1 =

(
L−1
1 O

−L−1
3 L2L

−1
1 L−1

3

)
(12)

U−1 =

(
U−1
1 −U−1

1 U2U
−1
3

O U−1
3

)
(13)

P =

(
P1 O
O P2

)
.

M1 and M̃ are assumed to be small enough to be decom-
posed on a single server according to Eqs. (5) and (10). If
any of them is too big to be solved on a single server, we
can keep recursively partitioning it into smaller sub-matrices
until the sub-matrix is small enough. Algorithm 2 illustrates
the basic block-recursive LU decomposition algorithm. Based
on Algorithm 2, we have the basic block-recursive matrix
inversion algorithm as described in Algorithm 3.

Note that we assume the order of the square matrix M and n
is 2kb, where k is a natural number. If n does not equal to 2kb,
we can perform the LU decomposition below. We define the
block with dimensions b×b as the basic block. For each round
of the recursion, the input matrix M is partitioned into N×N
basic blocks, where N = dn/be. The order of the blocks in
the last row and column is n − b × (N − 1). The order of
other blocks is b. If N = 2k, where k is a natural number, the
matrix M can be decomposed directly by using the proposed
algorithm. Otherwise, let k = dlog2Ne. In line 7 of Algorithm
2, we can set the size of M1 as 2k−1 × 2k−1 blocks. Then,
we get the size of M2, M3 and M4 as 2k−1 × (N − 2k−1),
(N − 2k−1) × 2k−1 and (N − 2k−1) × (N − 2k−1) blocks,
respectively. Finally, the BlockLUDecompose() function can
be executed recursively on M1 and M̃ .
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Algorithm 4 : Optimized Block-based LU Decomposition v1
Input:

M = [mij ]16i,j6n → The input matrix
Output:

L−1 → Inverse of L
U−1 → Inverse of U
P → The pivot matrix

1: function BlockLUDecompose(M )
2: if M is smal then
3: (L,U, P ) = LUDecompose(M)
4: L−1 = Inverse(L)
5: U−1 = Inverse(U)
6: else
7:

(
M1 M2

M3 M4

)
= M

8: (L−1
1 , U−1

1 , P1) = BlockLUDecompose(M1)
9: T = U−1

1 L−1
1

10: S̃ = M3T
11: M̃ = M4 − S̃(P1M2)
12: (L−1

3 , U−1
3 , P2) = BlockLUDecompose(M̃)

13: S = P2S̃

14: L−1 =

(
L−1
1 O

−L−1
3 S L−1

3

)
15: U−1 =

(
U−1
1 −T (P1M2)U

−1
3

O U−1
3

)
16: P =

(
P1 O
O P2

)
17: end if
18: return (L−1, U−1, P )
19: end function

C. Algorithm Optimization

Note that there are a number of matrix multiplications in
Algorithm 2. If we can eliminate some of these multiplications,
we will save tremendous computation resources and time.
From Eqs. (2), (3), (12) and (13), we have:

L−1 =

(
L−1
1 O

−L−1
3 P2M3U

−1
1 L−1

1 L−1
3

)

U−1 =

(
U−1
1 −U−1

1 L−1
1 P1M2U

−1
3

O U−1
3

)
.

In the above equations, there is a duplicate multiplication
U−1
1 L−1

1 , which is performed in each round of recursion. We
introduce two new matrices, T = U−1

1 L−1
1 and S̃ = M3T .

Thus, Algorithm 2 is optimized and results in Algorithm 4. By
comparing line 14 of Algorithm 2 with line 14 of Algorithm 4,
we can see that the multiplication of three matrices L−1

3 L2L
−1
1

have been optimized and have become the multiplication of
two matrices −L−1

3 S.
The last step of Algorithm 3 takes a long time to compute

A−1 = U−1L−1P , in which U−1, L−1 and P have equal
sizes with the large-scale input matrix A. From Algorithm 4,
we have

M−1 =

(
[M−1]1 [M−1]2
[M−1]3 [M−1]4

)
,

Algorithm 5 : Optimized Block-based LU Decomposition v2
Input:

M = [mij ]16i,j6n → The input matrix
Output:

LUofM → intermediate matrix of LU
1: function BlockLUDecompose(M ) . actual L−1, U−1

2:

(
M1 M2

M3 M4

)
= M

3: if M1is small then
4: (L1, U1, P1) = LU(M1)
5: L−1

1 = Inverse(L1)
6: U−1

1 = Inverse(U1)
7: T = U−1

1 L−1
1

8: S̃ = M3T
9: M̃ = M4 − S̃(P1M2)

10: (L3, U3, P2) = LUDecompose(M̃)
11: L−1

3 = Inverse(L3)
12: U−1

3 = Inverse(U3)
13: else
14: LUofM1 = BlockLUDecompose(M1)
15: (L−1

1 , U−1
1 , P1) = getLU(LUofM1)

16: T = U−1
1 L−1

1

17: S̃ = M3T
18: M̃ = M4 − S̃(P1M2)
19: LUofM̃ = BlockLUDecompose(M̃)
20: (L−1

3 , U−1
3 , P2) = getLU(LUofM̃)

21: end if
22: LUofM = (L−1

1 , S̃, L−1
3 , U−1

1 , T, P1M2, U
−1
3 , P1, P2)

23: return LUofM
24: end function

where:

[M−1]1 = U−1
1 L−1

1 P1 + U−1
1 L−1

1 P1M2U
−1
3 L−1

3 P2M3U
−1
1 L−1

1 P1

[M−1]2 = −U−1
1 L−1

1 P1M2U
−1
3 L−1

3 P2

[M−1]3 = −U−1
3 L−1

3 P2M3U
−1
1 L−1

1 P1

[M−1]4 = −U−1
3 L−1

3 P2.

There are a number of duplicate matrix multiplications in
the four equations above, such as U−1

1 L−1
1 , U−1

3 L−1
3 and

P2M3. To eliminate these duplicate matrix multiplications, we
define the following new variables:

T = U−1
1 L−1

1

X1 = TP1

X2 = U−1
3 L−1

3

Y1 = X1M2

Y2 = X2M3.

Then, we have:
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Algorithm 6 : Compose LU
Input:

LUofM → intermediate matrix of LU
Output:

L−1 → Inverse of L
U−1 → Inverse of U
P → The pivot matrix

1: function getLU (LUofM )
2: (L−1

1 , S̃, L−1
3 , U−1

1 , T, P1M2, U
−1
3 , P1, P2) = LUofM

3: S = P2S̃

4: L−1 =

(
L−1
1 O

−L−1
3 S L−1

3

)
5: U−1 =

(
U−1
1 −T (P1M2)U

−1
3

O U−1
3

)
6: P =

(
P1 O
O P2

)
7: return (L−1, U−1, P )
8: end function

[M−1]4 = X2

[M−1]3 = −Y2X1

[M−1]2 = −Y1X2

[M−1]1 = X1 − Y1[M
−1]3.

Based on the above equations, Algorithm 4 can be optimized
and results in Algorithm 5. The pseudo-code of function
getLU in Algorithm 5 is shown in Algorithm 6. Finally,
we have the optimized block-recursive matrix inversion al-
gorithm as described in Algorithm 7, which achieves high-
performance by avoiding the large-scale matrix multiplication
A−1 = U−1L−1P .

IV. KEY POINTS OF IMPLEMENTATION ON SPARK

A. The Reason for Choosing Spark

The growing success of new distributed computing tech-
nologies like MapReduce [5] has made it possible to achieve
large-scale matrix operations on clusters composed of com-
modity servers [7] [20]. However, the nature of MapReduce
makes it inefficient for iterative computations. To address
this issue, a number of alternative technologies have been
proposed. Spark [6] is such a parallel computing platform,
which supports efficient execution of iterative algorithms on
a distributed memory abstraction named Resilient Distributed
Datasets (RDDs). Choosing Spark to implement the proposed
algorithm has several advantages. First, our algorithm benefits
from the scalability and fault-tolerance capabilities of Spark,
which provides low-overhead fault-tolerance to release the
programmers from check-pointing and rollbacks during the
long process of data computing. Second, the performance of
our algorithm can be improved by the persistence feature of
RDDs by avoiding to repeatedly save and load the intermediate
data to and from hard-disks. Finally, as compared to the simple
Map and Reduce programming model in MapReduce, the rich
and flexible APIs of Spark provide us a relaxed space to
control and optimize our algorithm in a fine-grained manner.

Algorithm 7 : Optimized Block-recursive Matrix Inversion
Input:

A = [aij ]16i,j6n → The input matrix
Output:

A−1 → Inverse of A
1: function BlockInverse(A)
2: if A is small then
3: return A−1

4: else
5:

(
A1 A2

A3 A4

)
= A

6: LUofA = BlockLUDecompose(A)
7: (L−1

1 , S̃, L−1
3 , U−1

1 , T, P1A2, U
−1
3 , P1, P2) = LUofA

8: X1 = TP1

9: X2 = U−1
3 L−1

3

10: Y1 = X1A2

11: Y2 = X2A3

12: [A−1]4 = X2

13: [A−1]3 = −Y2X1

14: [A−1]2 = −Y1X2

15: [A−1]1 = X1 − Y1[A
−1]3

16: A−1 =

(
[A−1]1 [A−1]2
[A−1]3 [A−1]4

)
17: return A−1

18: end if
19: end function

B. Data Structure Design on Spark

In each round of the recursion, the Spark-based implemen-
tation of the proposed algorithm requires distributing the huge
input matrix and the intermediate matrices across servers in the
distributed computing environment. Therefore, the representa-
tion of matrix data is a key point for effective implementation.
In Spark, data are represented and managed as RDDs, which
are a distributed memory abstraction to perform in-memory
computations on clusters in a fault-tolerant manner. A RDD is
a collection of elements that are partitioned across servers of a
cluster. In this condition, we introduce two different distributed
matrix representations, IndexRowMatrix and BlockMatirx to
implement the proposed algorithm.

IndexRowMatrix is a row-oriented distributed matrix
with meaningful indices. It is a suitable matrix
data format for the input of our algorithm. For
example, A = [aij ]16i,j6n can be stored as a RDD
{a11, a12, ..., a1n, a21, a22, ..., a2n, ..., an1, an2, ..., ann} in
row-major order. If a matrix is stored in this format, it
requires two steps to access a partition of the matrix
composed of a set of blocks, such as B11, B12, B21

and B22 in Figure 1. The first step is positioning the
elements in these blocks by transforming the block
indices into a number of element indices, such as
B11 = {a11, ..., a1b, a21, ..., a2b, ..., ab1, ..., abb}. The second
step is reading the elements based on the transformed
element indices. These elements may dispersively stored in a
number of servers. It incurs a longer disk IO time and heavy
overheads of network communications to compose a new
RDD by these elements for further processing. Therefore,
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IndexRowMatrix is not suitable to store intermediate matrices.
Towards this end, we introduce the block-oriented data
structure BlockMatirx. It is a distributed matrix where a block
is a < Key, V alue > pair < BlockID,BlockV alue >.
BlockID is the index of the block and BlockValue is the
sub-matrix at the given BlockID with size b × b. For
example, the block B11 in Figure 1 is organized as a RDD
< 11, {a11, ..., a1b, a21, ..., a2b, ..., ab1, ..., abb} >. A matrix is
stored as a RDD that is composed by a number of blocks. In
this condition, a block can be accessed directly by its index.
Elements in a block are stored contiguous in memory, which
dramatically reduces the time of disk IOs and overheads of
network communications. Note that converting a distributed
matrix to a different format, like from IndexRowMatrix to
BlockMatrix, may require a global shuffle with network
overhead. It is important to covert the format of matrix data
as less as possible, especially for an iterative algorithm.

C. Solving L−1 and U−1 Instead of L and U

Previous LU decomposition based matrix inversion algo-
rithms, such as [7], [18], [22], follow three steps: factorizing
A as PA = LU , solving L−1 and U−1, and obtaining
A−1 = U−1L−1P . In contrast, we directly calculate L−1 and
U−1 instead of L and U in each round of the recursion. In this
section, we illustrate the necessity and benefit of this approach.

We have seen that if we calculate L and U at line 8 and 12 in
Algorithm 2, it is required to solve two linear equations below
to obtain two sub-matrices U2 and L2 with known matrix U1,
M3, L1, P1 and M2:[L̃2]

1

...

[L̃2]
n

U1 =

[M3]
1

...
[M3]

n


L1

(
[U2]1 ... [U2]n

)
=
(
[P1M2]1 ... [P1M2]n

)
.

where [∗]i and [∗]i are the ith row and column of a matrix,
respectively. If we follow the above process, we have to access
the matrix by row manner and column manner, which will
need to convert the BlockMatrix to IndexRowMatrix in each
iteration. However, if we calculate L−1 and U−1 at line 8
and 12 in Algorithm 2, we can directly obtain L̃2 and U2 by
computing L̃2 = M3U

−1
1 and U2 = L−1

1 P1M2 with matrix
multiplication.

Another problem of traditional LU decomposition matrix
inversion resides in the last step of solving A−1 by A−1 =
L−1U−1P . If we only get L and U , it is required to invert
large matrices to obtain L−1 and U−1. For example, we can
partition the large scale L as

L =

(
L1 O
L2 L3

)
to solve for L−1 by leveraging the lower triangular matrix
characteristic of L:

L−1 =

(
L−1
1 O

−L−1
3 L2L

−1
1 L−1

3

)
.

For a large scale L, it requires a number of recursions to obtain
the whole L−1, which is a compute-intensive task. Obviously,
we can avoid this step by directly obtain L−1 and U−1.

D. High-performance Matrix Multiplication

Matrix multiplication operations are the major part of the
computations of the proposed algorithm. Therefore, imple-
menting a high-performance matrix multiplication is one of the
key points for large-scale matrix inversion. Towards this end,
we use a 1-D block-based approach to achieve efficient matrix
multiplication with low network communications overhead.
Suppose that we will solve C = AB, where A and B are
both n × n matrices. We transform the matrices A and B
from the original 2-D representation to an 1-D representation
as:

{A11, A12, ..., A1N}×N times, ..., {AN1, AN2, ..., ANN}×N times

{B11, B21, ..., BN1, ..., B1N , B2N , ..., BNN}×N times

The 1-D representations of A and B are organized as
two RDDs, FlatA and FlatB, respectively. Each element in
the RDD has a sequence number Seq. We perform a join
operation between these two RDDs to get a new RDD, named
FlatAF latBPair. Each element in FlatAF latBPair is
a key value pair < Seq, (Ai,k, Bk,j) >. Each map task
multiplies two sub-matrices as its output value and BlockID
< Seq/N2, Seq/N%N > as its output key. Each re-
duce task sums the matrices to get the final result Ci,j =∑N

k=1 Ai,kBk,j . With customized partitioning functions, we
can set the number of parallel tasks as N2. In general, it is
larger than the total number of cores; these parallel tasks could
achieve better dynamic load balancing and speed up recovery
when a server in the cluster fails or shows slow response.

E. Effective Permutation of Matrix

In the proposed algorithm, there are plenty of permutation
operations on matrices to control the round-off error of matrix
inversion. We concentrate on two points to achieve effective
permutation of matrix: (1) an optimized data structure to
manage the permutation matrix, and (2) effectively permuting
rows and columns of a given matrix.

The permutation matrix P sized n × n has precisely one
entry whose value is 1 in each row and each column, and its
other entries are zero. Based on this characteristic, we utilize
an array-based data structure ArrayP = [arrayPi]16i6n,
where arrayPi = j if pi,j = 1, to store P . This array-based
data structure saves the space cost by using only n elements
to store an n×n matrix, as well as facilitates the permutation
operations below.

As mentioned before, the intermediate matrices to be
computed in the proposed algorithm are stored in a block-
based format. It requires three steps to perform the ma-
trix permutation in the traditional way: (1) transforming the
block-based format data to row-major/column-major order
data, (2) updating the row/column indices for interchang-
ing row/column, and (3) transforming the row-major/column-
major order data to block-based format data. In the above
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three steps, there are several rounds of shuffle operations,
which will cause too many overheads of disk IOs and net-
work communications for permuting a large-scale matrix. To
improve performance, we introduce a method to perform the
row permutation B = PA directly on the block-based data
structure. We compose a RDD RA to store blocks of the
original matrix on row-major order. Each block is represented
as a < Key, V alue > pair < BlockID,BlockV alue >.
Then, we apply a flatMap transformation on RA to obtain
another RDD Ã. The first step in flatMap is splitting each
block into a set of rows represented as < Key, V alue > pairs
< BlockID, (RowIndex, V alueOfRowPiece) >, where
RowIndex is the index r of a row and V alueOfRowPiece
is the set of elements in the row. The second step is finding the
index r̃ in ArrayP such that arrayPr̃ = r, and updating the
index of each row from r to r̃. After obtaining the new index
of each row, we can get the newBlockID of the row piece.
The column index of newBlockID is the same as previous
BlockID because the row permutation does not change the
column index of each element. The row index newBlockID
can be easily obtained by r̃/b. Finally, we can obtain B by
performing groupByKey transformation on Ã to combine these
row pieces to a new BlockV alue. In the above process, there
is only one shuffle in the groupByKey transformation.

From the equation of column permutation B = AP =
(PTAT )T , we can use the row permutation to achieve column
permutation. The only thing we need to consider is obtaining
PT from P . From the array representation of P , ArrayP =
[arrayPi]16i6n, we can simply get PT by swapping the index
i and the value j. After this, we can follow the above row
permutation process to get the result of column permutation.

F. Reduction of Space Complexity

In general, most of traditional methods of parallelizing
the LU factorization are based on a blocked right-looking
approach, which is based on partitioning a large-scale matrix
M that cannot be computed on a single server to blocks as:(

M1 M2

M3 M4

)
=

(
L1 O
L2 L3

)(
U1 U2

O U3

)
.

To make it computable, the size of M1 is set to be b × b,
where b is the size of a basic block that can be decomposed
on a single server. This block partition approach leads to a
recursive algorithm: (1) solving L1 and U1 by factorizing
M1 = L1U1, (2) obtaining L2 and U2 by solving M3 = L2U1

and M2 = L1U2, respectively, and (3) defining a new matrix
M̃ as M̃ = M4 − L2U2 and recursively factorizing M̃ to
obtain L2 and U2. For simplicity, we assume that the order of
M is 2kb, where k is a natural number. In each iteration, we
will obtain a new matrix M̃ . If it is small enough, M̃ can be
updated in the memory. However, in the process of inverting a
large-scale matrix, M̃ is so large that has to be stored into the
hard disk. It makes the size of M̃ to be an important factor
of algorithm performance. The size of M̃ is

S =
N−1∑
r=1

r2b2 =
(N − 1)N(2N − 1)

6
b2,

where N = 2k. It means that the space complexity of the
blocked right-looking based method is O(N3).

In contrast, in our proposed Algorithm 2, the space cost of
M̃ to invert a matrix M sized 2kb× 2kb is

S(k) = S(k − 1) + (2k−1)2b2 + S(k − 2) + (2k−2)2b2

+...+ S(2) + (22)2b2 + S(1) + 22b2 + b2

= 2S(k − 1) + 4k−1b2.

From the above equation, we have

S(k)− 1

2
4kb2 = 2(S(k − 1)− 1

2
4k−1b2).

In the above equation, S(1) is the size of the intermediate
data to invert matrix M sized 2b× 2b, which equals to b2. If
we let

T (k) = S(k)− 1

2
4kb2,

we have

T (1) = S(1)− 1

2
4b2 = −b2.

Then, we have:

T (k) = −2k−1b2

S(k) = (
1

2
4kb2 − 2k−1)b2 =

1

2
(N2 −N)b2.

It indicates that the space complexity of our proposed
algorithm is O(N2), which is much smaller than that of the
blocked right-looking based method and thus helps improve
the performance.

V. EXPERIMENTAL EVALUATION

A. Experimental Environment

We implement our algorithm (later called SparkInverse) on
Spark 1.3, the program of MapReduce-based algorithm based
on the source code provided in [7] (later called MRInverse)
on Hadoop 2.6, and a program (later called MPIInverse)
based on ScaLAPACK library and MPICH2 MPI platform.
All experiments were performed on a cluster composed of
commodity servers connected by Gigabit switches, which are
deployed in a data center with well designed architecture and
optimized network [23]. Each server has 64GB memory, two
2.1GHz Intel Xeon CPUs with 12 physical cores, eight 7200
RPM hard disks, and one Gigabit ethernet card.

TABLE I
INPUT MATRICES

Matrix Order CSV File Size Binary File Size
M1 20480 7.6GB 3.2GB
M2 32768 20GB 8.1GB
M3 40960 31GB 14GB
M4 102400 189GB -
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Fig. 2. Performance evaluation

To investigate the performance of the algorithms, we gen-
erated 4 large-scale matrices of uniformly distributed random
numbers between 0 and 1. Details of the matrices are presented
in Table I, which shows the order of each matrix, the size
of the CSV file used as the input for SparkInverse, and the
size of the binary file used as the input for the comparative
MRInverse and MPIInverse. All files are stored in HDFS with
the replication factor of 3.

B. Performance Comparison

Before evaluating the performance of algorithms, we verify
the precision of MRInverse, SparkInverse and MPIInverse by
computing R = In−MM−1 for M1, M2 and M3. The result
shows that all elements in R are less than 10−7, i.e., this
validates the implementations with sufficient precision.

After validating the algorithms, we execute MRInverse,
SparkInverse and MPIInverse on the cluster with different
conditions to compare the performance. Figure 2 shows the
results. The white, gray and dark bars are the results of
execution time of MRInverse, SparkInverse, and MPIInverse,
respectively. The first and second groups of three bars are
the results of programs running on a small cluster with 4
servers and a large cluster with 7 servers, respectively. All
servers in both small and large clusters are fully occupied
by a single program to be evaluated during the testing. The
results show that the SparkInverse outperforms the MRInverse
for both small and large clusters. The SparkInverse performs
even better when the input matrix becomes larger. This is
attributed to the fact that MRInverse generates a large amount
of intermediate data, and has to input from and output to hard
disks during the computing. In the condition of fully occupied
cluster environment, MPIInverse exhibits better performance
as compared to MRInverse and SparkInverse. As compared to
MPIInverse, our algorithm achieves comparable performance.
It means that we can take advantages of fault-tolerance,
convenient programming and enhanced software ecosystem
by using the Spark framework with acceptable performance
degradation.

In practice, a cluster composed of commodity servers cannot
be occupied by a single program and usually experiences un-
predictable failures. To evaluate this situation, we create a sim-

Fig. 3. The scalability of the proposed algorithm

ulated environment by generating background network traffic
in the large cluster and computing workload on one server.
The third group of three bars in Figure 2 shows the results in
this situation. The percentages of increased execution time on
M3, 76%, 40% and 26%, show the significant performance
degradations of MRInverse and MPIInverse as compared to
SparkInverse. The MPI program has to transfer a large amount
of data on the network and cannot reschedule the computing
tasks if any server crashes or shows slow responses. The
MRInverse algorithm uses a static data partitioning approach
to distribute tasks on servers, and cannot adapt the dynamic
workloads on servers. In contrast, SparkInverse utilizes the
capability of the speculative execution mechanism of the Spark
framework that automatically handles the straggler of network
transmitting and data computing.

For the matrix M4 of order 102400, the MRInverse failed
to invert it on the 7-node cluster with a ‘Java heap space’
error when it runs the last ‘LU Inverse’ job. Meanwhile, the
SparkInverse spent 8 hours 30 minutes and 5 hours 42 minutes
to solve the inversion of M4 with precision of 10−5 on 4
and 7 servers, respectively. This demonstrates the advantage of
our algorithm for inverting extra-large matrices on distributed
computing environment.

C. Scalability and Bottleneck Analysis

To evaluate the scalability of the proposed algorithm, we run
the Spark program to invert M1, M2 and M3 with a varied
number of servers. We configured the number of executors
from 1 to 7, implying that the program can use a range of
physical cores from 12 to 84. Figure 3 shows the result. The
x axis is the number of cores and the y axis is the ratio of
the execution time of each test to that of the test with the
maximum number of cores. We can see that the execution time
decreases when the available computing resource increases.
Results show that the algorithm achieves good scalability when
the number of cores is smaller than 48. However, we also
note that there is a deviation from the expected line when the
number of cores is larger than 48. To investigate the cause of
this deviation, we broke down the execution time of the whole
process of inverting the matrix. As we know, the computing
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time, the disk IO time and the network IO time are the major
parts of the total execution time of big data processing jobs.
For Spark, the distributed memory data abstraction reduces the
impact of the disk IO time on performance. So, we detailed the
data size and the time of reading remote data on the shuffle
process of computing the multiplication of two matrices of
order 20480. The results are shown in Table II, in which
the columns from left to right are the number of nodes, the
accumulated CPU time, the time of pulling data from remote
nodes in shuffle, the size of data read from remote nodes,
the ratio of the remote data to the total shuffled data, and
the ratio of time of remote pulling to the total shuffle time.
Note that the accumulated CPU time is not the execution
time. It is the accumulated CPU time of each task to get
the shuffle data for the next reduce operation. We can see
that the accumulated CPU time increases when the number
of nodes increases because there are more data to be read
from the remote nodes when more nodes are involved in the
computing. In other words, the time of reading data from the
remote nodes occupies the most part of the total shuffle time,
and thus degrades the scalability of our algorithm when the
number of nodes increases.

VI. CONCLUSION AND FUTURE WORK

Large-scale matrix inversion is a fundamental operation for
big data processing tasks, such as web-scale graph analysis and
personalized recommendation. In this paper, we have presented
a scalable and efficient matrix inversion algorithm for large-
scale matrices and its implementation on Spark. We use a
block-recursive method to breakdown the huge computation
into a set of small partitions to compute the LU decomposition.
Unlike traditional LU decomposition based matrix inversion
algorithms, we solve L−1 and U−1 instead of L and U to
reduce the computation and space complexity. The experimen-
tal evaluation has demonstrated that the proposed algorithm
remarkably outperforms the state-of-the-art MapReduce-based
implementation and exhibits the reliability and fault-tolerance
capabilities as compared to the MPI program. The analysis of
evaluation results on clusters with varied sizes has also showed
that our algorithm achieves good scalability.

In terms of the future work, we consider two directions:
(1) optimizing the proposed algorithm and implementation
by decreasing the communications cost with new technolo-
gies like Tachyon [24], and (2) designing and implementing
new linear algebra software libraries based on the algorithm
implementation for large-scale matrix computation including

TABLE II
IMPACT OF PULL REMOTE DATA

Node Time Remote Data Shuffle Read Ratio
Accumulated CPU Shuffle Read Size Time

1 4301s 0 0 0 0
2 8030s 5714s 49.6GB 49.6% 71.2%
3 7848s 5878s 65.6GB 65.6% 74.9%
4 7919s 6221s 72.4GB 72.4% 78.6%
7 10437s 8906s 85.1GB 85.1% 85.3%

singular value decomposition and solving eigenvectors and
eigenvalues.
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